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Abstract. Deep learning approaches are state-of-the-art for many nat-
ural language processing tasks, including misinformation detection. To
train deep learning algorithms effectively, a large amount of training data
is essential. Unfortunately, while unlabeled data are abundant, manually-
labeled data are lacking for misinformation detection. In this paper, we
propose DeMis, a novel reinforcement learning (RL) framework to detect
misinformation on Twitter in a resource-constrained environment, i.e.
limited labeled data. The main novelties result from (1) using reinforce-
ment learning to identify high-quality weak labels to use with manually-
labeled data to jointly train a classifier, and (2) using fact-checked claims
to construct weak labels from unlabeled tweets. We empirically show the
strength of this approach over the current state of the art and demon-
strate its effectiveness in a low-resourced environment, outperforming
other models by up to 8% (F1 score). We also find that our method is
more robust to heavily imbalanced data. Finally, we publish a package
containing code, trained models, and labeled data sets.

Keywords: reinforcement learning · misinformation detection

1 Introduction

Social media sites allow users to share different types of online content. Unfor-
tunately, there is no requirement that the content be true. As a result, we are
seeing varying levels of accuracy in shared content. False information (fake in-
formation, misinformation, and disinformation) detection is not a new problem,
and a significant amount of research has emerged (see [7,1] for surveys). Most re-
search studies focus on detecting the spread of fake news by news sources [16,17],
e.g. CNN and Washington Post. Some researchers have also worked on utilizing
fact-checked information to verify the truth of social media content generated
by users [4,19]. While this previous research can effectively identify false infor-
mation on Twitter, in practice, the methods either requires a large amount of
training data for each false claim or myth being detected, or expect balanced
training data.

To mitigate these challenges, we propose a novel reinforcement learning (RL)
framework for detecting misinformation on Twitter in a constrained environ-
ment, i.e. where data labels are limited and imbalanced. Our approach, DeMis,
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uses fact-checking articles (FC-articles) as background knowledge. The frame-
work requires a small number of FC-articles related to the target myth theme.
Then it weakly labels the unlabeled tweets given the chosen FC-articles. We de-
sign the RL mechanism to select high-quality tweets. These weak-labeled tweets
are then used to help train the detector. While the joint training of classifier and
selector [21] is often used to maximize the model performance, we partially train
the classifier before jointly training the classifier and selector. This guides the
classifier to gain knowledge about the manually-labeled data prior to learning
from the weak and manually labeled data together.

Our contributions are as follows: (1) We propose a novel data-efficient RL frame-
work in which state, action and reward are exclusively designed for misinforma-
tion detection. (2) We propose an approach (DeMis) to incorporate FC-articles
as expert knowledge as a form of weak supervision. (3) We integrate multi-
ple learning paradigms (reinforcement learning, multi-source joint learning, neu-
ral learning) into a framework for identifying misinformation. (4) We compare
our model to multiple classic, neural, and reinforcement models and show that
our model generally performs better. (5) We demonstrate the effectiveness of
our framework when the training data is heavily imbalanced. (6) We release a
package for misinformation detection using reinforcement learning, including the
code, trained models and data sets.1

2 Related Works

Misinformation detection is an active area of research (see [1] for a recent sur-
vey). Because fake information can be produced by bots or humans, our work
and review focuses on post-level misinformation instead of user-level and rein-
forcement learning approaches for generating additional training data.

Misinformation Detection: Research on misinformation detection typi-
cally falls into two categories based on types of information used to train a clas-
sifier [1], content-based and social context-based. Content-based approaches use
information extracted from the content of posts such as text, images, and videos.
Social context-based approaches use human–content interaction data such as
retweets, replies, and likes. While using both types of information achieves
slightly better results [26,10,13], because of the additional cost of data collection
and the need for timely identification of misinformation,we focus on content-
based methods.

