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Abstract. In this paper we propose a Bayesian nonparametric approach
to modelling sparse time-varying networks. A positive parameter is as-
sociated to each node of a network, which models the sociability of that
node. Sociabilities are assumed to evolve over time, and are modelled via
a dynamic point process model. The model is able to capture long term
evolution of the sociabilities. Moreover, it yields sparse graphs, where the
number of edges grows subquadratically with the number of nodes. The
evolution of the sociabilities is described by a tractable time-varying
generalised gamma process. We provide some theoretical insights into
the model and apply it to three datasets: a simulated network, a net-
work of hyperlinks between communities on Reddit, and a network of
co-occurences of words in Reuters news articles after the September 11th

attacks.

Keywords: Bayesian nonparametrics · Poisson random measures · net-
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1 Introduction

This article is concerned with the analysis of dynamic networks, where one ob-
serves the evolution of links among a set of objects over time. As an example,
links may represent interactions between individuals on social media platforms
across different days, or the co-occurrence of words across a series of newspa-
per articles. In each case the pattern of these interactions will generally vary
over different time steps. Probabilistic approaches treat the dynamic networks
of interest as random graphs, where the vertices (nodes) and edges correspond to
objects and links respectively. In the graph setting, sparsity is defined in terms of
the rate in which the numbers of edges grows as the number of nodes increases.
In a sparse graph the number of edges grows sub-quadratically in the number of
nodes. Hence, in a large graphs, two nodes chosen at random are very unlikely
to be linked. Sparsity is a property found in many real-world network datasets
[34, 36], and in our work we are concerned with modelling sparse networks.
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Bayesian approaches play an important role in the modelling of random
graphs, providing a framework for parameter estimation and uncertainty quan-
tification. However, most of the popular Bayesian random graph models result
in dense graphs, i.e. where the number of edges grows quadratically in the num-
ber of nodes, see [36] for a review. A recent Bayesian nonparametric approach,
proposed by [7] and later developed in a number of articles [40, 20, 4, 39, 33],
seeks to solve this problem by representing a graph as an infinite point process
on R2

+, giving rise to a class of sparse random graphs. This class of sparse models
is projective and admits a representation theorem due to [25].

In this paper, we are interested in the dynamic domain and aim to prob-
abilistically model the evolution of sparse graphs over time, where edges may
appear and disappear, and the node popularity may change over time. We build
on the sparse graph model of [7] and extend it to deal with time series of network
data. We describe a fully generative and projective approach for the construction
of sparse dynamic graphs. It is challenging to perform exact inference using the
framework we introduce, and thus we consider an approximate inference method,
using a finite-dimensional approximation introduced by [30].

The rest of the article is structured as follows. In Section 2 we give some
background on the sparse network model of [7]. Section 3 describes the novel
statistical dynamic network model we introduce in detail, as well as its sparsity
properties. The approximate inference method, based on a truncation of the
infinite-dimensional model, is described in Section 4. In Section 5 we present
illustrations of our approach to three different dynamic networks with thousands
of nodes and edges.

2 Background: model of Caron and Fox for sparse static
networks

Bayesian nonparametrics provides a natural setting for the study of sparse
graphs. Parameters can be infinite dimensional, and thus the complexity of mod-
els can adapt to data in question. In the context of network modelling, this allows
for the consideration of graphs that may have infinitely many nodes, only finitely
many of which form connections.

To this end, instead of the standard approach of representing a graph G by a
finite dimensional adjacency matrix, [7] instead represent it by a point process.
Letting α > 0 be a positive parameter tuning the size of the network, a finite
multigraph of size α > 0 is represented by a point process on [0, α]2

N =
∑
i,j

nijδ(θi,θj),

where nij = nji ∈ {0, 1, 2, . . .}, i ≤ j, represents the number of interactions
between individuals i and j. The θi ∈ [0, α] can be interpreted as node labels, and
δ(θi,θj) denotes a point mass at location (θi, θj). The node labels are introduced
for the model’s construction, but are not observed nor inferred. Each node i is
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Fig. 1: Graphical representation of the model. The counts nt are derived from
the sociabilities Wt, whose time-evolution depends on the counts Ct and hyper-
parameters α, σ, τ and φ.

