
On the Generalization of Neural Combinatorial
Optimization Heuristics

Sahil Manchanda1,2?, Sofia Michel1, Darko Drakulic1, and Jean-Marc Andreoli1

1 NAVER LABS Europe
2 Indian Institute of Technology Delhi

sahil.manchanda@cse.iitd.ac.in,{sofia.michel,darko.drakulic,jean-marc.andreoli}@naverlabs.com

Abstract. Neural Combinatorial Optimization approaches have recently
leveraged the expressiveness and flexibility of deep neural networks to
learn efficient heuristics for hard Combinatorial Optimization (CO) prob-
lems. However, most of the current methods lack generalization: for a
given CO problem, heuristics which are trained on instances with cer-
tain characteristics underperform when tested on instances with different
characteristics. While some previous works have focused on varying the
training instances properties, we postulate that a one-size-fit-all model is
out of reach. Instead, we formalize solving a CO problem over a given
instance distribution as a separate learning task and investigate meta-
learning techniques to learn a model on a variety of tasks, in order to
optimize its capacity to adapt to new tasks. Through extensive experi-
ments, on two CO problems, using both synthetic and realistic instances,
we show that our proposed meta-learning approach significantly improves
the generalization of two state-of-the-art models.

Keywords: Neural Combinatorial Optimization · Generalization · Heuris-
tic Learning, Traveling Salesman Problem, Capacitated Vehicle Routing
Problem

1 Introduction

Combinatorial optimization (CO) aims at finding optimal decisions within finite
sets of possible decisions; the sets being typically so large that exhaustive search
is not an option [5]. CO problems appear in a wide range of applications such
as logistics, transportation, finance, energy, manufacturing, etc. CO heuristics
are efficient algorithms that can compute high-quality solutions but without
optimality guarantees. Heuristics are crucial to CO, not only for applications
where optimality is not required, but also for exact solvers, which generally exploit
numerous heuristics to guide and accelerate their search procedure [7]. However,
the design of such heuristics heavily relies on problem-specific knowledge, or at
least experience with similar problems, in order to adapt generic methods to the
setting at hand. This design skill that human experts acquire with experience and
that is difficult to capture formally, is a typical signal for which statistical methods
? Work done while interning at NAVER LABS Europe

2 S. Manchanda et al.

may help. In effect, machine learning has been successfully applied to solve CO
problems, as shown in the surveys [4,3]. In particular, Neural Combinatorial
Optimization (NCO) has shown remarkable results by leveraging the full power
and expressiveness of deep neural networks to model and automatically derive
efficient CO heuristics.

Among the approaches to NCO, supervised learning [28,17,12] and reinforce-
ment learning [2,20,14] are the main paradigms.

Despite the promising results of end-to-end heuristic learning, a major lim-
itation of these approaches is their lack of generalization to out-of-training-
distribution instances for a given CO problem [3,11]. For example, models are
generally trained on graphs of a fixed size and perform well on unseen “similar”
graphs of the same size. However, when tested on smaller or larger ones, perfor-
mance tends to degrade drastically. Although size variation is the most reported
case of poor generalization, in our study we will show that instances of the same
size may still vary enough to cause generalization issues. This limitation might
hinder the application of NCO to real-life scenarios where the precise target
distribution is often not known in advance and can vary with time. A natural
way to alleviate the generalization issue is to train on instances with diverse
characteristics, such as various graph sizes [13,18,16]. Intuitively this amounts to
augmenting the training distribution to make it more likely to correctly represent
the target instances.

In this paper, we postulate that a one-size-fit-all model is out of reach.
Instead, we believe that one of the strengths of end-to-end heuristic learning

is precisely its capacity to adapt to specific data and the exploitation of the
underlying structure to obtain an effective specialized heuristic. Therefore we
propose to use instance characteristics to define distributions and consider solving
a CO problem over a given instance distribution as a separate learning task. We
will assume a prior over the target task, by assuming it is part of a given task
distribution, from which we will sample the training tasks. Note that this is a
weaker assumption than most current NCO methods that (implicitly) assume
knowing the target distribution at training. At the other extreme, without any
assumption on the target distribution, the No Free Lunch Theorems of Machine
Learning [30] tell us that we cannot expect to do better than a random policy.
In this context, meta-learning [24,22] is a natural approach to obtain a model
able to adapt to new unseen tasks. Given a distribution of tasks, the idea of
meta-learning is to train a model using a sample of those tasks while optimizing
its ability to adapt to each of them. Then at test time, when presented with an
unseen task from the same distribution, the model only needs to be fine-tuned
using a small amount of data from that task.

Contributions: We focus on two representative state-of-the-art NCO approaches:
(i) the reinforcement learning-based method of [14] and the supervised learning
approach of [12]. In terms of CO problems, we use the well-studied Traveling
Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP).
We first analyze the NCO models’ generalization capacity along different in-
stance parameters such as the graph size, the vehicle capacity and the spatial

Generalization of NCO heuristics 3

distribution of the nodes and highlight the significant drop in performance on
out-of-distribution instances (Section 3). Then we introduce a model-agnostic
meta-learning procedure for NCO, inspired by the first-order meta-learning frame-
work of [21] and adapt it to both the reinforcement and supervised learning-based
NCO approaches (Section 4).

Finally, we design an extensive set of experiments to evaluate the performance
of the meta-trained models with different pairs of training and test distributions.
Our contributions are summarized as follows:

– Problem formalization: We give the first formalization of the NCO out-of-
distribution generalization problem and provide experimental evidence of its
impact on two state-of-the-art NCO approaches.