Many studies use the lexical and syntactic features extracted from textual
data [14,2]. Jin et al. [5] convert the detection problem into a text matching prob-
lem. They classify misinformation tweets based on the similarity scores between
input tweets and the original verified-false posts. Their best algorithm is BM25
with an accuracy of 0.799. Recently, deep learning models have been shown to be
state of the art for misinformation detection [1]. Wang et al. [20] propose EANN,
a model that uses convolution neural networks (CNN) to learn latent semantic

1 https://github.com/GU-DataLab/misinformation-detection-DeMis

https://github.com/GU-DataLab/misinformation-detection-DeMis


DeMis: Data-efficient Misinformation Detection using RL 3

text representations and use it along with image data to train a classification
layer. Their models are evaluated on Twitter and Weibo data that have both
text and images, achieving F1 scores of 0.719 and 0.829, respectively. A CNN
model with an attention mechanism has also been proposed [24], improving the
state of the art by 9 and 12% on the same data sets. These data sets are balanced
and pseudo-labeled using keywords. Hossain et al. [4] introduced COVIDLIES,
a manually-labeled Twitter data set about COVID-19 misinformation. It con-
sists of 86 myths and 6761 tweets. Their approach has two sub-tasks including
related-myth retrieval and stance detection. Using a BERT-based sentence sim-
ilarity algorithm [25], they achieve the best Hit@k of 60.8 to 96.9 for different
k values on the related-myth retrieval task but they obtain an F1 score of only
50.2 on the stance detection task because the data are imbalanced. Recently,
Vo et al. [19] proposed a framework to search for fact-checking articles given a
tweet, using a large amount of labeled training data (over 10K tweets and 2K
FC-articles).

Data-Efficient and Reinforcement Learning Generally, a large amount
of labeled data is required to train a reasonably accurate neural network (NN)
model. Weak supervision aims to reduce human effort by automatically gener-
ating labels given unlabeled data. The quality of labels then heavily relies on
the labeling algorithms [23]. An automatic data annotator based on the sources
of news articles was proposed in [3]. Each tweet containing at least one URL
to a news article was labeled true or false based on trustworthy or untrustwor-
thy sources. Reinforcement learning (RL) techniques [18] have been adopted in
many classification tasks to learn a high-quality data selector [23,21]. A model
with a RL-based selector in [22] achieves an average F1 score of 0.692 on the
Twitter click-bait classification task. Yoon and colleagues [23] propose a RL-
based algorithm that quantifies the quality of labeled data. Their experimental
results show that removing low-quality data from the training process improves
the overall model performance on several classification tasks with accuracy scores
ranging from 0.448 to 0.903. Mosallanezhad et al. [11] propose RL-based domain-
adaptive learning which learns domain-invariant features and utilizes auxiliary
information for fake news detection. Recently, WeFEND [21] was proposed for
fake news detection on WeChat. The model trains a weak-labeling annotator
using private user reports attached to each news article then selects the high-
quality samples using a reinforced selector for training.The model obtains an
F1 score of 0.81 on balanced WeChat data. Conceptually, we take a similar ap-
proach, building a model using reinforcement learning to identify weak labels.
However, our annotator and joint learning paradigm are different.

3 Background and Problem Definition

Misinformation has many definitions. One common feature of these definitions is
that misinformation must contain a piece of false information. Kumar et al. [7]
define misinformation as false information spread without the intent to deceive,
while others [26] define it as any false or inaccurate information regardless of
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Fig. 1: Examples of misinformation tweets and supporting evidence.

intention. In this paper, we follow the later and refer to a misinformation tweet
as a tweet containing a piece of myth-related information. A myth is a false claim
verified by trustworthy fact-checkers. This task is different from fake news detec-
tion which focuses on detecting a news article published by a news outlet that is
verifiably false, and rumor detection which aims to determine if a story or online
post is a rumor or non-rumor regardless of its veracity [8]. Fig. 1 demonstrates
how tweets are determined to be misinformation. For example, a claim saying
“boiled garlic water could kill the coronavirus” is false. A tweet containing such
information (even if it is being refuted) is classified as misinformation conversa-
tion, regardless of the user stance. In other words, our goal is to identify that
misinformation is being discussed on social media, not the intent or the position
of the poster. A tweet that does not is labeled as true information.

Generally, fact checkers provide a set of FC-article that each contain a claim,
truth label, and fact. A claim is a truth-verifiable statement that may be true,
false, partially true or have insufficient information to determine whether or not
it is true. A truth label is the factual state of the related claim at a particular time.
It is manually verified by experts in the relevant areas. Different fact checkers
have different rating schemes. For example, PolitiFact claims are usually rated
using six level of falseness. The fact is the supporting information that provides
context about the claim and explains details about why a particular truth label
is assigned. Different claims of FC-articles may be in the same myth theme as
shown in Fig. 1. In this paper, the goal is to predict whether a tweet contains the
same piece of misinformation as in the claims of interest. We only use claims and
truth labels verified as false since our goal is to detect misinformation discussion.

