
A Pre-Screening Approach for Faster Bayesian
Network Structure Learning

Thibaud Rahier1�[0000−0002−0886−1249], Sylvain Marié2[0000−0002−5929−1047],
and Florence Forbes3[0000−0003−3639−0226]

1 Criteo AI Lab, 4 rue des Méridiens, 38130 Echirolles, France {f.last}@criteo.com
2 Schneider Electric Industries, 160, avenue des Martyrs, 38000 Grenoble, France

{first.last}@se.com
3 INRIA, 655 Av. de l’Europe, 38330 Montbonnot-Saint-Martin, France

{first.last}@inria.fr

Abstract. Learning the structure of Bayesian networks from data is a
NP-Hard problem that involves optimization over a super-exponential
sized space. Still, in many real-life datasets a number of the arcs con-
tained in the final structure correspond to strongly related pairs of vari-
ables and can be identified efficiently with information-theoretic metrics.
In this work, we propose a meta-algorithm to accelerate any existing
Bayesian network structure learning method. It contains an additional
arc pre-screening step allowing to narrow the structure learning task
down to a subset of the original variables, thus reducing the overall prob-
lem size. We conduct extensive experiments on both public benchmarks
and private industrial datasets, showing that this approach enables a sig-
nificant decrease in computational time and graph complexity for little
to no decrease in performance score.

Keywords: Bayesian networks · Structure learning · Information theory
· Conditional entropy · Determinism · Functional relations · Screening.

1 Introduction

Bayesian networks are probabilistic graphical models that present interest both
in terms of knowledge discovery and density estimation. Learning Bayesian net-
works from data has been however proven to be NP-Hard by Chickering (1996).
There has been extensive work on tackling the ambitious problem of Bayesian
network structure learning (BNSL) from observational data. Algorithms fall un-
der two main categories: constraint-based and score-based.

Constraint-based structure learning algorithms rely on testing for conditional
independence relations that hold in the data in order to reconstruct a Bayesian
network encoding these independence relations. The PC algorithm by Spirtes
et al. (2000) was the first practical application of this idea, followed by increas-
ingly optimized approaches such as the fast incremental association (Fast-IAMB)
algorithm.

Score-based structure learning relies on the definition of a network score, then
on the search for the best-scoring structure among all possible directed acyclic

2 T. Rahier et al.

graphs (DAGs). The number of possible DAG structures with n nodes is of order
2O(n2), which prevents exhaustive search when n is typically larger than 30.
Most of the score-based algorithms used in practice therefore rely on heuristics,
as the original approach from Cooper and Herskovits (1992) which assumes a
prior ordering of the variables is known, or Bouckaert (1995) who proposed
to search through the structure space using greedy hill climbing with random
restarts. Since these first algorithms, different approaches have been proposed,
increasingly pushing the limits of state-of-the art in BNSL: some based on the
search for an optimal ordering (Teyssier and Koller, 2005; Chen et al., 2008),
others on optimizing the search task in accordance to a given score (Scanagatta
et al., 2015; Nie et al., 2016), using integer programming (Cussens, 2011) or
bio-inspired optimization heuristics (Kareem and Okur, 2019, 2021). See Scutari
et al. (2019) for a recent review.

Meanwhile, data itself may contain determinism, for example in the fields
of cancer risk identification (de Morais et al., 2008) or nuclear safety (Mabrouk
et al., 2014). Data is also increasingly collected and generated by software sys-
tems whether in social networks, smart buildings, smart grids, smart cities or
the internet of things (IoT) in general (Koo et al., 2016). These systems in their
vast majority rely on relational data models or semantic data models (El Kaed
et al., 2016) where the same entity may be described with several attributes. It is
therefore now common to find deterministically related variables in datasets. De-
terminism has been shown to interfere with Bayesian network structure learning,
notably constraint-based methods as mentioned by Luo (2006).

In this paper, we first remind the background of Bayesian network structure
learning (Section 2) and bring forward the following contributions:

– we state some theoretical results bridging the gap between the notion of
determinism and Bayesian network scoring (Section 3),

– we propose and study the complexity of the quasi-determinism screening
BNSL (qds-BNSL) meta-algorithm, whose aim is to accelerate any existing
BNSL algorithm by reducing the learning problem to a subset of the original
variables via the detection of strong arcs (Section 4),

– we conduct experiments on both public benchmarks and private industrial
datasets, demonstrating empirically that our meta-algorithm indeed accel-
erates the overall BNSL procedure with very low performance loss and also
leads to sparser and therefore more interpretable graphs (Section 5).

2 Bayesian network structure learning

2.1 Bayesian networks

Let X = (X1, . . . , Xn) be a n-tuple of categorical random variables with re-
spective value sets V al(X1), . . . , V al(Xn). The distribution of X is denoted by,
∀ x = (x1, . . . , xn) ∈ V al(X), p(x) = P (X1 = x1, . . . , Xn = xn).

For I ⊂ J1, nK, we define XI = {Xi}i∈I , and the notation p(·) and p(·|·) is ex-
tended to the marginals and conditionals of any subset of variables: ∀(xI ,xJ) ∈

A Pre-Screening Approach for Faster Bayesian Network Structure Learning 3

V al(XI∪J), p(xI |xJ) = P (XI = xI |XJ = xJ).
Moreover, we suppose that D is a dataset containing M i.i.d. instances of
(X1, . . . , Xn). All quantities empirically computed from D will be written with
a .D exponent (e.g. pD refers to the empirical distribution with respect to D).
Finally, DI refers to the restriction of D to the observations of XI .