– Meta-learning framework: We propose to apply a generic meta-training
procedure to learn robust NCO heuristics, applicable to both reinforcement
and supervised learning frameworks. To the best of our knowledge we are
the first to propose meta-learning in this context and prove its effectiveness
through extensive experiments.

– Experimental evaluation: We demonstrate experimentally that our pro-
posed meta-learning approach does alleviate the generalization issue. The
meta-trained models show a better zero-shot generalization performance than
the commonly used multi-task training strategy. In addition, using a lim-
ited number of instances from a new distribution, the fine-tuned meta-NCO
models are able to catch-up, and even frequently outperform, the reference
NCO models, that were specifically trained on the target distribution. We
provide results both on synthetic datasets and the well-established realistic
Operations Research datasets TSPlib and CVRPlib.

– Benchmarking datasets: Finally, by extending commonly used datasets,
we provide an extensive benchmark of labeled TSP and CVRP instances
with a diverse set of distributions, that we hope will help better evaluate the
generalization capability of NCO methods on these problems.

2 Related work

Several papers have noted the lack of out-of-training-distribution generalization
of current NCO heuristics, e.g. [3,4]. In particular, [11] explored the role of
certain architecture choices and inductive biases of NCO models in their ability to
generalize to large-scale TSP problems. In [18], the authors proposed a curriculum
learning approach to train the attention model of [14], assuming good-quality
solutions can be accessed during training and using the corresponding optimality
gap to guide the scheduling of training instances of various sizes. The proposed
curriculum learning in a semi-supervised setting helped improve the original
model’s generalization on size. Recently, [8] proposed a method able to generalize
to large-scale TSP graphs by combining the predictions of a learned model on
small subgraphs and using these predictions to guide a Monte Carlo Tree Search,
successfully generalizing to instances with up to 10,000 nodes. Note that both [8]
and [18] are specifically designed to deal with size variation.

4 S. Manchanda et al.

One can note that hybrid approaches combining learned components and
classical CO algorithms tend to generalize better than end-to-end ones. For
example, the learning-augmented local search heuristic of [16] was able to train
on relatively small CVRP instances and generalize to instances with up to 3000
nodes. Also recent learned heuristics within branch and bound solvers show
a strong generalization ability [19,31]. Other approaches that generalize well
are based on algorithmic learning. For instance, [9] learns to imitate the Ford-
Fulkerson algorithm for maximum bipartite matching, by neural execution of a
Graph Neural Network, similar to [27] for other graph algorithms. These methods
achieve a strong generalization to larger graphs but at the expense of precisely
imitating the steps of existing algorithms.

In this paper we focus on the generalization of end-to-end NCO heuristics. In
contrast to previous approaches, we propose a general framework, applicable to
both supervised and reinforcement (unsupervised) learning-based NCO methods,
and that accounts for any kind of distribution shift, including but not restricted to
graph size. To the best of our knowledge, we are the first to propose meta-learning
as a generic approach to improve the generalization of any NCO model.

3 Generalization properties

To analyze the generalization properties of different NCO approaches, we focus
on two wide-spread CO problems: (i) the Euclidean Traveling Salesman Problem
(TSP), where given a set of nodes in a Euclidean space (typically the plane), the
goal is to find a tour of minimal length that visits each node exactly once; and
(ii) the Capacitated Vehicle Routing Problem (CVRP), where given a depot node,
a set of customer nodes with an associated demand and a vehicle capacity, the
goal is to compute a set of routes of minimal total length, starting and ending
at the depot, such that each customer node is visited and the sum of demands
of customers in each route does not exceed the vehicle capacity. Note that the
TSP can be viewed as a special case of the CVRP where the vehicle capacity is
infinite.

3.1 Instance distributions as tasks

To explore the effect of variability in the training datasets, we consider a specific
family TN,M,C,L of instance distributions (tasks), indexed by the following param-
eters: the graph size N , the number of modes M , the vehicle capacity C and the
scale L. Given these parameters, an instance is generated by the following process.
When M 6=0: first, M points, called the modes, are independently sampled by
an ad-hoc process which tends to spread them evenly in the unit square; then
N points are independently sampled from a balanced mixture of M Gaussian
components centered at the M modes, sharing the same diagonal covariance
matrix, meant to keep the generated points within relatively small clusters around
the modes; finally, the node coordinates are rescaled by a factor L. When M=0:
the N points are instead directly sampled uniformly in the unit square then

Generalization of NCO heuristics 5

rescaled by L. Additionally, in the case of the CVRP problem, the depot is
chosen randomly, the vehicle capacity is fixed to C and customer demands are
generated as in [20]. Examples of spatial node distributions for various TSP tasks
are displayed in Figure 1.

Fig. 1: A sample from each of 4 tasks TN=150,L=1,M (blue points) withM=4, 2, 7, 0,
respectively, from left to right. The red dots are the generated modes.

3.2 Measuring the impact of generalization on performance

To measure the performance of different algorithms on a given task, we sample
a set of test instances from that task and apply each algorithm to each of
these instances. Since the average length of the resulting tours is biased towards
longer lengths, we measure instead the average “gap” with respect to reference
tours. For the TSP, reference is provided by the Concorde solver [1], which
is exact, so what we report is the true optimality gap; for the CVRP, we use
the solutions computed by the state-of-the-art LKH heuristic solver [10], which
returns high-quality solutions at the considered instance sizes (near optimality).