assigned a sociability parameter wi > 0. LetW =
∑
i wiδθi be the corresponding

random measure (CRM) on [0, α]. We assume that W is a generalised gamma
completely random measure [27, 1, 5, 31]. That is, {(wi, θi)i≥1} are the points of
a Poisson point process with mean measure ν(w)dw1θ≤αdθ where 1A = 1 if the
statement A is true and 0 otherwise, and ν is a Lévy intensity on (0,∞) defined
as

ν(w) =
1

Γ (1− σ)
w−1−σe−τw (1)

with hyperparameters σ < 1 and τ > 0. We write simply W ∼ GG(α, σ, τ)
The GGP is a CRM with two interpretable parameters and useful conjugacy
properties [31, 10]. Importantly, with this GGP construction, [7, 8] show that
this model yields sparse graphs with a power-law degree distribution when σ > 0.
The advantage of using this construction over a standard gamma process [28] is
that the parameter σ allows us to control the sparsity properties of the model,
and thus fit to networks with different power-law degree distributions.

To each pair of nodes i, j, we assign a number of latent interactions nij , where

nij | wi, wj ∼
{
Poisson(2wiwj) i < j, nji = nij
Poisson(wiwj) i = j

(2)

Finally, two nodes are said to be connected if they have at least one interaction;
let zij = 1nij>0 be the binary variable indicating if two nodes are connected.

3 Dynamic statistical network model

In order to study dynamically evolving networks, we assume that at each time
t = 1, 2, . . . , T , we observe a set of interactions between a number of nodes.
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This set of interaction is represented by a point process Nt over [0, α]2 as in
Equation (3), where α tunes the size of the graphs.

Nt =
∑
i,j

ntijδ(θi,θj). (3)

Here, ntij is the number of interactions between i and j at time t, and the θi are
unique node labels as before.

The dynamic point process Nt is obtained as follows. We assume that each
node i at time t has a sociability parameter wti ∈ R+, that can be thought of as
a measure of the node’s willingness to interact with other nodes at time t. We
consider the associated collection of random measures on R+, for t = 1, . . . , T

Wt =
∑
i

wtiδθi , t = 1, . . . , T.

We first describe in Section 3.1 the model for the latent interactions. Then we
describe in Section 3.2 the model for the time-varying sociability parameters
(Wt)t≥1. The overall probabilistic model is summarised in Figure 1.

3.1 Dynamic network model based on observed interactions

In the dynamic setting, what we observe in practice is often counts of interactions
between nodes, e.g. hyperlinks, emails or co-occurrences, rather than a binary
indicator of whether there is a connection between them. So for each pair of
nodes i ≤ j, we let (ntij)t=1,2,...T,j≥i be the interaction count between them at
time t. We assume that ntij can be modelled as

ntij | wti, wtj ∼
{
Poisson(2wtiwtj) i < j, ntji = ntij
Poisson(wtiwtj) i = j

(4)

This model can be easily adapted to graphs with directed edges, by modifying
the Equation (4) to

ntij ∼ Poisson(wtiwtj)

for all i 6= j, where ntij now represents the number of interactions from i to j.
The resulting inference algorithm essentially remains the same, and from now
on we assume we are in the undirected edge setting. As in the static case, we can
reconstruct the binary graph by letting ztij = 1(ntij>0) be the binary variable
indicating if nodes i and j are connected at time t, i.e. two nodes are connected
at time t if and only if ntij > 0. To avoid ambiguity, we say that the number
of edges in the graph at time t is

∑
i>j ztij , rather than counting the number

of interactions between pairs of nodes. Marginalizing out the interaction counts
ntij , we have for i 6= j:

Pr(ztij = 1 | (wt−k,i, wt−k,j)k=0,...,t−1) = 1− e−2wtiwtj . (5)
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(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

Fig. 2: Degree distributions over time, for a network simulated from the GG
model with T = 4, α = 200, τ = 1, φ = 1 and varying values of σ.