More formally, the problem we investigate is content-based misinformation.
Let M represent a set of myths and C represent a set of claims from FC-articles.
Suppose we are given a set of target claims C̄p that are related to the pre-defined
myth theme Mp. Our task is to determine a class label yr for a tweet tr from
Twitter data T using claim information (c̄pq ∈ C̄p) related to Mp. If tr contains
misinformation, (yr = 1), otherwise, (yr = 0). We assume that claims across

myths in M are non-overlapping,
⋂|M|
p=1 C̄p = ∅. For example, claims C̄1 under

the myth theme M1 about a specific weather condition killing coronavirus, and
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claims C̄2 under the myth theme M2 about COVID home-remedies, are not
overlapped (C̄1 ∩ C̄2 = ∅).

4 Methodology

We propose DeMis, a framework for misinformation detection on Twitter. An
overview of the framework is presented in Section 4.1. The main components
of the framework are presented in Section 4.2 and 4.3. Section 4.4 presents the
integration of all the components.

4.1 Overview of DeMis

The overview of the framework is shown in Fig. 2. We begin by extracting claims
C and target claims C̄p related to the myth themes of interest from existing FC-
articles. Each theme of interest Mp has a small number of manually-labeled
tweets. We refer to these tweets as strong-labeled tweets. The automatic anno-
tator (Section 4.2) uses a sentence similarity algorithm to calculate similarity
scores between all claims C and unlabeled tweets in T. The scores are used to
generate labels for the unlabeled tweets using our proposed labeling function.
We refer to tweets with labels generated by the automatic annotator as weak-
labeled tweets. Once the reinforced selector (Section 4.3) chooses high-quality
weak-labeled tweets, they are combined with the strong-labeled tweets for train-
ing the misinformation detector. The samples that are selected by the reinforced
selector are referred to as selected tweets. The reward is computed based on the
model performance and used to update the selector for the next iteration. The
updated selector selects high-quality weak-labeled tweets to train the detector
until the detection classifier converges. The misinformation detector Dn(·; θn) is
a transformer-based model with a neural network on top as a classifier layer,
where θn denotes its parameters. We now present the details.

4.2 Automatic Annotation based on Claims

We propose an unsupervised approach for automatically labeling tweets.2 There
are two main components: sentence similarity ranking and labeling. First, among
all claims C, there are claims C̄p ⊂ C belonging to the target myth theme Mp

that we are interested in. We calculate the similarity scores between each tweet
tr and all claims cq ∈ C. For each tweet, we obtain a list of all claims Lr
ranked by the similarity scores. If at least one of the target claims c̄pq ∈ C̄p
appears in the top K of the list, then the tweet is labeled as positive (about
misinformation). Otherwise, the label is negative (not about misinformation).
Any similarity score is reasonable. Given that we are using short texts, we use a
sentence transformer [15] in our empirical evaluation. We convert a claim and a
tweet into vectors and compute the final similarity score using cosine similarity.

2 We use the term unsupervised because we do not use any labeled data at this stage.
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Fig. 2: The architecture of our proposed misinformation detection framework.

4.3 Data Selection via Reinforcement Learning

The goal of the data selection component is to select high-quality weak-labeled
samples that improve the detector performance. We propose a performance-
driven data selector that uses the policy-gradient reinforcement learning mech-
anism called the reinforced selector. It takes weak-labeled data as input, selects
high-quality samples, and then sends them to the classifier to use during training.
The reward is computed based on the model performance and used to update the
policy network. Because the reward is computed after the data selection process
is finished, the policy update is delayed. This is inefficient. To obtain rewards and
train the policy network more efficiently, we split the input data X = {x1, ..., xn}
into N bags B = {B1, ..., BN}. Each bag Bk contains a sequence of unlabeled
samples {xk1 , xk2 , ..., xk|Bk|}. Each bag is fed into the reinforced selector. For each

sample in the bag, the reinforced selector decides on an action to retain or re-
move. The action of the current sample xki is based on the current state vector
and all the actions of previous samples in the current bag {xk1 , xk2 , ..., xki−1}. The
reward is computed based on the change in performance of the misinformation
detector. The remainder of this subsection presents the details of the main com-
ponents of the RL mechanism: state, action, reward and optimization.