We measure the performance (gap) deterioration on generalization of the
reinforcement learning based Attention Model of [14], subsequently abbreviated as
AM, and the supervised Graph Convolutional Network model of [12], subsequently
abbreviated as GCN. We consider several classes of tasks of the form TN,M,C,L

obtained by varying, in each class, only one of the parameters3 N,M,C,L. For
each class and each task in that class, we train each model on that task only and
test it on each of the tasks in the same class, thus including the training one.
The main results for the AM model are reported in Table 1.

As already observed in several papers, varying the number of nodes degrades
the performance (columns (a) and (d)). Interestingly, varying the number of
modes only also has a negative impact (columns (b) and (e)), and the same holds
when varying the scaling of the node coordinates in the TSP (column (c)) or
the vehicle capacity in the CVRP (column (f)). Similar results of performance
degradation on generalization of the GCN model are given in Table 2 for TSP.
These results confirm the drastic lack of generalization of both models, even on
3 Except with CVRP where, as in previous work [20], changes to C and N are coupled.

6 S. Manchanda et al.

Table 1: Performance deterioration of AM(TSP and CVRP): Average
gap of the AM model (in percentage, over 5000 test instances) when trained and
tested on TSP instances with different (a) number of nodes N (b) number of
modes M and (c) scale L; and CVRP instances with different (d) number of
nodes N , (e) number of modes M and (f) vehicle capacities C.
N test→

train↓ N=20 N=50 N=100 M test→
train↓ M=0 M=3 M=6 L test→

train↓ L=1 L=5 L=10

N=20 0.08 1.78 22.61 M=0 1.47 32.17 2.74 L=1 1.48 282.55 292.39
N=50 0.35 0.52 2.95 M=3 26.38 1.86 7.32 L=5 32.84 1.44 13.83
N=100 3.78 2.33 2.26 M=6 6.91 6.01 2.0 L=10 98.62 7.12 1.53

(a) N (M=0, L=1) (b) M (N=40, L=1) (c) L (N=40,M=0)
N test→

train↓ N=20 N=50 N=100 M test→
train↓ M=1 M=3 M= 8 C test→

train↓ C=20 C=30 C=50

N=20 4.52 12.61 20.23 M=1 4.39 51.02 102.07 C=20 5.83 8.25 12.23
N=50 7.99 6.93 8.47 M=3 5.67 6.32 16.14 C=30 6.13 7.37 9.39
N=100 12.90 9.75 7.11 M=8 14.91 8.67 7.85 C=50 12.27 8.56 7.99
(d) N (M=0, C=func(N)) (e) M (N=50, C=40) (f) C (N=func(C),M=0)

Table 2: Performance deterioration of GCN(TSP): Average gap of the
GCN model, when varying (a) the number of nodes N (b) the number of modes
M and (c) the scale L.
N test→

train↓ N=20 N=50 N=100 M test→
train↓ M=0 M=3 M=8 L test→

train↓ L=1 L=5 L=10

N=20 1.83 38.66 77.31 M=0 5.05 35.86 26.01 L=1 5.10 28.15 32.46
N=50 22.05 5.10 43.76 M=3 35.40 6.96 28.71 L=5 272.58 5.23 25.41
N=100 43.86 37.26 14.79 M=8 32.74 36.29 5.48 L=10 289.51 66.28 5.46

(a) N (M=0, L=1) (b) M (N=50, L=1) (c) L (N=50,M=0)

seemingly closely related instance distributions. In the next section, we propose
an approach to tackle this problem.

4 Meta-learning of NCO heuristics

The goal of this paper is to introduce an NCO approach capable of out-of-
distribution generalization for a given CO problem. Since NCO methods tend
to perform well on fixed instance distributions, our strategy to promote out-of-
distribution generalization is to modify the way the model is trained without
changing its architecture.

Concretely, given a CO problem (e.g. the TSP), we assume that we have a
prior over the relevant tasks (instance distributions), possibly based on historical
data. For instance, we may know that the customers in our TSP are generally
clustered around city centers, but without knowing how many clusters. Our
underlying assumption is that it is easier and more realistic to obtain a prior
distribution on target tasks, rather than the target task itself. We propose to
first train a model to learn an efficient heuristic on a sample of tasks (e.g. TSP
instances with different numbers of modes). Then, considering a new unseen task

Generalization of NCO heuristics 7

Fig. 2: Overview of our proposed method. Note that in the training phase, instead
of size variation, one can have different types of distribution shifts.

(unseen number of modes), we would use a limited number of samples (few-shots)
from that task to specialize the learned heuristic and maximize its performance
on it. Fig. 2 illustrates our proposed approach.

Formally, given an NCO model with parameter θ and a distribution of tasks
T , our goal is to compute a value of θ such that, given an unseen task t ∼ T with
associated loss Lt, after K gradient updates, the fine-tuned parameter minimizes
Lt, i.e.

min
θ

Et∼T [Lt(θKt)], (1)

where θKt is the fine-tuned parameter after K gradient updates of θ using batches
of instances from task t. Problem (1) can be viewed as a few-shot meta-learning
optimization problem. We approach it in a model-agnostic fashion by leveraging
the generic Reptile meta-learning algorithm [21]. Given a task distribution,
Reptile is a surprisingly simple algorithm to learn a model that performs well on
unseen tasks of that distribution. Compared to the seminal MAML framework [6],
Reptile is a first-order method that does not differentiate through the fine-
tuning process at train time, making it feasible to work with larger values of
K. And we observed experimentally that in our context, to fine-tune a model
to a new task, we need up to K = 50 steps, which is beyond MAML’s practical
limits. Furthermore, since Reptile uses only first-order gradients with a very
simple form, it is more efficient, both in terms of computation and memory. Using
Reptile, we meta-train each model on the given task distribution to obtain an
effective initialization of the parameters, which can subsequently be adapted to a
new target task using a limited number of fine-tuning samples from that task.