A Bayesian network is an object B = (G, θ) where (1) G = (V,A) is a directed
acyclic graph (DAG) structure with V the set of nodes and A ⊂ V × V the set
of arcs. We suppose V = J1, nK where each node i ∈ V is associated with the
random variable Xi, and πG(i) = {j ∈ V s.t. (j, i) ∈ A} is the set of i’s parents
in G4 and (2) θ = {θi}i∈V is a set of parameters. Each θi defines the local
conditional distribution of Xi given its parents in the graph, P (Xi|Xπ(i)). More
precisely, θi = {θxi|xπ(i)

} where for i ∈ V, xi ∈ V al(Xi) and xπ(i) ∈ V al(Xπ(i)),
θxi|xπ(i)

= p(xi|xπ(i)).
A Bayesian network B = (G, θ) encodes the following factorization of the

distribution of X: for x = (x1, . . . , xn) ∈ V al(X),

p(x) =

n∏
i=1

p(xi|xπG(i)) =

n∏
i=1

θxi|xπG(i)
.

Such a factorization notably implies that each variable is independent of its
non-descendants given its parents.

2.2 Score-based approach to Bayesian network structure learning

For a given scoring function s : DAGV → R, where DAGV is the set of all
possible DAG structures with node set V , score-based BNSL aims at solving the
following combinatorial optimization problem:

G∗ ∈ argmax
G∈DAGV

s(G). (1)

It can be shown that 2
n(n−1)

2 ≤ |DAGV | ≤ 2n(n−1) where |V | = n. There
are therefore 2O(n2) possible DAG structures containing n nodes (Koller and
Friedman, 2009): the size of DAGV is said to be super-exponential in |V |. Most
scoring functions used in practice are based on the likelihood function. The most
straightforward being the max log-likelihood sore, that we now present.

The max log-likelihood (MLL) score Let lD(θ) = log(pθ(D)) be the log-likelihood
of the set of parameters θ given the dataset D. For a given DAG structure
G ∈ DAGV , we define the MLL score of G with respect to D as:

sMLL
D (G) = max

θ∈ΘG
lD(θ).

where ΘG is the set of all θ’s such that B = (G, θ) is a well defined Bayesian net-
work. The MLL score is very straightforward and intuitive, but it favors denser
4 The exponent G may be dropped for clarity when the referred graph is obvious from
context

4 T. Rahier et al.

structures: if G1 = (V,A1) and G2 = (V,A2) are two graph structures such that
A1 ⊂ A2, we can show that: sMLL

D (G1) ≤ sMLL
D (G2). This problem is generally

solved by using a score that induces a goodness-of-fit versus complexity tradeoff,
such as BIC (Schwarz et al., 1978), which is a penalized version of the MLL
score, or BDe (Heckerman et al., 1995), which is derived from the marginaliza-
tion of the likelihood, which implicitly penalizes the model’s complexity through
a Dirichlet prior on the parameters. In this paper, we will use the BDe score to
evaluate a BN structure’s quality, as it is done in several papers as Teyssier and
Koller (2005), or Nie et al. (2016). This score is known to be a good indicator
of generalization performance, which is what we are aiming to optimize. In the
following sections, we propose to look for such a solution by constructing sparse
graphs with minimal MLL.

3 Determinism and Bayesian networks

3.1 Definitions

We propose the following definitions of determinism and deterministic DAGs
using the notion of conditional entropy. In this paper, determinism will always
be meant empirically, with respect to a dataset D.

Definition 1 Determinism wrt D
Given a dataset D containing observations of variables Xi and Xj, the relation-
ship Xi → Xj is deterministic with respect to D iff HD(Xi|Xj) = 0,
where

HD(Xi|Xj) = −
∑
xi,xj

pD(xi, xj) log(p
D(xi|xj))

is the empirical conditional Shannon entropy.

It is straightforward to prove that Definition 1 relates to a common and intuitive
perception of determinism, as the one presented by Luo (2006). Indeed,

HD(Xi|Xj) = 0

⇔ ∀xj ∈ V al(Xj), there exists a unique xi ∈ V al(Xi) s.t. p
D(xi|xj) = 1.

This definition is naturally extended to XI and XJ for I, J ⊂ V , i.e. XI → XJ

is deterministic with respect to D iff HD(XJ |XI) = 0.

Definition 2 Deterministic DAG wrt D
G ∈ DAGV is said to be deterministic with respect to D iff ∀i ∈ V s.t. πG(i) 6=
∅, XπG(i) → Xi is deterministic wrt D.

3.2 Deterministic trees and MLL score

We first recall a lemma that relates the MLL score presented in Section 2 to the
notion of empirical conditional entropy. This result is well known and notably
stated by Koller and Friedman (2009).

A Pre-Screening Approach for Faster Bayesian Network Structure Learning 5

Lemma 1 For G ∈ DAGV associated with variables X1, . . . , Xn observed in a
dataset D,

sMLL
D (G) = −M

n∑
i=1

HD(Xi|Xπ(i))

where by convention HD(Xi|X∅) = HD(Xi).

