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Abstract. Imitation learning algorithms have been interpreted as vari-
ants of divergence minimization problems. The ability to compare oc-
cupancy measures between experts and learners is crucial in their ef-
fectiveness in learning from demonstrations. In this paper, we present
tractable solutions by formulating imitation learning as minimization of
the Sinkhorn distance between occupancy measures. The formulation
combines the valuable properties of optimal transport metrics in com-
paring non-overlapping distributions with a cosine distance cost defined
in an adversarially learned feature space. This leads to a highly dis-
criminative critic network and optimal transport plan that subsequently
guide imitation learning. We evaluate the proposed approach using both
the reward metric and the Sinkhorn distance metric on a number of
MuJoCo experiments. For the implementation and reproducing results
please refer to the following repository https://github.com/gpapagiannis/
sinkhorn-imitation.

1 Introduction

Recent developments in reinforcement learning (RL) have allowed agents to
achieve state-of-the-art performance on complex tasks from learning to play
games [33,38,18] to dexterous manipulation [24], provided with well defined
reward functions. However, crafting such a reward function in practical scenarios
to encapsulate the desired objective is often non-trivial. Imitation learning
(IL) [20] aims to address this issue by formulating the problem of learning
behavior through expert demonstration and has shown promises on various
application domains including autonomous driving and surgical task automation
[2,21,43,23,13].

The main approaches to imitation learning include that of behavioral cloning
(BC) and inverse reinforcement learning (IRL). BC mimics the expert’s behavior
by converting the task into a supervised regression problem [23,30]. While simple
to implement, it is known to suffer from low sample efficiency and poor general-
ization performance due to covariate shift and high sample correlations in the
expert’s trajectory [27,26]. Algorithms such as Dataset Aggregation (DAgger)
[26] and Disturbances for Augmenting Robot Trajectories (DART) [17] alleviate
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this issue. However, they require constantly querying an expert for the correct
actions.

Inverse reinforcement learning instead aims to recover a reward function which
is subsequently used to train the learner’s policy [42,19]. IRL approaches have
shown significantly better results [2,5,40,22,1,16] including being sample efficient
in terms of expert demonstration. However, IRL itself is an ill-posed problem -
multiple reward functions can characterize a specific expert behavior, therefore
additional constraints need to be imposed to recover a unique solution [19,42,41].
In addition, the alternating optimization procedure between reward recovery and
policy training leads to increased computational cost.

Adversarial imitation learning, on the other hand, bypasses the step of explicit
reward inference as in IRL and directly learns a policy that matches that of
an expert. Generative adversarial imitation learning (GAIL) [11] minimizes the
Jensen-Shannon (JS) divergence between the learner’s and expert’s occupancy
measures through a generative adversarial networks (GANs)-based training
process. GAIL was developed as a variant of the reward regularized maximum
entropy IRL framework [42], where different reward regularizers lead to different
IL methods. GAIL has been extended by various other methods aiming to
improve its sample efficiency in regard to environment interaction through off-
policy RL [31,4,36,15,14]. Recent development [9] provides a unified probabilistic
perspective to interpret different imitation learning methods as f -divergence
minimization problems and showed that the state-marginal matching objective
of IRL approaches is what contributes the most to their superior performance
compared to BC. While these methods have shown empirical success, they inherit
the same issues from f -divergence and adversarial training, such as training
instability in GAN-based training [10] and mode-covering behavior in the JS and
Kullback-Leibler (KL) divergences [9,12].

An alternative approach is to utilize optimal transport-based metrics to
formulate the imitation learning problem. The optimal transport (OT) theory
[37] provides a flexible and powerful tool to compare probability distributions
through coupling of distributions based on the metric in the underlying spaces.
The Wasserstein adversarial imitation learning (WAIL) [39] was proposed to
minimize the dual form of the Wasserstein distance between the learner’s and
expert’s occupancy measures, similar to the training of the Wasserstein GAN [3].
The geometric property of the Wasserstein distance leads to numerical stability
in training and robustness to disjoint measures. However, the solution to the dual
formulation is intractable; approximations are needed in the implementation of
neural networks to impose the required Lipschitz condition [28]. [7] introduced
Primal Wasserstein imitation learning (PWIL), that uses a reward proxy derived
based on an upper bound to the Wasserstein distance between the state-action
distributions of the learner and the expert. While PWIL leads to successful
imitation, it is unclear how it inherits the theoretical properties of OT, since the
transport map between occupancy measures is suboptimal, based on a greedy
coupling strategy whose approximation error is difficult to quantify.
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In this paper we present Sinkhorn imitation learning (SIL), a tractable solution
to optimal transport-based imitation learning by leveraging the coupling of
occupancy measures and the computational efficiency of the Sinkhorn distance
[6], that inherits the theoretical properties of OT. Our main contributions include:
(i) We propose and justify an imitation learning training pipeline that minimizes
the Sinkhorn distance between occupancy measures of the expert and the learner;
(ii) We derive a reward proxy using a set of trainable and highly discriminative
optimal transport ground metrics; (iii) We demonstrate through experiments
on the MuJoCo simulator [35] that SIL obtains comparable results with the
state-of-the-art, outperforming the baselines on a number of experiment settings
in regard to both the commonly used reward metric and the Sinkhorn distance.