8 S. Manchanda et al.

The first step to optimize Eq. 1 consists of K updates of task specific param-
eters for a task Ti ∼ T as follows:{

θ0i = θ,

θki = θk−1i − α∇Li(θk−1i), ∀k ∈ [1 . . .K].
(2)

In the above equation, the hyper-parameter α controls the learning rate. Then,
using the updated parameters θKi obtained at the end of the K steps, we update
the meta-parameter θ as follows:

θ = θ + ε
(
θKi − θ

)
. (3)

This is essentially a weighted combination of the updated task parameters θKi and
previous model parameters θ. The parameter ε can be interpreted as a step-size
in the direction of the Reptile “gradient” θKi −θ. It controls the contribution of
task specific parameters to the overall model parameters. We iterate over Ti ∼ T
by computing Eq. 3 for different tasks and then using it for optimizing Eq. 1.

Scheduling ε: first specialize then generalize . As mentioned above, parameter ε
controls the contribution of the task specific loss to the global meta parameters θ
update in Eq. 3. A high value of ε leads to overfitting on the training task while a
low value leads to underfitting, i.e. inefficient learning of the task itself. In order
to tackle such scenario, in this work we utilize a simple decaying schedule for ε
which starts close to 1 (i.e. we deliberately let the model forget a lot, but not all,
after each new task) and tends to 0 as the training proceeds, thus stabilizing the
meta-parameter that is more likely to work well for all tasks.

Fine-tuning for target adaptation: Once the model is meta-trained on a diverse
set of tasks, given a new unseen task Tt, we initialize the model parameter to the
meta-trained value θ and do a number a fine-tuning steps to get the specialized
parameter for that new task. Essentially,{

θ0t = θ,

θkt = θk−1t − α∇Lt(θk−1t), ∀k ∈ [1 . . .K].
(4)

We can now detail the meta-training procedure of NCO models for the
TSP and CVRP problems over our two state-of-the-art reinforcement learning
(AM) and supervised learning (GCN) approaches to NCO heuristic learning. For
simplicity, we use as default problem the TSP in this section, while the adaptation
of the algorithms for the CVRP is presented in Sec. A.2 in Supplementary
Material.

4.1 Meta-learning of RL-based NCO heuristics (AM model)

The RL based model of [14] (AM) consists of learning a policy that takes as
input a graph representing the TSP instance and outputs the solution as a
sequence of graph nodes. The policy is parameterized by a neural network with

Generalization of NCO heuristics 9

Algorithm 1 Meta-training of the Attention Model
Require: Task set T , # updates K, threshold β, step-size initialization ε0 ≈ 1

and decay εdecay > 1
1: Initialize meta-parameters θ randomly, baseline parameters θbi = θ for Ti ∈ T

and step-size ε = ε0
2: while not done do
3: Sample a task Ti ∈ T
4: Initialize adapted parameters θi ← θ
5: for K times do
6: Sample batch of graphs gk from task Ti
7: σk ← SampleRollout(gk, πθi) ∀k
8: σbk ← GreedyRollout(gk, πθbi) ∀k
9: ∇θLi ←

∑
k(c(σk)− c(σbk))∇θ log πθi(σk)

10: θi ← Adam(θi,∇θLi) // Update for task Ti
11: end for
12: if OneSidedPairedTTest(πθi , πθbi) < β then
13: Update baseline θbi ← θi // Update task specific baseline
14: end if
15: Update θ ← (1− ε)θ + εθi, ε← ε/εdecay // Update meta parameters, step

size
16: end while

attention based encoder and decoder [26] stages. The encoder computes nodes
and graph embeddings; using these embeddings and a context vector, the decoder
produces the sequence of input nodes in an auto-regressive manner. In effect,
given a graph instance G with N nodes, the model produces a probability
distribution πθ(σ|G) from which one can sample to get a full solution in the
form of a permutation σ = (σ1, . . . , σN) of {1, . . . , N}. The policy parameter
θ is optimized to minimize the loss: L(θ|G) = Eπθ(σ|G)[c(σ)], where c is the cost
(or length) of the tour σ. The REINFORCE [29] gradient estimator is used:
∇θL(θ|G) = Eπθ(σ|G)[(c(σ)− b(G))∇θ log πθ(σ|G)]. As in [14], we use as baseline b
the cost of a greedy rollout of the best model policy, that is updated periodically
during training.

Meta-training of AM: Algorithm 1 describes our approach for meta-training the
AM model for the TSP problem. For simplicity, the distribution of tasks that
we consider here is uniform over a finite fixed set of tasks. Otherwise, one just
needs to define the task-specific baseline parameters θBL

i on the fly when a task
is sampled for the first time. The training consists of repeatedly sampling a task
(line 3), doing K update of the meta-parameters θ using samples from that task
to get fine-tuned parameters θi, then updating the meta-parameters as a convex
combination of their previous value and the fine-tuned value (line 15). Note that
the baseline need not be updated at each step (line 12), but only periodically, to
improve the stability of the gradients.