State. ski represents the state vector of sample xki . The action aki is decided based
on the current and selected samples in the same bag, Bk. The state vector ski
consists of two major components, including the representation of the current
sample and the average representation of selected samples. We consider quality
and diversity for a representation of a sample. For the quality of the sample,
we consider a prediction output from the misinformation detector and a small
number of elements from the sentence similarity algorithm (Section 4.2). For the
current sample, these elements include: (i) the highest similarity score between
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the current sample and all claims C, (ii) the K-th highest similarity score, (iii)
the highest similarity score between the current sample and the target claims
C̄p, (iv) the subtraction of (i) and (iii), and (v) the subtraction of (iii) and
(ii). For diversity, we calculate the cosine similarity between the current sample
and all selected samples in the bag, and then the maximum similarity score
is used as the representation of the diversity of the current sample among the
selected samples. The weak label of the current sample is also included in the
representation vector as a signal for the class distribution. The final current
state representation vector contains eight elements: 1) the output probability
from the detector, 2) the maximum cosine similarity score between the current
sample and the selected samples, 3) the weak label of the current sample, and
five elements from the sentence similarity described above. Once we have the
current representation vector, we concatenate it with the average of previously
selected representation vectors to form the final state vector ski .

Action. An action value of the reinforced selector for any sample is either 1 rep-
resenting an action to retain, or 0 representing an action to remove the sample
from the training set. We train a policy network P (·; θs) to determine action
values, where θs indicates its parameters. The policy network is a neural net-
work of two fully-connected layers with the sigmoid (σ) and ReLU activation
functions and is defined as P (ski ; θs) = σ(W2 ·ReLU(W1 ·ski )), where W1 and W2

are randomly initialized weights. The network outputs the probability of the re-
tain action pki for the sample xki given the corresponding state vector ski . Next,
the policy πθs(ski , a

k
i ) determines the action aki by sampling using the output

probability pki as follows πθs(ski , a
k
i ) = aki p

k
i + (1− aki )(1− pki ).

Reward. As previously mentioned, we use the performance changes of the mis-
information detector Dn(·; θn) as the reward function. To determine the initial
baseline performance Fbase, we train the detector on the strong-labeled training
set and evaluate it on the validation set. For the k-th bag, the reinforced selec-
tor chooses high-quality samples. They are used to re-train the detector, then
the performance Fk for the k-th bag is obtained by evaluating the re-trained
detector on the validation set. Formally, the reward Rk for the k-th bag is the
subtraction of Fbase and Fk as shown in the equation Rk = Fbase − Fk.

Optimization. The goal is to maximize the expected total reward for each bag
Bk. However, the magnitude of reward Rk is undoubtedly small because a
performance change ranges from zero to one. Therefore, we use the summa-
tion of reward Rk weighted by policy values πθs(ski , a

k
i ) from every sample in

the bag {xki }
|Bk|
i=1 . Finally, the objective function for the k-th bag is defined

as: J(θs) =
∑|Bk|
i=1 πθs(ski , a

k
i )Rk, and its derivative function is: ∇θJ(θs) =

Eθs [
∑|Bk|
i=1 Rk∇θs log πθs(ski , a

k
i )].

Since we are using policy-gradient reinforcement learning [18], we update the

policy network using the gradient ascend: θs ← θs+α
∑|Bk|
i=1 Rk∇θs log πθs(ski , a

k
i ),

where α is the learning rate.



8 K. Kawintiranon and L. Singh

Algorithm 1: The Overall Training Process of DeMis

Input : Misinformation detector Dn(·; θn), policy network P (·; θs) of
reinforced selector with random weights, strong-labeled data D

1. Pre-train the detector Dn(·; θn) to predict misinformation using the
strong-labeled training data Dt.

2. Pre-train the policy network P (·; θs) by running Algorithm 2 with the
misinformation detector Dn(·; θn) fixed.

3. Re-initialize the parameters of the detector Dn(·; θn) with random weights.
4. Warm up the detector Dn(·; θn) by training for L epochs.
5. Jointly train Dn(·; θn) and P (·; θs) using Algorithm 2 until convergence.

Output: The trained models Dn(·; θn) and P (·; θs).