The next proposition follows then straightforwardly. We remind that a tree is a
DAG in which each node has exactly one parent, except for the root node which
has none.

Proposition 1 If T is a deterministic tree with respect to D, then T is a solu-
tion of (1):

sMLL
D (T) = max

G∈DAGV
sMLL
D (G).

It is worth noticing that complete DAGs also maximize the MLL score. The main
interest of Proposition 1 resides in the fact that, under the (strong) assumption
that a deterministic tree exists, we are able to explicit a sparse solution of (1),
with n− 1 arcs instead of n(n−1)2 for a complete DAG.

3.3 Deterministic forests and the MLL score

The deterministic tree assumption of Proposition 1 is very restrictive. In this
section, it is extended to deterministic forests, defined as follows:

Definition 3 Deterministic forest wrt D

F ∈ DAGV is said to be a deterministic forest with respect to D iff F =
p⋃
k=1

Tk,

where T1, . . . , Tp are p disjoint deterministic trees wrt DVT1
, . . . , DVTp

respec-

tively and s.t.
p⋃
k=1

VTk = V .

In the expression
p⋃
k=1

Tk, ∪ is the canonical union for graphs: G ∪ G′ = (VG ∪

VG′ , AG ∪AG′). For a given deterministic forest F with respect to D, we define
R(F) = {i ∈ V | πF (i) = ∅} the set of F ’s roots (the union of the roots of each
of its trees).

Proposition 2 Suppose F is a deterministic forest wrt D. Let G∗R(F) be a so-
lution of the BNSL optimization problem (1) for XR(F) and the MLL score i.e.

sMLL
DR(F)

(G∗R(F)) = max
G∈DAGR(F)

sMLL
DR(F)

(G).

Then, G∗ = F ∪G∗R(F) is a solution of (1) for X, i.e.

sMLL
D (G∗) = max

G∈DAGV
sMLL
D (G).

6 T. Rahier et al.

As opposed to Proposition 1, the assumptions of Proposition 2 are always for-
mally verified: if there is no determinism in the dataset D, then R(F) = V , and
every tree Tk is formed of a single root node. In that case, solving problem (1)
for G∗R(F) is the same as solving it for G∗. Of course, we are interested in the
case where R(F) < n, as this enables us to focus on a smaller structure learning
problem while still having the guarantee to learn the optimal Bayesian network
with regards to the MLL score.

As seen in Section 2, the main issue with the MLL score is that it favors com-
plete graphs. However, a deterministic forest F containing p trees is very sparse
(n − p arcs), and even if the graph G∗R(F) is dense, the graph G∗ = F ∪G∗R(F)

may still satisfy sparsity conditions.

4 Structure learning with quasi-determinism screening

4.1 Quasi-determinism

When it comes to BNSL algorithms, even heuristics are computationally in-
tensive. We would like to use the theoretical results presented in Section 3 to
simplify the structure learning problem.

Our idea is to narrow the structure learning problem down to a subset of the
original variables: the roots of a deterministic forest, in order to significantly de-
crease the overall computation time. This is what we call determinism screening.

However, one does not always observe real empirical determinism, although
there are very strong relationships between some of the variables. We therefore
propose to relax the aforementioned determinism screening to quasi-determinism
screening, where quasi is meant with respect to a parameter ε: we talk about
ε−quasi-determinism.

There are several ways to measure how close a relationship is from deter-
ministic. Huhtala et al. (1999) consider the minimum number of observations
that must be dropped from the data for the relationship to be deterministic.
Since we are in a score-maximization context, we will rather use ε as a thresh-
old on the empirical conditional entropy. The following definition is the natural
generalization of Definition 1.

Definition 4 ε−quasi-determinism (ε−qd)
Given a dataset D containing observations of variables Xi and Xj, the relation-
ship Xi → Xj is ε−qd wrt D iff HD(Xj |Xi) ≤ ε.

It has been seen in Proposition 2 that a deterministic forest is the subgraph of
an optimal DAG with respect to the MLL score, while still satisfying sparsity
conditions. Such a forest is therefore very promising with regards to the fit-
complexity tradeoff (typically evaluated by scores such as BDe or BIC).

Combining this intuition with the ε−qd criteria presented in Definition 4, we
propose the quasi-determinism screening approach to BNSL, defined in the next
subsections. An alternate definition with a relative ε is proposed in Section 6.

A Pre-Screening Approach for Faster Bayesian Network Structure Learning 7

4.2 Quasi-determinism screening algorithm

Algorithm 1 details how to find the simplest ε−qd forest Fε from a dataset D
and a threshold ε. Here simplest refers to the complexity in terms of number of
parameters, which in the case of categorical variables corresponds to the num-
ber of states: for each variable Xi that has at least one ε−qd parent, we select
the one that has the lowest number of states from the set of all potential ε−qd
parents πε(i) (line 11).