10 S. Manchanda et al.

4.2 Meta-learning of supervised NCO heuristics (GCN model)

The supervised model of [12] (GCN) consists of a Graph Convolution Network
that takes as input a TSP instance as a graph G and outputs, for each edge
ij in G, predicted probabilities ŝij of being part of the optimal solution. It is
trained using a weighted binary cross-entropy loss between the predictions and
the ground-truth solution sij provided by the exact solver Concorde [1]:

L(θ|G) =
∑
ij∈G

w0sij log(ŝij) + w1(1− sij) log(1− ŝij), (5)

where w0 and w1 are class weights meant to compensate the inherent class
imbalance, and B is the batch size. The predicted probabilities are then used
either to greedily construct a tour, or as an input to a beam search procedure.
For simplicity, and because we are interested in the learning component of the
method, we only consider here the greedy version.

Meta-training of GCN: Algorithm 2 in Supplementary Material describes our
approach for meta-training the GCN model. In contrast to Algorithm 1, we need
here to fix the training tasks since the ground-truth optimal solutions must be
precomputed in this supervised learning framework.

5 Experiments

The goal of our experiments is to demonstrate the effectiveness of meta-learning
for achieving generalization in NCO. More precisely, given a prior distribution of
tasks, we aim to answer the following questions: (i) How does the (fine-tuned)
meta-trained NCO models perform on unseen tasks, in terms of optimality gaps
and sample efficiency? (ii) How does the meta-trained models perform on unseen
tasks that are interpolated or extrapolated from the training tasks? (iii) How
effective is our proposed decaying step-size strategy in the Reptile meta-learning
algorithm for our NCO tasks?

Experimental setup. Experiments were performed on a pool of machines running
Intel(R) CPUs with 16 cores, 256GB RAM under CentOS Linux 7, having Nvidia
Volta V100 GPUs with 32GB GPU memory. All the models were trained for 24
hours on 1 GPU. The detailed hyperparameters are presented in Sec. A.4 of the
Supp. Material. Our code and datasets are available at: https://github.com/
ncometa/meta-NCO.

Task distributions. For the TSP (resp. CVRP) experiments, we consider four
task distributions (Section 3.1) which are obtained from TN=40,M=0,L=1 (resp.
TN=50,M=0,C=40,L=1) as follows: (i) a var-size distribution is obtained by varying
N only, and for training tasks within this distribution we use N∈{10, 20, 30, 50};
(ii) var-mode distribution by varying M only, and for training M∈{1, 2, 5}; (iii)
mixed-var distribution by varying both N and M and training with (N,M) ∈

https://github.com/ncometa/meta-NCO
https://github.com/ncometa/meta-NCO

Generalization of NCO heuristics 11

{20, 30, 50} × {1, 2, 4}; and (iv) only for CVRP: var-capacity distribution by
varying C only, for training C∈{10, 30, 40}. As test tasks, we use values that are
both within the training tasks range to evaluate the interpolation performance
(e.g. M=3 for var-mode) and outside to evaluate the extrapolation performance
(e.g. N=100 for var-size). More details about the distributions are presented in
Sec. A.3 of the Supp. Mat.

Datasets. We generate synthetic TSP and CVRP instances, according to the
previously described task distributions. For AM training, samples are generated
on demand while for the GCN model, we generate for each task a training set
of 1M instances, a validation and test set of 5K instances each and use the
Concorde solver [1] and LKH [10] to get the associated ground-truth solutions
for TSP and CVRP respectively (as was done in the original work). In order to
fine-tune the meta-trained models, we sample a set of instances from the new
task, containing either 3K (AM) or 1K (GCN) samples; these numbers were
chosen as approximately 0.01% and 0.1% of the number of samples used during
the 24 hours training of the AM and GCN models respectively (see details in Sec.
A.5 in Supp. Mat.). In addition to synthetic datasets, we evaluate our models on
the realistic datasets: TSPlib and CVRPlib. The precise settings and results are
presented in Section 5.1.

Models. We use the AM-based heuristics of [14] for TSP and CVRP. For the
GCN model, we use the model provided by [12] for the TSP and its adaptation
by [15] for the CVRP. For a given task distribution (e.g. var-size) we consider
the following models:

– meta-AM (resp. meta-GCN): the AM (resp. GCN) model meta-trained (follow-
ing Algorithm 1 or 2 for TSP). E.g. for the var-size distribution, we denote
this model meta-AM-N (resp. meta-GCN-N).

– multi-AM (resp. multi-GCN): the AM (resp. GCN) model trained with in-
stances coming equiprobably from the training tasks. E.g. for the var-mode
distribution, we denote this model multi-AM-M (resp. multi-GCN-M).

– oracle-AM (resp. oracle-GCN): original AM (resp. GCN) model trained on
the test instance distribution, that is unseen during training of both the meta
and multi models. Note that although the meta-models are not meant to
improve over the oracles’ performance, we will see that it happens sometimes.

To simplify the notations, we only explicitly differentiate between TSP and CVRP
if it is not clear from the context. Since we are interested in the generalization
of the neural models, regardless of the final decoding step (greedy, sampling,
beam-search, etc), we use a simple greedy decoding for all the models. Besides,
because our training is restricted to 24 hours for all the models (which is sufficient
to ensure convergence of the training, see Fig.3 of Supp. Mat.), the results may
not be as good are those reported in the original papers. To evaluate the impact
of the meta-training on generalization when everything else fixed, we focus on
the relative gap in performance between the different models.