4.4 Model Training

The overall training process is described in Algorithm 1. First, we randomly
initialize weights of the misinformation detector and policy network of the re-
inforced selector. The detection classifier Dn(·; θn) is a neural network model:
p(y|x; θn) = Softmax(WL2(tanh(WL1xt + b1)) + b2), where p(y|x; θn) represents
the output probability of being class y given input x from the linear classifier,
x represents a contextual representation vector of tweet t from the pre-trained
language model (BERTweet) after the dropout layer, WLi is a weight vector at
layer i randomly initialized, and bi is a bias vector at layer i where i ∈ {1, 2}.
The weights of the classifier are updated using the cross-entropy loss function.
We use the softmax function to normalize the values of the output vector from
the classifier in order to obtain a probability score for each class.

Second, we get the baseline performance Fbase by training the detector using
the strong-labeled training data Dt and evaluating it on the validation set Dv.
Next, because the joint-training technique can result in a detector over-fitting
the small data set, we re-initialize the weights of the detector model and train
it for L epochs instead of training it until convergence (Algorithm 1, step 4-5).
This makes the detector under-fit, leaving some room for joint-training. Finally,
we jointly train the detector and reinforced selector together until convergence.

Algorithm 2 explains how to train the detector and reinforced selector jointly.
The detector provides the mechanism to compute the reward based on its eval-
uation performance. The selector uses the reward to refine its ability to se-
lect high-quality samples that potentially enhance the detector performance.
To improve the training stability we update the target policy network slowly:
θ′s = τ θs + (1− τ)θ′s.

5 Experimental Design
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Algorithm 2: Learning Algorithm of Reinforced Selector

Input : Strong-labeled training data Dt. N bags of weak-labeled
training data B = {B1, ..., BN}. A misinformation detector
Dn(·; θn) and a policy network P (·; θs). Epoch number L.

Initialize the target networks as: θ′n ← θn and θ′s ← θs
for epoch `← 1 to L do

Shuffle B to get a sequence of bags {B1, B2, ..., BN} foreach bag
Bk ∈ B do
/* We omit superscript k for clarity */

Sample actions for each data sample in B with θ′s:
A = {a1, ..., a|B|}, ai ∼ πθ′s(si, ai)

Train the detector Dn(·; θn) using selected samples based on
actions A and update weights θn

Compute delayed reward Rk
Update the parameters θs of reinforced selector:

θs ← θs + α
∑|B|
i=1Rk∇θs log πθs(si, ai)

end
Update the weights of target policy network: θ′s = τ θs + (1− τ)θ′s
Train the target detector using the selected samples from the target
selector then update weights θ′n

Reset the weights of detector: θn ← θ′n
end
Output: The trained models Dn(·; θn) and P (·; θs).

5.1 Data Collection

Our empirical evaluation uses one large unlabeled and three manually-labeled
Twitter data sets: COVIDLIES [4], COMYTH-W and COMYTH-H. These data
sets have different characteristics in terms of myth diversity and training data
imbalance. The sizes of positive samples in a training set range from only 40
to 200. In COVIDLIES, misinformation tweets contain claims belonging to mul-
tiple myth themes (high-diversity) and have class-imbalances (high-imbalance).
In COMYTH-W and H, misinformation tweets contain claims belonging to one
myth theme (low-diversity), COVID-weather and COVID-home-remedies, re-
spectively. While COMYTH-W is a balanced data set (low-imbalance), COMYTH-
H is not (high-imbalance). Table 1 presents the statistics of these data.

Unlabeled Twitter Data. Our research team collected English tweets related to
COVID-19 using hashtags and keywords through the Twitter Streaming API.
Between March 2020 and August 2020, we collected over 20 million tweets, not
including quotes and retweets. These unlabeled tweets were used to train all
models that require unlabeled data.3

3 Our unlabeled tweets do not overlap with any of our labeled data.
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COVIDLIES. This data set, shared by Hossain et al. [4], contains 62 claims,
along with 6591 tweet-claim pairs. Each tweet has at least one related claim and
an annotated stance of the tweet content towards the claims (agree, disagree,
no stance). We follow the labeling approach of the original paper [4] and label a
tweet as misinformation if and only if the tweet contains a stance. A tweet with
no stance is labeled as no misinformation. Among 62 claims, only four claims
(of different themes) have more than 100 tweets containing a stance towards
them, indicating high diversity. There are 811 annotated tweets, 136 containing
misinformation and 675 regular tweets.