3.2 A dependent generalised gamma process for the sociability
parameters

When modelling the sociability parameters in the dynamic setting, we have two
goals. Firstly, we want the resulting graphs at each time to be sparse (ideally
fitting within the framework of [7]). Secondly, we want sociability parameters to
be dependent over time, so that we may model the smooth evolution of the socia-
bilities of the nodes. To this end, we consider here that the sequence of random
measures (Wt)t=1,2,... follows a Markov model, such that Wt is marginally dis-
tributed as GG(α, σ, τ). In order to do this, we build on the generic construction
of [37]. A similar model has been derived by [9] for dependent gamma processes
(corresponding to the case σ = 0 here). As in [7], we use the generalised gamma
process here because of the flexibility the sparsity parameter σ gives us. In par-
ticular, this setup allows us to capture power-law degree distributions, unlike
with the gamma process.

For a sequence of additional latent variables (Ct)t=1,2,..., we consider a Markov
chainWt → Ct →Wt+1 starting withW1 ∼ GG(α, σ, τ) that leavesWt marginally
GG(α, σ, τ). For t = 1, . . . , T − 1, define

Ct =

∞∑
i=1

ctiδθi cti|Wt ∼ Poisson(φwti) (6)

where φ > 0 is a parameter tuning the correlation. Given Ct, the measure Wt+1

is then constructed as a combination of masses defined by Ct and GG innovation:

Wt+1 =W ∗t+1 +

∞∑
i=1

w∗t+1,iδθi (7)

with

W ∗t+1 ∼ GG(α, σ, τ + φ) (8)
w∗t+1,i|Ct ∼ Gamma(max(cti − σ, 0), τ + φ). (9)

By convention, Gamma(0, τ) = δ0 (a point mass at 0). Hence, w∗t+1,i = 0 if cti =
0, else w∗t+1,i > 0. Because the conditional laws of Wt+1|Ct coincide with that of
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(a) φ = 20 (b) φ = 2000

Fig. 3: Evolution of weights over time, for a network simulated from the GG
model with T = 100, α = 1, σ = 0.01, τ = 1 and (a) φ = 20 (b) φ = 2000. In
each case we plot the largest weights, with the respective nodes represented by
different colours.

Wt|Ct [38, 23, 24], the construction guarantees thatWt+1 has the same marginal
distribution as Wt, i.e., they are both distributed as GG(α, σ, τ). Moreover, as
proved in Section 1.1 of the Supplementary Material, the conditional mean of
Wt+1 given Wt =

∑
i wtiδθi has the form

E[Wt+1|Wt] =

(
τ

τ + φ

)1−σ

E[Wt]

+
1

τ + φ

∞∑
i=1

[φwti − σ(1− e−φwti)]δθi (10)

In the gamma process case (σ = 0), the above expression reduces to

E[Wt+1|Wt] =
τ

τ + φ
E[Wt] +

φ

τ + φ
Wt.

3.3 Summary of the model’s hyperparameters

The model is parameterised by (α, σ, τ, φ), where:

– α tunes the overall size of the networks, with a larger value of α corresponding
to larger networks.

– σ controls the sparsity and power-law properties of the graph, as will be
shown in Section 3.4. In Figure 2 we see that different values of σ give rise
to different power-law degree distributions.

– τ induces an exponential tilting of large degrees in the degree distribution.
– φ tunes the correlation of the sociabilities of each node over time. As we

see in Figure 3, larger values correspond to higher correlation and smoother
evolution of the weights.
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(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

(e) t = 1 (f) t = 2 (g) t = 3 (h) t = 4

Fig. 4: (Top row) Posterior Predictive Degree Distribution and (bottom row)
95% credible intervals for sociabilites of the nodes with the highest degrees, for
a network simulated from the GG model. True weights are represented by a
green cross.

3.4 Sparsity and power-law properties of the model

By construction, the interactions at time t, ntij , are drawn from the same (static)
model as in [7], using a generalised gamma process for the Lévy intensity, and
so applying Proposition 18 in [8] we obtain the following asymptotic properties

Proposition 1. Let Nt,α be the number of active nodes at time t, N (e)
t,α =∑

i≤j ztij be the number of edges and Nt,α,j the number of nodes of degree j
in the graph at time t, then as α tends to infinity, almost surely, we have for any
t: if σ > 0, N (e)

t,α � N
2/(1+σ)
t,α , if σ = 0, N (e)

t,α � N2
t,α/ log

2(Nt,α) and if σ < 0,
N

(e)
t,α � N2

t,α. Also, almost surely, for any t ≥ 1 and j ≥ 1, if σ ∈ (0, 1),

Nt,α,j
Nt,α

→ pj , pj =
σΓ (j − σ)
j!Γ (1− σ)

,

while if σ ≤ 0, Nt,α,j/Nt,α → 0 for all j ≥ 1.