This algorithm takes for input D (a dataset containingM i.i.d realizations of X)
and ε (a threshold for quasi-determinism). The routine on lines 4-9 makes sure no

Algorithm 1 Quasi-determinism screening (qds)
Input: D , ε

1: Compute empirical conditional entropy matrix HD =
(
HD(Xi|Xj)

)
1≤i,j≤n

2: for i = 1 to n do
3: compute πε(i) = {j ∈ J1, nK \ {i} | HDij ≤ ε}
4: for i = 1 to n do
5: if ∃j ∈ πε(i) s.t. i ∈ πε(j) then
6: if HDij ≤ HDji then
7: πε(j)← πε(j) \ {i}
8: else
9: πε(i)← πε(i) \ {j}
10: for i = 1 to n do
11: π∗ε (i)← argmin

j∈πε(i)
|V al(Xj)| (select one index in case of tie)

12: Compute forest Fε = (VFε , AFε) where VFε = J1, nK and AFε =
{(π∗ε (i), i) | i ∈ J1, nK s.t. π∗ε (i) 6= ∅}
Output: Fε

cycle is introduced by the screening phase, and guarantees the next proposition
holds (ensuring that Algorithm 1 is indeed well defined):

Proposition 3 For any rightful input D and ε, the output of Algorithm 1 is a
forest (i.e. a directed acyclic graph with at most one parent per node).

4.3 Learning Bayesian networks using quasi-determinism screening

We now present Algorithm 2, which uses quasi-determinism screening to accel-
erate Bayesian network structure learning. This algorithm takes the following
input: D (a dataset containing M realizations of X), ε (a threshold for quasi-
determinism) and ref-BNSL (a BNSL baseline algorithm, taking for input a
dataset, and returning a Bayesian network structure). The extension of the def-

8 T. Rahier et al.

Algorithm 2 Bayesian network structure learning with quasi deter-
ministic screening (qds-BNSL)

Input: D, ε, ref-BNSL
1: Compute Fε by running Algorithm 1 with input D and ε
2: Identify R(Fε) = {i ∈ J1, nK | πFε(i) = ∅}, the set of Fε’s roots.
3: Compute G∗R(Fε)

by running ref-BNSL on DR(Fε)

4: G∗ε ← Fε ∪G∗R(Fε)

Output: G∗ε

inition of determinism to quasi-determinism (Definition 3) prevents us to have
‘hard’ guarantees as those presented in Proposition 2. However, we are able to
explicit bounds for the MLL score of a graph G∗ε returned by Algorithm 2, as
stated in the following Proposition.

Proposition 4 Let ε, D and ref-BNSL be rightful input to Algorithm 2, and G∗ε
the associated output.
Then, if ref-BNSL is exact (i.e. always returns an optimal solution) with respect
to the MLL score, we have the following lower bound for sMLL

D (G∗ε):

sMLL
D (G∗ε) ≥

(
max

G∈DAGV
sMLL
D (G)

)
−Mnε.

In practice, this bound is not very tight and this result therefore has few ap-
plicative potential. However, it shows that:

sMLL
D (G∗ε) −→

ε→0
max

G∈DAGV
sMLL
D (G).

In other words, ε 7→ sMLL
D (G∗ε) is continuous in 0, and Proposition 4 generalizes

Proposition 2.
Algorithm 2 is promising, notably if for small ε we have |R(Fε)| significantly

smaller than n. In that case, ref-BNSL, that only has to be run on DR(Fε), can
be expected to be much faster and more accurate than if it is run on the entire
dataset D.

4.4 Complexity analysis

Complexity of baseline BNSL learning algorithms The number of possible DAG
structures being super exponential in the number of nodes, BNSL algorithms
do not entirely explore the structure space but use smart caching and pruning
methods to have a good performance & computation time trade-off.

Let ref-BNSL be a reference Bayesian network structure learning algorithm
and Cref (M,n) be its complexity. Cref (M,n) should typically be thought of as
linear in M and exponential, or at least high degree polynomial, in n for the
best algorithms.

A Pre-Screening Approach for Faster Bayesian Network Structure Learning 9

Complexity of Algorithm 1 We have the following decomposition of the com-
plexity of Algorithm 1:

1. Lines 1-3: O(Mn2). Computation of HD: we need counts for every couple
(Xi, Xj) for i < j (each time going through D), which implies M n(n−1)

2
operations.

2. lines 4-9: O(n2). Going through HD once.
3. lines 10-12: O(n2). Going through HD once.

Overall one has that CAlg1(M,n) = O(Mn2).

Complexity of Algorithm 2 For a given dataset D, we define:

∀ε ≥ 0, nr(ε) = |R(Fε)|.

The function nr(·), associates to ε ≥ 0 the number of roots of the forest Fε
returned by Algorithm 1. The complexity of Algorithm 2 then decomposes as:

1. Line 1: O(Mn2). Run of Algorithm 1.
2. Lines 2-4: Cref (M,nr(ε)). Run of ref-BNSL on reduced dataset DR(Fε) with
nr(ε) columns.

This yields CAlg2(M,n) = O(Mn2) + Cref (M,nr(ε)).
We are interested in how much it differs from Cref (M,n), which depends mainly
on:

– how nr(ε) compares to n,
– how Cref (M,n) varies with respect to n.

Cref (M,n) is known to be typically exponential in n for the best exact struc-
ture learning algorithms, as those presented by Silander and Myllymäki (2006)
or Cussens (2011), and it is expected to be significantly larger than O(Mn2) for
high-performing heuristics. We therefore expect an important decrease in com-
putational time when running Algorithm 2 compared to its baseline version, as
long as nr(ε) is sufficiently smaller than n. In the next section, we run a reference
structure learning algorithm and Algorithm 2 on benchmark datasets in order
to confirm this intuition.