The rest of this paper is organized as follows. In Section 2 we provide the
necessary background for this work. Section 3 introduces the proposed Sinkhorn
Imitation Learning (SIL) framework. Section 4 provides details of experiments
to evaluate the performance of SIL on a number of MuJoCo environments. We
conclude the paper and discuss future research directions in Section 5.

2 Background

2.1 Imitation Learning

Notation. We consider a Markov Decision Process (MDP) which is defined
as a tuple {S,A,P, r, γ}, where S is a set of states, A is a set of possible
actions an agent can take on the environment, P : S × A × S → [0, 1] is a
transition probability matrix, r : S ×A → R is a reward function and γ ∈ (0, 1)
is a discount factor. The agent’s behavior is defined by a stochastic policy
π : S → Prob(A) and Π is the set of all such policies. We use πE , π ∈ Π to
refer to the expert and learner policy respectively. The performance measure of
policy π is defined as J = Eπ[r(s, a)] = E[

∑∞
t=0 γ

tr(st, at)|P, π] where st ∈ S is
a state observed by the agent at time step t. With a slight abuse of notations,
we also use r((s, a)π) to denote explicitly that (s, a)π ∼ π. τE and τπ denote the
set of state-action pairs sampled by an expert and a learner policy respectively
during interaction with the environment, also referred to as trajectories. The
distribution of state-action pairs generated by policy π through environment
interaction, also known as the occupancy measure ρπ : S ×A → R, is defined as

ρπ(s, a) = (1− γ)π(a|s)
∞∑
t=0

γtPπ[st = s] where Pπ[st = s] denotes the probability

of a state being s at time step t following policy π.

Generative Adversarial Imitation Learning. Ho and Ermon [11] extended the
framework of MaxEnt IRL by introducing a reward regularizer ψ(r) : S ×A → R:

IRLψ(πE) := argmax
r

− ψ(r) + min
π∈Π

(
−Hcausal(π)− Eπ[r(s, a)]

)
+ EπE [r(s, a)] ,

(1)
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where Hcausal(π) := Eρπ [− log π(a|s)]/(1− γ) [41]. The process of RL following
IRL can be formulated as that of occupancy measure matching [11]:

RL ◦ IRLψ(πE) := argmin
π∈Π

−Hcausal(π) + ψ∗(ρπ − ρE) , (2)

where ψ∗ corresponds to the convex conjugate of the reward regularizer ψ(r).
The regularized MaxEnt IRL framework bypasses the expensive step of reward
inference and learns how to imitate an expert by matching its occupancy measure.
Different realizations of the reward regularizer lead to different IL frameworks. A
specific choice of the regularizer leads to the Generative Adversarial Imitation
Learning (GAIL) framework that minimizes the Jensen-Shannon divergence
between the learner’s and expert’s occupancy measures [11].

f-Divergence MaxEnt IRL. Recently, Ghasemipour et al. [9] showed that training
a learner policy π to minimize the distance between two occupancy measures
can be generalised to minimize any f -divergence between ρE and ρπ denoted as
Df (ρE ‖ ρπ). Different choices of f yield different divergence minimization IL
algorithms [9] and can be computed as:

max
Tω

E(s,a)∼ρE [Tω(s, a)]− E(s,a)∼ρπ [f
∗(Tω(s, a)))] , (3)

where Tω : S×A → R and f∗ is the convex conjugate of the selected f -divergence.
The learner’s policy is optimized with respect to the reward proxy f∗(Tω(s, a)).