Hence the graphs are sparse if σ ≥ 0 and dense if σ < 0. This distinction stems
from the properties of the GGP that we use to define the distribution of the
sociabilities, as for σ < 0, the GGP is finite-activity, and for σ ≥ 0 the GGP is
infinite activity. For further details see [7, 8].

4 Approximate inference
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Fig. 5: Evolution of weights of high degree nodes for the network simulated from
the GG model. The dotted line shows the true value of the weights in each case.

4.1 Finite-dimensional approximation

Performing exact inference using this model is quite challenging, and we con-
sider instead an approximate inference method, using a finite-dimensional ap-
proximation to the GG prior, introduced by [30]. This approximation gives rise
to a particularly simple conjugate construction, enabling posterior inference to
be performed.

Let BFRY (η, τ, σ) denote a (scaled and exponentially tilted) BFRY random
variable4 on (0,∞) with probability density function

gη,τ,σ(w) =
σw−1−σe−τw

(
1− e−(σ/η)1/σw

)
Γ (1− σ)

{(
τ + (σ/η)1/σ

)σ − τσ}
with parameters σ ∈ (0, 1), τ > 0 and η > 0.

At time 1, consider the finite-dimensional measure

W1 =

K∑
i=1

w1iδθi

where w1i ∼ BFRY (α/K, τ, σ) and K < ∞ is the truncation level. As shown
by [30], for σ ∈ (0, 1)

W1
d→ GG(α, σ, τ)

as the truncation level K tends to infinity. By this we mean that, if W ∼
GG(α, σ, τ), then

lim
K→∞

Lf (W ′) = Lf (W )

4 The name was coined by [13] after [3].
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(a) t = 2 (b) t = 6 (c) t = 10 (d) t = 12

Fig. 6: Posterior Predictive Degree Distribution over time for the Reddit hyper-
link network

for an arbitrary measurable and positive f , where Lf (W ) := E
[
e−W (f)

]
is the

Laplace functional of W as defined by [30].
To use this finite approximation with our dynamic model, we consider Poisson

latent variables as in Equation (6). The measure Wt+1 is then constructed as:

Wt+1 =

K∑
i=1

wt+1,iδθi

wt+1,i|Ct ∼ BFRY (α′t/K, τ + φ, σ − cti) .

where

α′t = K(σ − cti)(σK/α)
cti−σ
σ .

This construction mirrors that of Section 3.2, with the key difference being
that we now obtain a stationary BFRY (α/K, τ, σ) distribution for the wti. We
can easily see this by noting that if

wti ∼ BFRY (α/K, τ, σ)

cti|wti ∼ Poisson(φwti)

then

p(wti|cti) ∝ w−1−σ+ctiti e−(τ+φ)wti
(
1− e−(σK/α)

1/σwti
)

(11)

which we then recognise as a BFRY (α′t/K, τ + φ, σ − cti) with α′t as above.
Thus, the use of a finite-dimensional approximation BFRY random variables

gives us the simple conjugate construction that we desired. The reason that we
introduce this non-standard distribution is that, as far as we know, it is not
possible to approximate the generalised gamma process using a finite measure
with i.i.d. gamma random weights. In the specific case σ = 0, we could use the
simpler finite approximation using Gamma(α/K, τ) random variables. However,
this would preclude us from modelling networks with power-law degree distribu-
tions, as discussed previously.