5 Experiments

5.1 Experimental setup

Data Table 1 summarizes the data used in our experiments. We considered the
largest open-source categorical datasets among those presented5 by Davis and
Domingos (2010) and available on the UCI repository (Dheeru and Karra Taniski-
dou, 2017): 20 newsgroup, adult, book, covertype, kddcup 2000, msnbc, msweb,
5 http://alchemy.cs.washington.edu/papers/davis10a/

http://alchemy.cs.washington.edu/papers/davis10a/

10 T. Rahier et al.

plants, reuters-52 and uscensus. Moreover, as it was done by Scanagatta
et al. (2016), we chose the largest Bayesian networks available in the literature6,
for each of which we simulated 10000 observations: andes, hailfinder, hepar
2, link, munin 1-4, pathfinder and win95pts.

We also include two industrial datasets containing descriptive metadata on
which we have privileged access, priv-metadata 1 and priv-metadata 2.

Table 1. Datasets presentation

name short name n M

20 newsgroups 20ng 930 11293
adult adult 125 36631
book book 500 8700
covertype covertype 84 30000
kddcup 2000 kddcup 64 180092
msnbc msnbc 17 291326
msweb msweb 294 29441
plants plants 69 17412
reuters 52 r52 941 6532
uscensus uscensus 68 2458285

andes andes 223 10000
hailfinder hailfinder 56 10000
hepar 2 hepar2 70 10000
link link 724 10000
munin 1 munin1 186 10000
munin 2 munin2 1003 10000
munin 3 munin3 1041 10000
munin 4 munin4 1038 10000
pathfinder pathfinder 109 10000
windows 95 pts win95pts 76 10000

priv-metadata 1 priv-meta1 43 1000
priv-metadata 2 priv-meta2 41 1000

Programming details and choice of ref-BNSL Most of the code associated with
this project was done in R, enabling an optimal exploitation of the bnlearn
package from Scutari (2010), which is a very good reference among open-source
packages dealing with Bayesian networks structure learning.
We need a BSNL algorithm to obtain a baseline performance. After carefully
evaluating several algorithms implemented in the bnlearn package, we chose to
use Greedy Hill Climbing with random restarts and a tabu list, as it consistently
outperformed other built-in algorithms both in time and score, in addition to

6 http://www.bnlearn.com/bnrepository/

http://www.bnlearn.com/bnrepository/

A Pre-Screening Approach for Faster Bayesian Network Structure Learning 11

being also used as a benchmark algorithm in the literature, notably by Teyssier
and Koller (2005). In this section, we refer to this algorithm as ref-BNSL.

Choice of ε for qds-BNSL An approach to choosing ε in the case of the qds-BNSL
algorithm is to pick values for nr(ε), and manually find the corresponding values
for ε. For a given dataset and ρ ∈ [0, 1], we define ερ = n−1r (bρnc). In other words,
ερ is the value of ε for which the number of roots of the qd forest Fε represents
a proportion ρ of the total number of variables (more details in Rahier (2018)).
The computation of ερ is not problematic: once HD is computed and stored,
evaluating nr(ε) is done in constant time, and finding one of nr(·)’s quantiles is
doable in O(log(n)) operations (dichotomy), which is negligible compared to the
overall complexity of the screening. In the case of the priv-metadata datasets,
choosing ε = 0 leads to a dramatic decrease of the number of variables that are
considered by the baseline algorithm, since these datasets contain several truly
deterministic relationships by design.

Algorithm evaluation The algorithms are evaluated using 3 axes of performance:

– BDe score of Section 2 with a uniform prior and equivalent sample size (ESS)
equal to 5, inspired from Teyssier and Koller (2005) and referred to as BDeu.

– Number of arcs of the learned Bayesian network.
The BDeu score naturally penalizes overly complex models (in terms of num-
ber of parameters), it is however interesting to look at the number of arcs,
as it is a straightforward way to evaluate how complex a Bayesian network
appears to a human expert (and thus how interpretable this structure is).

– Computing time trun (all algorithms were run on the same machine).
It is essential to remark that ref-BNSL is used both to obtain a baseline
performance and inside qds-BNSL. In both cases, it is run with the same
settings until convergence. The comparison of computing times is thus fair.

We present the obtained results for our selected baseline algorithm ref-BNSL,
and 3 versions of qds-BNSL. For each dataset, we selected ε ∈ {ε0.9, ε0.75, ε0.5}),
corresponding to a restriction of ref-BNSL to 90%, 75% and 50% of the original
variables respectively (for the priv-metadata datasets, these three choices of ε
are merged into the single choice ε = 0, which results in a decrease of more than
50% of the original variables).

The results are shown in Table 2, one group of columns per evaluation cri-
terion, and each value is the median of 10 runs with different seeds. In each
table, the median value of the criterion is displayed for ref-BNSL (ref), and the
relative difference is displayed for the three versions of qds-BNSL we consider
(qdsε0.9 , qdsε0.75 and qdsε0.5).