2.2 Optimal Transport

While divergence minimization methods have enjoyed empirical success, they are
still difficult to evaluate in high dimensions [34], due to the sensitivity to different
hyperparameters and difficulty in training depending on the distributions that are
evaluated [28]. The optimal transport (OT) theory [37] provides effective methods
to compare degenerate distributions by accounting for the underlying metric
space. Consider Pk(Γ ) to be the set of Borel probability measures on a Polish
metric space (Γ, d) with finite k-th moment. Given two probability measures
p, q ∈ Pk(Γ ), the k-Wasserstein metric is defined as [37]:

Wk(p, q)c =
(

inf
ζ∈Ω(p,q)

∫
Γ

c(x, y)kdζ(x, y)
) 1
k

, (4)

where Ω(p, q) denotes the set of joint probability distributions whose marginals
are p and q, respectively. c(x, y) denotes the cost of transporting sample x ∼ p
to y ∼ q. The joint distribution ζ that minimizes the total transportation cost is
referred to as the optimal transport plan.

Sinkhorn Distances. The solution to Equation (4) is generally intractable for
high dimensional distributions in practice. A regularized form of the optimal
transport formulation was proposed by Cuturi [6] that can efficiently compute
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the Wasserstein metric. The Sinkhorn distance Wβ
s (p, q)c between p and q is

defined as:

Wβ
s (p, q)c = inf

ζβ∈Ωβ(p,q)
Ex,y∼ζβ [c(x, y)] , (5)

where Ωβ(p, q) denotes the set of all joint distributions in Ω(p, q) with entropy
of at least H(p) + H(q) − β and H(·) computes the entropy of a distribution.
The distance is evaluated on two distributions p and q where in the context of
adversarial IL correspond to the state-action distributions of the learner and the
expert policies.

3 SIL: Sinkhorn Imitation Learning

We consider the problem of training a learner policy π to imitate an expert, by
matching its state-action distribution ρE in terms of minimizing their Sinkhorn
distance. To facilitate the development of the learning pipeline, we begin by
discussing how the Sinkhorn distance is used to evaluate similarity between
occupancy measures.

Consider the case of a learner π interacting with an environment and gener-
ating a trajectory of state-action pairs τπ ∼ π that characterizes its occupancy
measure. A trajectory of expert demonstrations τE ∼ πE is also available as the
expert trajectories. The optimal transport plan ζβ between the samples of τπ
and τE can be obtained via the Sinkhorn algorithm [6]. Following Equation (5)
we can evaluate the Sinkhorn distance of τπ and τE as follows:

Wβ
s (τπ, τE)c =

∑
(s,a)π∈τπ

∑
(s,a)πE∈τE

c
(
(s, a)π, (s, a)πE

)
ζβ

(
(s, a)π, (s, a)πE

)
. (6)

Reward Proxy. We now introduce a reward proxy suitable for training a learner
policy that minimizes Wβ

s (τπ, τE)c in order to match the expert’s occupancy
measure.

The reward function vc((s, a)π) for each sample (s, a)π in the learner’s trajec-
tory is defined as:

vc((s, a)π) := −
∑

(s,a)πE∈τE

c
(
(s, a)π, (s, a)πE

)
ζβ

(
(s, a)π, (s, a)πE

)
. (7)

The optimization objective of the learner policy J = Eπ[r((s, a)π)] under
r((s, a)π) := vc((s, a)π) corresponds to minimizing the Sinkhorn distance be-
tween the learner’s and expert’s trajectories defined in Equation (6). Hence, by
maximizing the optimization objective J with reward vc((s, a)π), a learner is
trained to minimize the Sinkhorn distance between the occupancy measures of
the learner and the expert demonstrator.

Adversarial reward proxy. The reward specified in Equation (7) can only
be obtained after the learner has generated a complete trajectory. The optimal
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transport plan ζβ
(
(s, a)π, (s, a)πE

)
then weighs the transport cost of each sample

(s, a)π ∈ τπ according to the samples present in τπ and τE . The dependence of
vc((s, a)π) to all state-action pairs in τπ and τE can potentially result in the
same state-action pair being assigned significantly different rewards depending
on the trajectory that it is sampled from. Such dependence can lead to difficulty
in maximizing the optimization objective J (and equivalently in minimizing the
Sinkhorn distance between the occupancy measures from the learner and the
expert). Empirical evidence is provided in the ablation study in Section 4.