10 C. Naik et al.

(a) Degree evolution of high degree
nodes

(b) Weight evolution of high degree
nodes

Fig. 7: Evolution of (a) degrees and (b) weights of high degree nodes for the
Reddit hyperlink network

4.2 Posterior Inference Algorithm

In order to perform posterior inference with the approximate method, we use a
Gibbs sampler. We introduce auxiliary variables {uti}Ki=1, t = 1, . . . , T following
a truncated exponential distribution. The overall sampler is as follows (see the
Supplementary Material for full details):
1. Update the weights wti given the rest using Hamiltonian Monte Carlo (HMC).
2. Update the latent cti given the rest using Metropolis Hastings (MH).
3. Update the hyperparameters α, σ, φ and τ and the latent variables uti given
the rest. We place gamma priors on α, τ and φ, and a beta prior on σ.

5 Experiments

In this section, we use our model to study three dynamic networks. The code
used for all experiments is available at https://github.com/ciannaik/SDyNet.

5.1 Simulated Data

In order to assess the approximate inference scheme, we first consider a synthetic
dataset. We simulate a network with T = 4, α = 100, σ = 0.2, τ = 1, φ = 10
from the exact model (see Section 3), and then estimate it using our approximate
inference scheme described in Section 4. The generated network has 3, 096 nodes
and 101, 571 edges. We run an MCMC chain of length 600, 000, with 300, 000
samples discarded as burn-in. We set the truncation threshold to K = 15, 000.

The approximate inference scheme estimates the model’s parameters well.
This can be seen in terms of the fit of the posterior predictive degree distribu-
tion to the empirical as seen in Figures 4a-4d, and the coverage of the credible
intervals for the weights, as we see in Figures 4e-4h for the 50 nodes with the

https://github.com/ciannaik/SDyNet
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(a) Weights evolu-
tion of the subreddits
‘the_donald’ and ‘sander-
sforpresident’

(b) Weights evolution of
the subreddits ‘world-
news’ and ‘politics’

(c) Weights evolu-
tion of the subred-
dits ‘the_donald’ and
‘enoughtrumpspam’

Fig. 8: Evolution of the weights, for the Reddit hyperlink network.

highest degree. In Figure 5 we see that the model is also able to capture the
weight evolution of the highest degree nodes over time.

In this simulated data experiment, as well as when looking at the real data
experiments, we need to choose the truncation level K. The trade-off here is
between a better approximation for larger K, but slower mixing and a longer
running time of the MCMC algorithm. We examine the effect that our choice of
K has in the Supplementary Material.

5.2 Real Data

We illustrate the use of our model on two more dynamic network datasets: the
Reddit Hyperlink Network [29]5 and the Reuters Terror dataset6.

Reddit Hyperlink Network The Reddit hyperlink network represents hyper-
link connections between subreddits (communities on Reddit) over a period of
T = 12 consecutive months in 2016. Nodes are subreddits (communities) and
the symmetric edges represent hyperlinks originating in a post in one community
and linking to a post in another community. The network has N = 28, 810 nodes
and 388, 574 interactions. The observations here are hyperlinks between the pair
of subreddits i, j at time t. The dataset has been made symmetric by placing
an edge between nodes i and j if there is a hyperlink between them in either
direction. We also assume that there are no loops in the network, that is ntij = 0
for i = j. We run the Gibbs sampler 400, 000 samples, with the first 200, 000
discarded as burn in. In this case, we choose a truncation level of K = 40, 000.

From Figure 6 we see that our model is capturing the empirical degree dis-
tribution well. Furthermore, in Figure 7 we see that the model is able to capture
the evolution of weights associated with each subreddit in a fashion that agrees

5 https://snap.stanford.edu/data/soc-RedditHyperlinks.html
6 http://vlado.fmf.uni-lj.si/pub/networks/data/CRA/terror.htm

https://snap.stanford.edu/data/soc-RedditHyperlinks.html
http://vlado.fmf.uni-lj.si/pub/networks/data/CRA/terror.htm
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(a) t = 1 (b) t = 3 (c) t = 5 (d) t = 7

Fig. 9: Posterior Predictive Degree Distribution for the Reuters terror dataset

with the observed frequency of interactions. The high degree nodes here are in-
terpretable as either communities with a very large number of followers - such
as “askreddit” or “bestof”, or communities which frequently link to others - such
as “drama” or “subredditdrama”.