5.2 Results

Score It appears in Table 2 that the decrease in BDeu score is smaller than
5% for all the considered datasets when 90% of the variables remain after the

12 T. Rahier et al.

Table 2. For algorithms ref , q0.5, q0.75 and q0.5, and benchmark datasets, we display
the Bayesian Network’s (1) BDeu score averaged by observation, (2) learning time
(including prescreening) and (3) number of arcs. Every result that corresponds to a
BDeu score less than 5% smaller than ref-BNSL’s score is boldfaced.

BDeu score Computation time Number of arcs
dataset ref q0.9 q0.75 q0.5 ref q0.9 q0.75 q0.5 ref q0.9 q0.75 q0.5

(%) (%) (%) (s) (%) (%) (%) (nb) (%) (%) (%)
20ng -143 −0.7 −2.1 −4.8 21495 −1.6 −43 −73 3136 −4.5 −15 −32
adult −13 −0.2 −0.1 −4.0 102 −6.6 −22 −61 371 +3.2 +7.0 −14
book −35 −0.8 −1.7 −4.6 7600 −24 −40 −71 2196 −11 −19 −40
covertype −14 −0.2 −1.2 −12 565 −6.8 −33 −71 337 −0.9 −11 −38
kddcup −2.4 −0.3 −1.0 −3.8 2167 −11 −33 −74 285 −5.3 −19 −39
msnbc −6.2 −0.1 −2.6 −4.6 252 −21 −61 −86 102 −7.8 −33 −64
msweb −9.8 +0.0 −0.1 −1.0 4701 −6.3 −9.9 −55 1264 −2.5 −3.6 −35
plants −13 −2.6 −7.6 −21 455 −47 −62 −84 320 −6.2 −18 −42
r52 −95 −0.8 −2.0 −6.1 18630 −14 −38 −77 2713 −3.6 −9.1 −25
uscensus −23 −0.3 −1.8 −10 21782 −0.4 −32 −78 220 −10 −20 −38

andes −93 −0.5 −6.2 −17 898 −2.2 −27 −70 336 −0.9 −7.1 −23
hailfinder −50 −0.1 −2.7 −10 46 −5.3 −17 −55 64 −1.6 +6.2 −16
hepar2 −33 −0.3 −1.4 −3.2 76 −4.0 −43 −70 92 −3.3 −22 −30
link −216 +0.1 +1.1 −17 7240 −12 −11 −61 1146 −1.8 −0.4 −22
munin1 −41 −0.1 −0.2 −9.9 497 −7.4 −17 −59 208 +0.0 +1.0 −9.6
munin2 −172 −0.0 −0.0 −1.8 7093 −20 −22 −44 879 +0.0 +0.0 −13
munin3 −165 +0.0 +0.0 −1.1 11558 −37 −29 −54 898 +0.0 +0.0 −7.8
munin4 −186 −0.0 −0.0 −3.9 8550 −7.9 −13 −39 903 +0.0 +0.0 −8.5
pathfinder −27 −0.7 −0.7 −4.9 231 −14 −35 −69 161 −4.3 −8.7 −24
win95pts −9.2 +0.1 −1.1 −9.2 132 −6.0 −31 −69 115 +0.0 −0.9 −12

priv-meta1 −8.72 +1.1 +1.1 +1.1 13794 −99 −99 −99 70 −41 −41 −41
priv-meta2 −8.72 +12.5 +12.5 +12.5 4346 −99 −99 −99 102 −59 −59 −59

pre-screening (qdsε0.9), and for most of them when 75% of the variables remain
(qdsε0.75). This is also observed with ε0.5 for datasets that contain a lot of very
strong pairwise relationships as kddcup, msweb, or munin 2-4. For priv-metadata
datasets, our approach increases the score (slightly for priv-metadata1 and of
more than 12% for priv-metadata2).

Computing time Table 2 shows a significant decrease in computational time for
qds-BNSL, which is all the more important as ε is large. In the best cases, we have
both a very small decrease in BDeu score, and an important decrease in compu-
tational time. We suspect that this is also due to the presence of many strong
pairwise relationships. For example, the algorithm qds-BNSL with ε = ε0.5 is 55%
faster for msweb, and 54% for munin 3, while implying only around 1% decrease
in score compared to ref-BNSL. If we allow a 5% score decrease, qds-BNSL can be
up to 70% faster (20 newgroups, book, msnbc, kddcup, hepar2, pathfinder).
On the industrial datasets this computational time decrease is astonishing: it is of

A Pre-Screening Approach for Faster Bayesian Network Structure Learning 13

more than 2 orders of magnitude in the case of priv-metadata 1 and more
than 3 orders of magnitude for priv-metadata 27. These results confirm
the complexity analysis of the previous section, in which we supposed that the
screening phase had a very small computational cost compared to the standard
structure learning phase.

Complexity As showed by Table 2, Bayesian networks learned with qds-BNSL
are consistently less complex than those learned with ref-BNSL. Several graphs
learned with qdsε0.5 are more than 30% sparser while still scoring less than
5% below the baseline algorithm: 20 newsgroups, book, kddcup 2000, msnbc,
msweb and hepar 2.

Figure 1 displays two Bayesian networks learned on the msnbc dataset.