In order to provide a discriminative signal to the learner’s policy and aid
the optimization process, we consider adversarially training a critic to penalize
non-expert state-action pairs by increasing their transport cost to the expert’s
distribution, drawing inspiration from the adversarially trained transport ground
metric in the OT-GAN framework [29]. The critic cw((s, a)π, (s, a)πE ) parame-
terized by w is defined as follows:

cw((s, a)π, (s, a)πE ) = 1− fw((s, a)π) · fw((s, a)πE )
||fw((s, a)π)||2||fw((s, a)πE )||2

, (8)

where · denotes the inner product between two vectors. fw(·) : S × A → Rd
maps the environment’s observation space S × A to an adversarially learned
feature space Rd where d is the feature dimension. The adversarial reward proxy
vcw((s, a)π) is obtained by substituting the transport cost c(·, ·) in Equation (7)
with cw(·, ·) defined by Equation (8). SIL learns π by solving the following
minimax optimization problem:

argmin
π

max
w
Wβ
s (ρπ, ρE)cw . (9)

Remark 1. For SIL, the adversarial training part of the transport cost is not
part of the approximation procedure of the distance metric, as in GAIL [11] and
WAIL [39]. The Sinkhorn distance is computed directly via the Sinkhorn iterative
procedure [6] with the transport cost defined in Equation (8).

Algorithm. The pseudocode for the proposed Sinkhorn imitation learning (SIL)
framework is presented in Algorithm 1. In each iteration we randomly match
each of the learner’s generated trajectories to one of the expert’s and obtain their
Sinkhorn distance. The reason behind this implementation choice is to maintain
a constant computational complexity with respect to a potentially increasing
number of demonstrations. We then alternate between one step of updating a
critic network cw to maximize the Sinkhorn distance between the learner’s and
expert’s trajectories and a policy update step to minimize the distance between
occupancy measures with the learned reward proxy. As SIL depends on complete
environment trajectories to compute the Sinkhorn distance, it is inherently an
on-policy method. Hence, to train our imitator policy we use Trust Region Policy
Optimization (TRPO) [32] for our experiments.
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Algorithm 1: Sinkhorn imitation learning (SIL)
Input: Set of expert trajectories {τE} ∼ πE , Sinkhorn regularization

parameter β, initial learner’s policy parameters θ0, initial critic
network parameters w0, number of training iterations K

1: for iteration k = 0 to K do
2: Sample a set of trajectories {τπθk }k ∼ πθk .
3: Create a set of trajectory pairs {(τπθk , τE)}k by randomly

matching trajectories from the learner’s set to the expert’s.
4: For each pair in {(τπθk , τE)}k, calculate W

β
s (τπθk , τE)cw using the

Sinkhorn
algorithm (Equation (5)) and transport cost as in Equation (8), in order
to update the
reward proxy vcwk ((s, a)πθk ) for each state action pair.

5: Update wk to maximize Wβ
s (τπθk , τE)cw using gradient ascent with the

gradient:

∇wk
1

m

∑
{(τπθk ,τE)}k

Wβ
s (τπθk , τE)cw , (10)

where m is the number of trajectory pairs.
6: Update policy parameter θk using TRPO and reward vcwk ((s, a)πθk )

updated in Step 4.
7: end for
Output: Learned policy πθk .

3.1 Connection to regularized MaxEnt IRL.

We now show how SIL can be interpreted as a variant of the regularized MaxEnt
IRL framework [11] given a specific choice of ψ(r).

Definition 1. Consider a learner’s policy and expert’s demonstrations, as well
as their induced occupancy measures ρπ and ρE. We define the following reward
regularizer:

ψW(r) := −Wβ
s (ρπ, ρE)cw + Eρπ [r(s, a)]− EρE [r(s, a)] . (11)

Proposition 1. The reward regularizer ψW(r) defined in Equation (11) leads
to an entropy regularized MaxEnt IRL algorithm. When r((s, a)π) = vcw((s, a)π),

RL ◦ IRLψW (πE) = argmin
π∈Π

−Hcausal(π) + sup
w
Wβ
s (ρπ, ρE)cw . (12)

Equation (12) corresponds to the process of updating a critic network to
maximize the Sinkhorn distance between the learner’s and expert’s occupancy
measures, followed by the process of finding a policy π to minimize it. The added
term Hcausal(π) is treated as a regularization parameter.
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Proof. Consider the set of possible rewards R := {r : S × A → R} in finite
state-action space as in [11] and [9]. The joint state-action distributions ρπ and
ρE are represented as vectors in [0, 1]S×A.