12 S. Manchanda et al.

Table 3: Average optimality gaps over 5,000 instances of the target tasks (e.g.
N=100) coming from different prior task distributions (e.g. var-size distribu-
tion). oracle-AM/GCN denote the AM/GCN models trained on the target task.
multi-AM/GCN and meta-AM/GCN are trained on a set of tasks from the prior
distribution that does not contain the target tasks. K is the number of fine-tuning
steps. In bold: for each model (AM or GCN) and each problem (TSP or CVRP),
the best generalization result among the methods that were not trained on the
target task.

TS
P

Tasks → var-size distrib. var-mode distrib. mixed-var distrib.
Models ↓ N=100 N=150 M=3 M=8 (N,M)=(40,6) (N,M)=(40,8)

oracle-AM 5.96% 12.08% 1.87 % 1.83% 2.00% 1.83%
Farthest Ins.[23] 7.48% 8.55% 2.08% 2.27% 16.32% 11.70%
multi-AM (K=0) 8.73% 14.40% 5.57% 6.20% 10.70% 15.18%
multi-AM (K=50) 7.25% 10.87% 5.26% 4.60% 7.59% 10.26%
meta-AM (K=0) 7.10% 12.25% 1.96% 2.16% 2.41% 3.50%
meta-AM (K=50) 5.58% 9.84% 1.82% 1.70% 2.15% 2.93%

CV
RP

Tasks → var-size distrib. var-mode distrib. var-capacity distrib.
Models ↓ N=100 N=150 M=3 M=8 C=20 C=50

oracle-AM 8.71% 11.56% 6.32 % 7.85% 5.83% 8.01%
multi-AM (K=0) 18.82% 18.76% 7.87% 12.65% 9.15% 14.28%
multi-AM (K=50) 9.18% 11.41% 7.58% 10.20% 8.09% 10.16%
meta-AM (K=0) 11.50% 16.42% 6.05% 9.38% 6.26% 8.94%
meta-AM (K=50) 7.71% 9.91% 5.96% 8.45% 6.05% 8.82%

TS
P

Tasks → var-size distrib. var-mode distrib. mixed-var distrib.
Models ↓ N=80 N=100 M=3 M=8 (N,M)=(40,6) (N,M)=(40,8)

oracle-GCN 12.34% 14.72% 7.65% 6.21% 6.06% 3.22%
multi-GCN (K=0) 28.40% 34.29% 9.22% 7.89% 28.01% 5.05%
multi-GCN (K=50) 16.73% 30.80% 8.43% 6.59% 5.99% 4.42%
meta-GCN (K=0) 19.70% 32.01% 8.19% 7.32% 6.62% 3.72%
meta-GCN (K=50) 13.73% 18.42% 7.72% 6.45% 5.67% 3.17%

Generalization performance: To evaluate the generalization ability of the meta-
trained models, we present in Table 3 the performance of the different models at
0-shot generalization (K=0) and after K=50 fine-tuning steps, for various pairs
of prior task distributions and unseen test tasks. We observe that in all cases the
fine-tuned meta-AM clearly outperforms the fine-tuned baseline multi-AM and
even outperforms the oracle-AM model in 7 out of 12 tasks.

Similar observations hold for the meta-GCN model: it is better both at 0-
shot generalization and after fine-tuning than the multi-GCN baseline, and it
outperforms the oracle in 2 out of 6 tasks. These results show that meta-AM is
able to achieve impressive quality while using a negligible amount of training
data of the target task compared to the original model (oracle-AM). More results
on different target tasks as well as plots of the evolution of the performance with
the number of fine-tuning steps are presented in Sec. A.7 of the Supp. Mat.

Generalization of NCO heuristics 13

Time and sample efficiency. For a complete evaluation of the proposed meta-
training and then fine-tuning approach for NCO, we discuss here its cost in
terms of the fine-tuning time and number of training samples from the target
task required to reach the optimality gaps of Table 3. Regarding the fine-tuning
time, the 50 fine-tuning steps took 2 to 6m for meta-AM and 43s to 2m for
meta-GCN. Further, generating the 1k optimal solutions for fine-tuning the su-
pervised meta-GCN model took up to 17m for TSP150 and 20h for CVRP150.
These values should be compared to the generation time of the 1M solutions for
training the oracle-GCN model on the target instance distribution. Besides, for
example for TSP with M=3, we observed that oracle-AM needs around 23 hours
and more than 30 Million samples of the target task to reach the optimality
gap of 1.82%. On the other hand, meta-AM-M only used 3000 samples from the
target task and achieved a better performance after a few fine-tuning steps and
less than 6 minutes. The baseline approach multi-AM-M was still far away at
5.2% optimality gap after fine-tuning. Similar observations hold for meta-GCN on
TSP with M=3: Oracle-GCN-M needs around 22 hours and 1 Million instances
of labeled data (with optimal solutions) to reach an optimality gap of 7.72%,
while meta-GCN-M reaches the same performance in just 16 seconds, using 500
solved instances. Hence, one model trained using our prescribed meta-learning
approach can be used to adapt to different tasks efficiently within a short span
of time and using few fine-tuning samples. More details on training time and
number of samples used for different tasks can be found in the Table 7 of the
Supp. Mat. Additionally, Fig. 3 in the Supp. Mat. presents the performance of
different models w.r.t time on test tasks during their course of training.