BN learnt on dataset 'msnbc' with qds−BNSL (eps_0.5)

V1

V10 V11

V12

V13

V14

V15 V16 V17

V2

V3

V4

V5

V6

V7

V8 V9

BN learnt on dataset 'msnbc' with sota−BNSL

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

V13

V14

V15V16

V17

Fig. 1. Bayesian network learned on msnbc with qds-BNSL, left (resp. ref-BNSL, right).
BDeu: -6.48 (resp. -6.19), Nb of arcs: 37 (resp. 102), Running time: 36s (resp. 252s)

They provide an interesting example of the sparsity induced by qds-BNSL.
After the qdε0.5-screening phase, half of the variables (corresponding to the
nodes in white) are considered to be sufficiently explained by V 1. They are
therefore not taken into account by ref-BNSL, which is run only on the variables
corresponding to the nodes in gray (more details in Rahier et al. (2018)).
In the msnbc case, this learning problem restriction implies only a small decrease
in the final graph’s generalization performance (as seen in BDeu scores), while
being 7 times faster to compute and enabling a significantly better readability.

In this processed version of the msnbc dataset (Davis and Domingos, 2010),
each variable contains a binary information regarding the visit of a given page
from the msnbc.com website8. The Bayesian network displayed in Figure 2 shows
in a compact way the influence between the different variables. For instance,
7 These results were so extreme that they could not be fully captured in the ‘percent-
age’ format choice of Table 2.

8 more details: http://archive.ics.uci.edu/ml/machine-learning-databases/
msnbc-mld/msnbc.data.html

msnbc.com
http://archive.ics.uci.edu/ml/machine-learning-databases/msnbc-mld/msnbc.data.html
http://archive.ics.uci.edu/ml/machine-learning-databases/msnbc-mld/msnbc.data.html

14 T. Rahier et al.

we see that visits of the website’s pages corresponding to nodes in white (e.g.
‘weather’ (V 8), ‘health’ (V 9) or ‘business’ (V 11)) are importantly influenced
by whether the user has also visited the frontpage (V 1). For example, learned
parameters show that a user who did not visit the website’s frontpage (V 1) is
about 10 times more likely to have visited the website’s ‘summary’ page (V 13)
than a user who did visit the frontpage. Such information is much harder to read
from the graph learned with ref-BNSL displayed in Figure 1 right.

6 Concluding remarks

We have seen that, both in theory and in practice, the quasi-determinism screen-
ing approach enables a decrease in computational time and complexity for a
small decrease in graph score. This tradeoff is all the more advantageous as
there actually are strong pairwise relationships in the data, that can be detected
during the screening phase, thus enabling a decrease in the number of variables
to be considered by the baseline structure learning algorithm during the second
phase of Algorithm 2. Optimal cases for this meta-algorithm take place when
nr(ε) is significantly smaller than n for ε reasonably small compared to the vari-
able’s entropies. Among benchmark datasets this is reasonably frequent (e.g 20
newsgroup, msnbc, munin2-4, webkb), and we argue it is extremely frequent
among industrial datasets, as we have shown in our priv-metadata datasets
which are only a small sample of the kind of datasets in which we can find very
strong (even completely deterministic) relations.

Besides, we still have potential to improve the qds-BNSL meta-algorithm, by
paralellizing the computation of HD, and implementing it in C instead of R.

Our main research perspectives are (1) to understand how one can antici-
pate how good the score/computation time/complexity trade-off can be before
running any algorithm all the way through, saving us from running qds-BNSL
on datasets in which there are no strong pairwise relationships to be detected,
(2) find a principled way to choose ε and (3) tighten the bound of Proposition 4
and generalize it to the BDeu score.

In another directions, we have some insights on ways to generalize our quasi-
determinism screening idea. The proof of Proposition 2 suggests that the result
still holds when F is any kind of deterministic DAG (and not only a forest). We
could therefore use techniques that detect determinism in a broader sense than
only pairwise, to make the screening more efficient. For this purpose we could
take inspiration from papers of the knowledge discovery in databases (KDD)
community, as Huhtala et al. (1999), or more recently Papenbrock et al. (2015)
who evaluate functional dependencies discovery methods. We also could broaden
our definition of quasi-determinism: instead of considering the information-theoretic
quantity HD(X|Y) to describe the strength of the relationship Y → X, one
could choose HD(X|Y)

HD(X)
, which represents the proportion of X’s entropy that is

explained by Y . Moreover, H
D(X|Y)
HD(X)

≤ ε can be rewritten as MID(X,Y)
H(X) ≥ 1− ε,

which gives another insight to quasi-determinism screening: for a given vari-
able X, this comes down to finding a variable Y such that MID(X,Y) is high.

A Pre-Screening Approach for Faster Bayesian Network Structure Learning 15

This is connected to the original idea of Chow and Liu (1968), and later Cheng
et al. (1997), for whom pairwise empirical mutual information is central. This
alternate definition of ε−quasi-determinism does not change the algorithms and
complexity considerations described in Section 4.

Bibliography

Bouckaert, R. (1995). Bayesian belief networks: from inference to construction.
PhD thesis, Faculteit Wiskunde en Informatica, Utrecht University.

Chen, X.-W., Anantha, G., and Lin, X. (2008). Improving Bayesian network
structure learning with mutual information-based node ordering in the K2 al-
gorithm. IEEE Transactions on Knowledge and Data Engineering, 20(5):628–
640.