Define ψW(r) := −Wβ
s (ρπ, ρE)+Eρπ [r(s, a)]−EρE [r(s, a)], whereWβ

s (ρπ, ρE)
is obtained with the transport cost cw defined in Equation (8). Given r(s, a) =
vcw(s, a) and recall that the convex conjugate of a function g is g∗(y) = supx∈dom(g)(y

Tx−
g(x)), we obtain

ψ∗W(ρπ − ρE) = sup
r∈R

[(ρπ − ρE)T r − ψW(r)] = sup
r∈R

[
∑
S×A

(ρπ(s, a)− ρE(s, a)) · r(s, a)

+Wβ
s (ρπ, ρE)−

∑
S×A

(ρπ(s, a)− ρE(s, a)) · r(s, a)] =

sup
r∈R

Wβ
s (ρπ, ρE) = sup

vcw∈R
Wβ
s (ρπ, ρE) = sup

w
Wβ
s (ρπ, ρE) .

(13)

From Equation (2),

RL ◦ IRLψ(πE) = argmin
π∈Π

−Hcausal(π) + ψ∗W(ρπ − ρE)

= argmin
π∈Π

−Hcausal(π) + sup
w
Wβ
s (ρπ, ρE) . (14)

4 Experiments

To empirically evaluate the Sinkhorn imitation learning (SIL) algorithm, we
benchmark SIL against BC in the four MuJoCo [35] environments studied in
[9], namely Hopper-v2, Walker2d-v2, Ant-v2 and HalfCheetah-v2, as well as the
Humanoid-v2 environment. Given that SIL is an on-policy method due to the
requirement of complete trajectories, two on-policy adversarial IL algorithms,
namely GAIL [11] and AIRL [8], are also included as baselines. All algorithms
are evaluated against the true reward metric obtained through environment
interaction, in addition to the Sinkhorn distance between the samples from the
learned policy and the expert demonstrations.

Initially we train policies using TRPO [32] to obtain expert performance.
The expert policies are used to generate sets of expert demonstrations. The
performance of the obtained expert policies can be found in Table 1. To study
the robustness of SIL in learning from various lengths of trajectory sets we train
the algorithms on sets of {2, 4, 8, 16, 32} and for Humanoid-v2 for {8, 16, 32} sets.
All trajectories are subsampled by a factor of 20 starting from a random offset,
a common practice found in [11,9,8]. SIL, GAIL and AIRL are trained for 250
iterations allowing approximately 50, 000 environment interactions per iteration.
For Humanoid-v2 we train the algorithms for 350 iterations. All reported results
correspond to performance metrics obtained after testing the learner policies on
50 episodes.
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Table 1: Performance of expert policies providing the demonstrations trained using
TRPO.

Environments Expert Performance
Hopper-v2 3354.74± 1.87

HalfCheetah-v2 4726.53± 133.12

Walker2d-v2 3496.44± 8.79

Ant-v2 5063.11± 337.50

Humanoid-v2 6303.36± 97.71

4.1 Implementation Details

Adversarial Critic. The critic network consists of a 2-layer MLP architecture
with 128 units each with ReLU activations. For each experiment we report the
best performing result after training the critic with the following learning rates
{0.0004, 0.0005, 0.0006, 0.0007, 0.0008, 0.0009} and output dimensions {5, 10, 30}.
Although different choices of the critic network output dimension may yield bet-
ter results for the proposed SIL algorithm in different environments, no further
attempt was made to fine-tune the output for the critic. We note that for most
experiment settings a critic output dimension of 30 and learning rate of 0.0005
among the pool of candidate values yield the best results.

Reward Proxy. After obtaining the value of vcw as defined in Equations
(7) and (8), we add a value of 2

L where L is the trajectory length and scale the
reward by 2. By doing so we set the range of vcw to be 0 ≤ vcw ≤ 4 which proved
to be effective for environments requiring a survival bonus. We keep track of a
running standard deviation to normalize rewards.

Policy Architecture & Training. For both the expert and learner policies, we
use the same architecture comprised of a 2-layer MLP architecture each with 128
units with ReLU activations. The same architecture is used amongst all imitation
learning algorithms. For all adversarial IL algorithms, as well as obtaining expert
performance, we train the policies using Trust Region Policy Optimization [32].
Finally, we normalize environment observations by keeping track of the running
mean and standard deviation.

GAIL & AIRL. To aid the performance of the benchmarks algorithms GAIL
and AIRL in the HalfCheetah-v2 environment, we initialize the policies with that
from behavioural cloning.