5.1 Experiments on real-world datasets

To evaluate the performance of our approach beyond synthetic datasets, we ran
experiments on two well-established OR datasets: TSPlib4 and CVRPlib5. From
TSPlib we took the 28 instances of size 50 to 200 nodes. Note that in this context,
the RL approach which does not rely on labeled data for fine-tuning is more
appropriate. Since these instances are heterogeneous (i.e. no clear underlying
distribution), we directly fine-tune the models on each test instance.

This is an extreme case of our setting where the target task is reduced to
1 instance. We tested the models that were (meta-)trained on the variable-size
distribution of synthetic instances for meta-AM and multi-AM. For AM we took
the pretrained model on graphs of size N=100. Because of space limitation, we
grouped the instances per size range and report in Table 4 the average optimality
gap obtained after K=100 fine-tuning steps, taking 20s to 1m (detailed per-
instance results in Sec. A.8 of Supp Mat). Note that in this case we also fine-tune
the AM model since it was not trained on the target instances distribution.

From CVRPlib we used the 106 instances of size up to 200 nodes. Since
instances are grouped by sets, we apply our few-shot learning setting: fine-tuning
4 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
5 http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

14 S. Manchanda et al.

for 50 steps on approximately 10% of the instances of a set and testing on the rest.
In Table 4, we report the average optimality gap over 5 random fine-tuning/test
splits for each set. The results are consistent with our previous observations and
illustrate the superior performance of our proposed meta-learning strategy in
this realistic setting. It also shows that even if the prior task distribution is not
perfect (in the sense that it does not include the target task), the meta-training
gives a strong parameter initialization which one can fine-tune effectively on the
target task.

Table 4: Average optimality gaps on realistic instances
Dataset→
Model↓

TSPlib CVRPlib
50−100 101−150 151−200 Set A Set B Set E Set P Set X

AM 8.52% 7.97% 17.35% 4.54% 5.69% 31.17% 5.45% 12.39%
multi-AM 11.95% 13.32% 26.04% 5.03% 5.73% 13.00% 6.13% 15.72%
meta-AM 5.95% 5.91% 13.22% 3.56% 5.07% 14.07% 5.03% 11.87%

5.2 Ablation study

Fixed vs decaying step-size ε. In this section, we study the impact of our proposed
decaying ε approach during meta-training. Specifically, Table 5 presents the results
of using a standard fixed step-size ε versus a decaying ε. We see that the decaying
ε version of meta-AM and meta-GCN outperforms the fixed ε one, both in terms
of 0-shot generalization (i.e K = 0) and after K=50 steps of fine-tuning. This
supports our argument for performing task specialization in the beginning and
generalization at the end of the meta-training procedure.

Table 5: (Fixed vs decaying step-size ε) Average optimality gap, on 5000 TSP
instances sampled from a set of test tasks, using the meta-trained models meta-AM
(resp. meta-GCN) when trained with a fixed step-size ε = ε0 or a “decaying ε”
where ε is close to 1 initially and tends to 0 at the end of the training.

Test task Fine-tuning ε=0.1 ε=0.3 ε=0.5 ε=0.7 ε=0.9 decaying ε

me
ta

-A
M N=100

before (K=0) 9.91% 8.33% 7.52% 6.94% 6.63% 7.10%
after (K=50) 7.83% 6.50% 6.03% 5.95% 5.96% 5.58%

M=8
before (K=0) 5.99% 3.07% 3.38% 2.35% 2.52% 2.16%
after (K=50) 4.78% 2.27% 2.63% 1.87% 2.04% 1.70%

me
ta

-G
CN M=6

before (K=0) 13.08% 11.90% 11.92% 12.90% 10.11% 6.01%
after (K=50) 9.86% 8.27% 9.52% 10.80% 13.16% 5.71%

M=8
before (K=0) 9.78% 8.81% 9.20% 11.05% 11.96% 7.39%
after (K=50) 8.32% 7.37% 8.23% 9.76% 11.80% 6.45%

Generalization of NCO heuristics 15

6 Conclusion

In this paper, we address the well-recognized generalization issue of end-to-end
NCO methods. In contrast to previous works that aim at having one model
perform well on various instance distributions, we propose to learn a model that
can efficiently adapt to different distributions of instances. To implement this
idea, we recast the problem in a meta-learning framework, and introduce a simple
yet generic way to meta-train NCO models. We have shown experimentally that
our proposed meta-learned RL-based and SL-based NCO heuristics are indeed
robust to a variety of distribution shifts for two CO problems. Additionally, the
meta-learned models also achieve superior performance on realistic datasets. We
show that our approach can push the boundary of the underlying NCO models
by solving instances with up to 200 nodes when the models are trained with only
up to 50 nodes. While the known limitations of the underlying models (esp. the
attention bottleneck, and fully-connected GCN) prevent tackling much larger
problems, our approach could be applied to other models. Finally note that
there are several possible levels of generalization in NCO. In this paper, we have
mostly focused on improving the generalization to instance distributions for a
fixed CO problem. To go further, one could investigate the generalization to
other CO problems. For this more ambitious goal, domain adaptation approaches,
which explicitly account for the domain shifts (e.g. using adversarial-based
techniques [25]) could be an interesting direction to explore.

Acknowledgments

We wish to thank Pankaj Pansari and Anilkumar Swamy for preliminary experi-
ments on the generalization of existing models. We are grateful to Julien Perez
for helpful discussions and advice throughout the project. We also thank the
anonymous reviewers for comments that helped improve the paper.