COMYTH. To conduct experiments on data sets with specific myth themes, we
created a data set of COVID-myth-related tweets and claims from a random
sample of tweets. We focus on two myth themes, weather and home-remedies.
Our data were labeled using Amazon Mechanical Turk (MTurk). The labeling
choices were yes, no, and unsure. Each tweet has three annotations from three
different MTurk workers. We compute inter-annotator agreement scores to assess
the quality of our labeled data. The task-based and worker-based metrics are
recommended by the MTurk official site4, given their annotating mechanism.
All scores range from 85% up to 97%, indicating the high inter-rater reliability
for these data sets. The majority voting among three annotators is used to
determine a label for each tweet (containing related myths or not). Finally,
there are 930 labeled tweets for the weather theme (COMYTH-W), of which
459 tweets contain weather myths. For the home-remedies theme (COMYTH-
H), there are 779 labeled tweets, of which 101 tweets contain home-remedies
myths. To build a data set of COVID-related claims, we collected claims from
PolitiFact, FactCheck.org and Snopes. Our research team manually identified 3
COVID-weather-related claims and 12 COVID-home-remedies-related claims as
target claims for our framework.

5.2 Data Preparation

Data sets are split into train, validation and hold out sets with an approximate
ratio of 5/2/3. Each tweet is preprocessed by replacing mentions with @USER
and links with HTTPURL. To build weak-labeled data sets, we run our weak
annotator as described in Section 4.2 on the unlabeled data set and sample 10K
tweets for each class (myth/not-myth).

5.3 Baselines

Our baseline models are categorized into four algorithm groups. The first group
contains classic machine learning models, including Naive Bayes (NB), k-Nearest-
Neighbor (kNN), Logistic Regression (LR), Support Vector Machine (SVM),
Decision Tree (DT), Random Forest (RF) and Elastic Net (EN). We adopt the
implementations in [6] because their approaches are shown to be highly accurate

4 Amazon Mechanical Turk - HIT Review Policies

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_HITReviewPolicies.html
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Table 1: Data set details.
Data Set Myth theme Split # Tweets # Myth # Not-myth Myth ratio

COVIDLIES
COVID-
mixed

Train 380 64 316
∼17%Val 163 27 136

Test 268 45 223

COMYTH-W
COVID-
weather

Train 436 213 223
∼50%Val 187 96 91

Test 307 150 157

COMYTH-H
COVID-
home-

remedies

Train 365 48 317
∼13%Val 156 26 130

Test 258 27 231

Myth theme indicates whether the data set is for a specific myth or mixed
myth themes. Myth ratio indicates the ratio of misinformation.

for detecting low-quality textual content on Twitter. Their feature sets include
simple counting properties in a tweet content (Count), Bag-of-Words (BoW)
and Term-Frequency-Inverse Document-Frequency (TF-IDF). All the models are
trained using different combinations of these features. The second baseline group
contains neural network models, including a vanilla neural network (NN) and
a convolution neural network (CNN). We follow the setup used in EANN [20].
The third group consists of transformer-based models. We use RoBERTa (RB),
BERTweet (BT) and BERTweet-covid (BTC). RoBERTa is an optimized version
of BERT. BERTweet is RoBERTa trained on Twitter data, and BERTweet-covid
is BERTweet additionally trained on COVID-related tweets. The classification
layer is a single layer neural network. The last group contains RL-based models
including DVRL [23] and WeFEND [21].

We use DVRL to select high-quality weak-labeled samples. We run the model
to estimate the quality of our weak-labeled data. We combine the top v percent
of weak-labeled data, sorted by the quality scores with the strong-labeled data,
where v ∈ {10, 20, ..., 100} as used in the original paper. In addition, we also use
smaller values for v ∈ {0.5, 1, ..., 5} in order to have a more complete stability
and sensitivity analysis. Using v = 100 means we combine all weak-labeled data
with the strong-labeled data for training. For each combination, we train the
same misinformation detector as used in our model (Section 4.1) and report
the best results based on F1 scores. We implement the WeFEND framework
as described in the original paper since the code was not available. Because the
original framework uses user reports to generate weak labels but there is no such
report publicly available for Twitter, we modify the framework by substituting
the weak label annotation part with our weak label annotator to investigate its
potential to use public accessible expert knowledge (FC-articles). The rest of the
framework remains the same.
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Table 2: Experimental results. The best results are bolded.
COVIDLIES (multiple myth themes) COMYTH-W (one myth theme) COMYTH-H (one myth theme)