In particular, we see in Figure 8a that the weights of the controversial but
popular political subreddit “The Donald” increases to a peak in November, cor-
responding to the 2016 U.S. presidential election. Conversely, the weights of the
subreddit “Sandersforpresident” decrease as the year goes on, corresponding to
the end of Senator Bernie Sanders’ presidential campaign, a trend that again
agrees with the evolution of the corresponding observed degrees.

Reuters Terror Dataset The final dataset we consider is the Reuters terror
news network dataset. It is based on all stories released during T = 7 consecutive
weeks (the original data was day-by-day, but was shortened and collated for our
purposes) by the Reuters news agency concerning the 09/11/01 attack on the
U.S.. Nodes are words and edges represent co-occurence of words in a sentence,
in news. The network has N = 13, 332 nodes (different words) and 473, 382
interactions. The observations here are the frequency of co-occurence between
the pair of words i, j at time t. We assume that there are no loops in the network,
that is ntij = 0 for i = j. We run the Gibbs sampler with 200, 000 samples, with
the first 100, 000 discarded as burn in. In this case, we choose a truncation level
of K = 20, 000.

Figure 9 suggests that the empirical degree distribution does not follow a
power law distribution. In particular there are significantly fewer nodes of degree
one than we would expect. Our model therefore provides a moderate fit to the
empirical degree distribution. The model is however able to capture the evolution
of the popularity of the different words, as shown in Figure 10a. For example, the
weights of the words “plane” and “attack” decrease over time after 9/11, while
the words “letter" and “anthrax" show a peak a few weeks after the attack. These
correspond to the anthrax attacks that occurred over several weeks starting a
week after 9/11.

Due to the empirical degree distribution not following a power-law, the esti-
mated value of σ is very close to 0. This causes a slow convergence of the MCMC
algorithm, which we see in the Supplementary Material.
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(a) Weights evolution of
the words ‘plane’ and ‘at-
tack’

(b) Weights evolution of
the words ‘al quaeda’,
‘taliban’ and ‘bin laden’

(c) Weights evolution of
the words ‘anthrax’ and
‘letter’

Fig. 10: Evolution of the weights, for the Reuters terror dataset

6 Discussion and Extensions

A lot of work has been done on modelling dynamic networks; we restrict ourselves
to focussing on Bayesian approaches. Much of this work has centred around ex-
tending static models. For example, [44] and [14] extend the stochastic block
model to the dynamic setting by allowing for parameters that evolve over time.
There has also been work on extending the mixed membership stochastic block-
model [16, 21, 43], the infinite relational model [35] and the latent feature rela-
tional model [15, 19, 26]. The problem inherent in these models is that they lead
to networks which are dense almost surely [2, 22], a property considered unreal-
istic for many real-world networks [36] such as social and internet networks.

In order to build models for sparse dynamic networks, [17] build on the frame-
work of edge-exchangeable networks [6, 11, 42], in which graphs are constructed
based on an infinitely exchangeable sequence of edges. As in our case, this frame-
work allows for sparse networks with power-law degree distributions. This work,
along with others in this framework [35, 18], utilises the mixture of Dirichlet
network distributions (MDND) to introduce struture in the networks.

Conversely, our works builds on a different notion of exchangeability [25, 7].
Within this framework, [32] use mutually-exciting Hawkes processes to model
temporal interaction data. The difference between our work and theirs is that the
sociabilities of the nodes are constant throughout time, with the time evolving
element driven by previous interactions via the Hawkes process. Their work
also builds on that of [39], incorporating community structure to the network.
Exploring how communities appear, evolve and merge could have many practical
uses. Thus, expanding our model to capture both evolving node popularity and
dynamically changing community structure could be a useful extension.

Furthermore, our model assumes that the time between observations of the
network is constant. If this is not the case, it may be helpful to use a continuous-
time version of our model. This could be done by considering a birth-death
process for the interactions between nodes, where each interaction has a certain
lifetime distribution. The continuously evolving node sociabilities could then by
described by the Dawson-Watanabe superprocess [41, 12].
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The goal of our work is to extend the Bayesian nonparametric framework
for network modelling of [7] to the dynamic setting. Since exact inference is
intractable in this regime, we also introduce an approximate inference method.
Further work is needed to apply this framework in scenarios such as dynamic
community detection and link prediction for unseen time steps. We leave this to
future work.
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