References

1. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press (Sep 2011)

2. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural Combinatorial
Optimization with Reinforcement Learning. arXiv:1611.09940 [cs, stat] (Jan 2017)

3. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization:
A methodological tour d’horizon. European Journal of Operational Research 290(2),
405–421 (2021)

4. Cappart, Q., Chételat, D., Khalil, E., Lodi, A., Morris, C., Veličković, P.: Combina-
torial optimization and reasoning with graph neural networks. arXiv:2102.09544
[cs, math, stat] (Feb 2021)

5. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial
Optimization. Wiley-Interscience, New York, 1st edition edn. (Nov 1997)

16 S. Manchanda et al.

6. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: Proceedings of the 34th International Conference on Machine
Learning - Volume 70. pp. 1126–1135. ICML’17, JMLR.org, Sydney, NSW, Australia
(Aug 2017)

7. Fischetti, M., Lodi, A.: Heuristics in Mixed Integer Programming. In: Wiley En-
cyclopedia of Operations Research and Management Science. American Cancer
Society (2011)

8. Fu, Z.H., Qiu, K.B., Zha, H.: Generalize a Small Pre-trained Model to Arbitrarily
Large TSP Instances. arXiv:2012.10658 [cs] (Dec 2020)

9. Georgiev, D., Liò, P.: Neural Bipartite Matching. arXiv:2005.11304 [cs, stat] (Jun
2020)

10. Helsgaun, K.: An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Con-
strained Traveling Salesman and Vehicle Routing Problems p. 60 (2017)

11. Joshi, C.K., Cappart, Q., Rousseau, L.M., Laurent, T., Bresson, X.: Learning TSP
Requires Rethinking Generalization. arXiv:2006.07054 [cs, stat] (Jun 2020)

12. Joshi, C.K., Laurent, T., Bresson, X.: An Efficient Graph Convolutional Network
Technique for the Travelling Salesman Problem. arXiv:1906.01227 [cs, stat] (Jun
2019)

13. Joshi, C.K., Laurent, T., Bresson, X.: On Learning Paradigms for the Travelling
Salesman Problem. arXiv:1910.07210 [cs, stat] (Oct 2019)

14. Kool, W., van Hoof, H., Welling, M.: Attention, Learn to Solve Routing Problems!
In: International Conference on Learning Representations (2019)

15. Kool, W., van Hoof, H., Gromicho, J., Welling, M.: Deep Policy Dynamic Program-
ming for Vehicle Routing Problems. arXiv:2102.11756 [cs, stat] (Feb 2021)

16. Li, S., Yan, Z., Wu, C.: Learning to delegate for large-scale vehicle routing. In:
Advances in Neural Information Processing Systems 34 Pre-Proceedings (2021)

17. Li, Z., Chen, Q., Koltun, V.: Combinatorial Optimization with Graph Convolutional
Networks and Guided Tree Search. In: Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information
Processing Systems 31, pp. 537–546. Curran Associates, Inc. (2018)

18. Lisicki, M., Afkanpour, A., Taylor, G.W.: Evaluating Curriculum Learning Strategies
in Neural Combinatorial Optimization. arXiv:2011.06188 [cs] (Nov 2020)

19. Nair, V., Dvijotham, D., Dunning, I., Vinyals, O.: Learning Fast Optimizers for
Contextual Stochastic Integer Programs. In: UAI 2018 (2018)

20. Nazari, M., Oroojlooy, A., Snyder, L., Takac, M.: Reinforcement Learning for
Solving the Vehicle Routing Problem. In: Advances in Neural Information Processing
Systems. vol. 31. Curran Associates, Inc. (2018)

21. Nichol, A., Achiam, J., Schulman, J.: On First-Order Meta-Learning Algorithms.
arXiv:1803.02999 [cs] (Oct 2018)

22. Ravi, S., Larochelle, H.: OPTIMIZATION AS A MODEL FOR FEW-SHOT
LEARNING p. 11 (2017)

23. Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M.: An analysis of several heuristics for
the traveling salesman problem. In: Ravi, S.S., Shukla, S.K. (eds.) Fundamental
Problems in Computing: Essays in Honor of Professor Daniel J. Rosenkrantz, pp.
45–69. Springer Netherlands, Dordrecht (2009)

24. Schmidhuber, J.: Evolutionary principles in self-referential learning, or on learning
how to learn: The meta-meta-... hook (1987)

25. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial Discriminative Domain
Adaptation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 7167–7176 (2017)

Generalization of NCO heuristics 17

26. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention Is All You Need. arXiv:1706.03762 [cs] (Jun 2017)

27. Veličković, P., Ying, R., Padovano, M., Hadsell, R., Blundell, C.: Neural Execution
of Graph Algorithms. In: International Conference on Learning Representations
(Sep 2019)

28. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer Networks. In: Cortes, C., Lawrence,
N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information
Processing Systems 28, pp. 2692–2700. Curran Associates, Inc. (2015)

29. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning 8(3), 229–256 (May 1992)

30. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation 1(1), 67–82 (Apr 1997)

31. Zarpellon, G., Jo, J., Lodi, A., Bengio, Y.: Parameterizing Branch-and-Bound
Search Trees to Learn Branching Policies. arXiv:2002.05120 [cs, stat] (Jun 2021)

	On the Generalization of Neural Combinatorial Optimization Heuristics