Computational Resource. The experiments were run on a computer with
an Intel (R) Xeon (R) Gold 5218 CPU 2.3 GHz and 16GB of RAM, and a RTX
6000 graphic card with 22GB memories.
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Fig. 1: Mean and standard deviation of the Sinkhorn distance evaluated during training
of SIL using a fixed cosine transport cost by stochastically sampling an action from the
learner’s policy.

4.2 Results

Sinkhorn metric. We begin by evaluating performance amongst IL methods
using the Sinkhorn metric. Since our goal is to assess how well imitation learning
algorithms match the expert’s occupancy measure, the Sinkhorn distance offers
a valid metric of similarity between learner’s and expert’s trajectories compared
to the reward metric which is also often unavailable in practical scenarios. We
report the Sinkhorn distance between occupancy measures computed with a fixed
cosine distance-based transport cost during testing and evaluation:

c((s, a)π, (s, a)πE ) = 1− [s, a]π · [s, a]πE
||[s, a]π||2||[s, a]πE ||2

, (15)

where [s, a]π denotes the concatenated vector of state-action of policy π and
|| · ||2 computes the L2 norm. Table 2 reports the Sinkhorn metric evaluated
between the trajectories generated by the learned policies with the demonstrations
provided by the expert. A smaller Sinkhorn distance corresponds to higher
similarity between the learner’s and expert’s generated trajectories. SIL, AIRL
and GAIL obtain comparable performance in most of the environments. The
proposed SIL algorithm outperforms the baselines in almost all experiments on
the environments of HalfCheetah-v2 and Ant-v2, while AIRL achieves superior
performance on the environments of Hopper-v2 and Walker2d-v2. GAIL on the
other hand obtains relatively poor performance with regard to the Sinkhorn
distance when provided with only 2 expert trajectories on the environments of
Hopper-v2, HalfCheetah-v2 and Ant-v2. As expected, behavioral cloning fails
to obtain competitive performance in almost all experiment settings especially
when provided with a small number of expert demonstrations.

In addition, SIL outperforms GAIL and AIRL on the Humanoid-v2 envi-
ronment when provided with 8 and 16 trajectories, where SIL demonstrates
significantly improved sample efficiency in terms of both expert demonstrations
and environment interactions. GAIL outperforms the rest when trained with 32
trajectories on the Humanoid-v2 environment. Interestingly, BC obtains superior
performance with regard to the Sinkhorn distance on the Humanoid-v2 envi-
ronment when provided with 8 trajectories, but low performance regarding the
reward metric as shown in Table 3.
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Table 2: Mean and standard deviation of the Sinkhorn distance between the expert
demonstrations and samples from imitator policies for BC, GAIL, AIRL and SIL. A
fixed cosine transport cost is used only for evaluation (Smaller distance denotes better
performance).