Cheng, J., Bell, D. A., and Liu, W. (1997). Learning belief networks from data:
An information theory based approach. In Proceedings of the sixth interna-
tional conference on Information and knowledge management, pages 325–331.
ACM.

Chickering, D. M. (1996). Learning Bayesian networks is NP-complete. Learning
from data: Artificial intelligence and statistics V, 112:121–130.

Chow, C. and Liu, C. (1968). Approximating discrete probability distributions
with dependence trees. IEEE transactions on Information Theory, 14(3):462–
467.

Cooper, G. F. and Herskovits, E. (1992). A Bayesian method for the induction
of probabilistic networks from data. Machine Learning, 9(4):309–347.

Cussens, J. (2011). Bayesian network learning with cutting planes. In Proceedings
of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,
UAI’11, pages 153–160, Arlington, Virginia, United States. AUAI Press.

Davis, J. and Domingos, P. (2010). Bottom-up learning of Markov network
structure. In Proceedings of the 27th International Conference on Machine
Learning (ICML-10), pages 271–278.

de Morais, S. R., Aussem, A., and Corbex, M. (2008). Handling almost-
deterministic relationships in constraint-based Bayesian network discovery:
Application to cancer risk factor identification. In European Symposium on
Artificial Neural Networks, ESANN’08.

Dheeru, D. and Karra Taniskidou, E. (2017). UCI machine learning repository.
El Kaed, C., Leida, B., and Gray, T. (2016). Building management insights
driven by a multi-system semantic representation approach. In Internet of
Things (WF-IoT), 2016 IEEE 3rd World Forum on, pages 520–525. IEEE.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning Bayesian
networks: The combination of knowledge and statistical data. Machine Learn-
ing, 20(3).

Huhtala, Y., Kärkkäinen, J., Porkka, P., and Toivonen, H. (1999). Tane: An
efficient algorithm for discovering functional and approximate dependencies.
The computer journal, 42(2):100–111.

Kareem, S. W. and Okur, M. C. (2019). Bayesian network structure learning
based on pigeon inspired optimization. International Journal of Advanced
Trends in Computer Science and Engineering, 8:131–137.

Kareem, S. W. and Okur, M. C. (2021). Falcon optimization algorithm for
bayesian networks structure learning. Computer Science, 22(4).

A Pre-Screening Approach for Faster Bayesian Network Structure Learning 17

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles
and techniques. MIT press.

Koo, D. D., Lee, J. J., Sebastiani, A., and Kim, J. (2016). An internet-of-things
(iot) system development and implementation for bathroom safety enhance-
ment. Procedia Engineering, 145:396–403.

Luo, W. (2006). Learning Bayesian networks in semi-deterministic systems. In
Canadian Conference on AI, pages 230–241. Springer.

Mabrouk, A., Gonzales, C., Jabet-Chevalier, K., and Chojnacki, E. (2014). An
efficient Bayesian network structure learning algorithm in the presence of de-
terministic relations. In Proceedings of the Twenty-first European Conference
on Artificial Intelligence. IOS Press.

Nie, S., de Campos, C. P., and Ji, Q. (2016). Learning Bayesian networks with
bounded tree-width via guided search. In AAAI, pages 3294–3300.

Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J.-P., Schönberg,
M., Zwiener, J., and Naumann, F. (2015). Functional dependency discovery:
An experimental evaluation of seven algorithms. Proceedings of the VLDB
Endowment, 8(10):1082–1093.

Rahier, T., Marie, S., Girard, S., and Forbes, F. (2018). Screening strong pairwise
relationships for fast Bayesian network structure learning 2nd Italian-French
Statistics Seminar-IFSS.

Rahier, T. (2018). Bayesian networks for static and temporal data fusion Uni-
versité Grenoble Alpes, PhD thesis.

Scanagatta, M., Corani, G., de Campos, C. P., and Zaffalon, M. (2016). Learn-
ing treewidth-bounded Bayesian networks with thousands of variables. In
Advances in Neural Information Processing Systems, pages 1462–1470.

Scanagatta, M., de Campos, C. P., Corani, G., and Zaffalon, M. (2015). Learn-
ing Bayesian networks with thousands of variables. In Advances in Neural
Information Processing Systems, pages 1864–1872.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The Annals of
Statistics, 6(2):461–464.

Scutari, M. (2010). Learning Bayesian networks with the bnlearn R package.
Journal of Statistical Software.

Scutari, M., Graafland, C., and Gutiérrez, J. (2019). Who learns better bayesian
network structures: Accuracy and speed of structure learning algorithms. In-
ternational Journal of Approximate Reasoning, 115.

Silander, T. and Myllymäki, P. (2006). A simple approach for finding the globally
optimal Bayesian network structure. In Proceedings of the Twenty-Second
Conference on Uncertainty in Artificial Intelligence, UAI’06.

Spirtes, P., Glymour, C. N., and Scheines, R. (2000). Causation, prediction, and
search. MIT press.

Teyssier, M. and Koller, D. (2005). Ordering-based search: a simple and effective
algorithm for learning Bayesian networks. In Proceedings of the Twenty-First
Conference on Uncertainty in Artificial Intelligence, pages 584–590. AUAI
Press.

	A Pre-Screening Approach for Faster Bayesian Network Structure Learning