Environments Trajectories BC GAIL AIRL SIL

2 0.467± 0.009 0.098± 0.003 0.069± 0.001 0.073± 0.001

Hopper-v2 4 0.408± 0.080 0.120± 0.010 0.066± 0.009 0.082± 0.010

8 0.300± 0.029 0.074± 0.004 0.068± 0.006 0.071± 0.005

16 0.182± 0.042 0.106± 0.008 0.074± 0.010 0.078± 0.012

32 0.157± 0.084 0.071± 0.008 0.072± 0.009 0.089± 0.008

2 1.043± 0.058 0.940± 0.181 0.577± 0.157 0.546± 0.138

HalfCheetah-v2 4 0.791± 0.096 0.633± 0.095 0.630± 0.091 0.620± 0.101

8 0.841± 0.071 0.702± 0.095 0.708± 0.054 0.700± 0.052

16 0.764± 0.166 0.670± 0.128 0.671± 0.112 0.688± 0.131

32 0.717± 0.129 0.695± 0.113 0.699± 0.091 0.685± 0.083

2 0.474± 0.023 0.067± 0.008 0.034± 0.005 0.080± 0.004

Walker2d-v2 4 0.694± 0.011 0.067± 0.006 0.036± 0002 0.079± 0.005

8 0.335± 0.004 0.069± 0.005 0.036± 0.003 0.063± 0.003

16 0.199± 0.013 0.061± 0.004 0.037± 0.005 0.102± 0.007

32 0.196± 0.098 0.052± 0.003 0.042± 0.004 0.147± 0.003

2 0.843± 0.033 0.344± 0.068 0.164± 0.006 0.158± 0.008

Ant-v2 4 0.684± 0.159 0.165± 0.119 0.163± 0.008 0.157± 0.014

8 0.996± 0.029 0.159± 0.016 0.164± 0.019 0.155± 0.012

16 0.724± 0.149 0.225± 0.106 0.173± 0.062 0.165± 0.022

32 0.452± 0094 0.176± 0.029 0.172± 0.020 0.173± 0.018

8 0.336± 0.089 0.386± 0.011 1.015± 0.015 0.379± 0.296

Humanoid-v2 16 0.290± 0.086 0.428± 0.027 1.034± 0.017 0.182± 0.011

32 0.182± 0.028 0.162± 0.144 1.026± 0.015 0.250± 0.180

Reward metric. To better understand how performance changes in terms
of the Sinkhorn distance metric translates to the true reward, Table 3 shows
the reward obtained with the learned policies in the same experiments reported
in Table 2. While all adversarial imitation learning algorithms exhibit similar
reward values compared to the expert policies, we observe that SIL generally
obtains lower reward compared to AIRL on Ant-v2. In addition, AIRL obtains
lower reward compared to SIL and GAIL on Walker2d-v2. However, both SIL and
AIRL yield superior performance in these environments when evaluated using the
Sinkhorn distance as shown in Table 2. The result suggests that evaluating the
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Table 3: Mean and standard deviation of the reward metric performance of imitator
policies for BC, GAIL, AIRL and SIL.

Environments Trajectories BC GAIL AIRL SIL

2 391.38± 42.98 3341.27± 38.96 3353.33± 2.05 3376.70± 2.45

4 659.51± 166.32 3206.85± 1.56 3353.75± 1.67 3325.66± 4.24

Hopper-v2 8 1094.39± 145.93 3216.93± 3.08 3369.17± 3.04 3335.31± 2.66

16 2003.71± 655.85 3380.97± 2.16 3338.07± 2.14 3376.55± 2.65

32 2330.82± 1013.71 3333.93± 1.47 3361.56± 1.93 3326.52± 3.62

2 −60.80± 23.12 764.91± 546.47 4467.83± 61.13 4664.65± 91.73

4 1018.68± 236.13 5183.67± 118.74 4578.84± 102.92 4505.88± 130.50

HalfCheetah-v2 8 1590.73± 279.05 4902.46± 721.43 4686.22± 147.89 4818.82± 251.27

16 2434.30± 733.29 4519.49± 157.99 4783.79± 197.27 4492.37± 134.35

32 3598.98± 558.70 4661.17± 147.21 4633.48± 116.89 4795.68± 191.90

2 591.92± 32.77 3509.37± 8.08 3497.80± 9.64 3566.32± 16.11

4 314.77± 9.21 3537.63± 4.14 3496.61± 10.94 3523.73± 21.91

Walker2d-v2 8 808.37± 5.28 3394.15± 4.74 3488.68± 10.67 3420.13± 16.38

16 1281.80± 81.11 3444.96± 23.99 3459.84± 8.25 3557.51± 11.67

32 1804.74± 1154.36 3427.61± 9.79 3495.04± 17.18 3203.32± 23.65

2 845.14± 172.37 3443.87± 716.61 5190.89± 67.94 4981.70± 50.89

4 897.54± 2.14 4912.92± 606.99 5182.42± 65.70 5020.71± 89.74

Ant-v2 8 991.92± 2.92 5112.21± 102.23 5083.30± 77.48 5112.55± 62.87

16 1014.14± 447.66 4854.87± 895.63 5034.80± 331.64 4935.33± 87.15

32 2197.20± 487.00 5009.60± 247.43 5013.36± 119.12 4581.27± 123.75

8 1462.47± 1139.19 1249.26± 187.71 3897.47± 1047.03 4456.09± 2707.92

Humanoid-v2 16 2100.93± 1116.79 496.11± 113.28 4396.01± 433.63 6380.37± 40.35

32 4807.86± 1903.08 6252.73± 570.72 1884.92± 764.89 5593.19± 1967.86

performance of imitation learning algorithms with a true similarity metric, such
as the Sinkhorn distance, can be more reliable since our objective is to match
state-action distributions.
Training Stability. Table 2 showcases that SIL consistently minimizes the
Sinkhorn distance while being robust to varying lengths of expert demonstra-
tions. Figure 1 depicts the evolution of the Sinkhorn distance between occupancy
measures of the learner and the expert in the training process of SIL. In spite of
the training instability observed on Walker2d-v2 with 2 or 32 expert trajectories
on the Humanoid-v2 environment, SIL still successfully learns to imitate the
expert demonstrator. We speculate that training stability could be improved in
these settings with further hyperparameter tuning as discussed in Section 5 which
we leave for future work. Training stability of SIL is evident on the Hopper-v2,
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Fig. 2: Ablation Study. Mean and standard deviation of the Sinkhorn distance during
training of SIL for three sets of varying number of trajectories. The critic network
update has been replaced with a fixed cosine transport cost defined in Equation (15).

Table 4: Mean and standard deviation of the reward and Sinkhorn metric performance
after re-training SIL with a fixed cosine transport cost defined in Equation (15).
Environments Metric 2 8 32
Hopper-v2 Reward 264.72± 1.28 520.88± 29.83 9.44± 0.31

Sinkhorn 0.036± 0.007 0.552± 0.008 0.777± 0.007

HalfCheetah-v2 Reward −1643.98± 198.31 −844.52± 267.42 −1220.92± 217.86

Sinkhorn 0.670± 0.141 0.841± 0.035 0.424± 0.031

Walker2d-v2 Reward 60.64± 7.92 −2.39± 14.05 −11.38± 1.22

Sinkhorn 0.538± 0.006 0.487± 0.005 0.466± 0.009

Ant-v2 Reward 1482.03± 480.99 607.87± 87.09 114.22± 123.24

Sinkhorn 0.398± 0.090 0.419± 0.025 0.424± 0.031

8 16 32
Humanoid-v2 Reward 447.87± 31.26 505.47± 67.62 335.48± 65.14

Sinkhorn 0.760± 0.011 0.789± 0.013 0.835± 0.012

Ant-v2 and HalfCheetah-v2 environments.

Ablation study. To study the effect of minimizing the Sinkhorn distance
between occupancy measures using a fixed transport cost, we repeat our experi-
ments on the environments Hopper-v2, HalfCheetah-v2, Walker2d-v2 and Ant-v2
with {2, 8, 32} trajectory sets. For Humanoid-v2 we conduct the experiments
on sets of {8, 16, 32}. In this ablation study, instead of training a critic network
in an adversarially learned feature space, we assign a reward proxy defined by
Equation (7) with a fixed cosine transport cost introduced in Equation (15).

Figure 2 depicts the evolution of the Sinkhorn distance between occupancy
measures during training of SIL, after replacing the adversarial objective of the
critic network with a fixed transport cost. While the training process is more
stable, it fails to achieve good performance in terms both of the Sinkhorn distance
metric (Figures 1 and 2) and reward metric (see Table 4). The result suggests
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that the training objective of the critic network has been a crucial part of the
proposed algorithm in providing sufficiently strong signals to the learner policy
to match the expert’s state-action distribution.

5 Conclusion

In this work we presented Sinkhorn imitation learning (SIL), a solution to optimal
transport based imitation learning, by formulating the problem of matching an
expert’s state-action distribution as minimization of their Sinkhorn distance. We
utilized an adversarially trained critic that maps the state-action observations
to an adversarially learned feature space. The use of the critic provides a dis-
criminative signal to the learner policy to facilitate the imitation of an expert
demonstrator’s behavior. Experiments on 5 MuJoCo environments demonstrate
that SIL exhibits competitive performance compared to the baselines.

The Sinkhorn imitation learning framework can be extended in several di-
rections to address current limitations which we aim to study in future work.
Currently, SIL’s formulation makes it compatible with only on-policy RL methods
as computing the Sinkhorn distance necessitates complete trajectories. While
SIL is efficient compared to other on-policy adversarial IL benchmarks, it still
requires more environment interactions to learn compared to off-policy adversar-
ial IL methods. Hence, it is an interesting future direction to extend SIL to be
compatible with off-policy RL algorithms, in line with previous work [7,14,15,25]
to yield a method that both inherits the theoretical benefits of OT while being
sample efficient. Additionally, performance of SIL was reported with a fixed critic
network structure in all studied experiments. Hence, it is unclear what is the effect
of the network architecture in guiding imitation learning. It will be of practical
significance to investigate the impact of different critic network architectures on
training stability and computational efficiency, as well as its relationship to the
dimension of state-action space. Another interesting research area is to extend the
current framework to incorporate the temporal dependence of the trajectory in
the construction of the optimal transport coupling and subsequently the reward
proxy. We anticipate that this will be a promising direction for improving the
sample efficiency and generalization performance of the optimal transport-based
adversarial imitation learning framework.
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