Type Algorithm
Acc Pr Re F1 Acc Pr Re F1 Acc Pr Re F1

Count [6] 0.7724 0.3095 0.2889 0.2989 0.6645 0.6158 0.8333 0.7082 0.7985 0.2093 0.3333 0.2571
+BoW [6] 0.8396 0.5200 0.5778 0.5474 0.9414 0.9400 0.9400 0.9400 0.9031 0.5500 0.4074 0.4681

Classic
ML

+TFIDF [6] 0.8545 0.5682 0.5556 0.5618 0.9479 0.9467 0.9467 0.9467 0.9070 0.5600 0.5185 0.5385

NN [6] 0.8408 0.5484 0.2963 0.3845 0.8795 0.7565 0.7862 0.7672 0.9160 0.6149 0.5309 0.5696
DL

CNN [20] 0.3340 0.1508 0.7183 0.2446 0.7492 0.7275 0.9003 0.7816 0.2313 0.1295 0.5565 0.1953

RB [9] 0.8756 0.6550 0.5481 0.5964 0.9739 0.9755 0.9711 0.9733 0.9328 0.6541 0.7901 0.7132
BT [12] 0.8557 0.5891 0.5185 0.5450 0.9511 0.9272 0.9778 0.9515 0.9160 0.5936 0.6790 0.6248

Trans-
former

BTC [12] 0.8595 0.5733 0.6370 0.6035 0.9631 0.9531 0.9733 0.9627 0.9367 0.6995 0.7037 0.6990

DVRL [23] 0.8333 0.5204 0.6444 0.5667 0.9577 0.9369 0.9800 0.9578 0.9057 0.5752 0.7654 0.6323
WeFEND [21] 0.4378 0.1991 0.6765 0.2553 0.9338 0.9323 0.9346 0.9328 0.6460 0.4733 0.7509 0.4995RL
DeMis (ours) 0.8483 0.5644 0.7226 0.6210 0.9750 0.9638 0.9894 0.9762 0.9406 0.7353 0.8991 0.7887

vs. best scores -0.0273 -0.0906 +0.0043 +0.0175 +0.0011 -0117 +0.0094 +0.0029 +0.0039 +0.0358 +0.1090 +0.0755Compare
DeMis vs. best model -0.0113 -0.0089 +0.0856 +0.0175 +0.0011 -0117 +0.0183 +0.0029 +0.0078 +0.0812 +0.1090 +0.0755

5.4 Evaluations and Hyperparameter Tuning

We evaluate all models using accuracy, precision, recall and F1 scores based on
positive class (misinformation). We evaluate all models on the test set three times
with different random seeds to determine the stability of the results. The average
results are reported. For our classic ML models, we conduct a sensitivity analysis
using a grid-search on influential parameters. The best parameters varied by
classifiers, data sets, and feature sets. For neural network and transformer-based
models, we use different learning rates (1e-4, 1e-5, 2e-5, 3e-5, 1e-6). We report
the best results based on F1 scores from the parameter tuning step. We present
results for the learning rate of 1e-5 for DeMis and use a learning rate for target
network τ of 0.001.

6 Results and Analysis

Table 2 shows the experimental results on the test sets, averaged over three
runs. The models from four different categories are evaluated on all data sets.
The variances of results from different models are not significantly different. Our
proposed model outperforms the best baselines F1 scores by ∼2%, ∼1% and
∼8% on COVIDLIES, COMYTH-W and COMYTH-H, respectively. The last
two rows of the table show the comparison of DeMis result with the best scores
in the same column, and with the second best models based on F1 score.

6.1 Experimental Results

We hypothesize that the most complicated data set is COVIDLIES because of
the high diversity of the myth themes and the data imbalance. The baseline mod-
els have F1 scores ranging from 0.2446 (CNN) to 0.6035 (BERTweet-covid). Our
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proposed model outperforms the baselines with an F1 score of 0.6210, slightly
better than BERTweet-covid. The difficulty of this data set is two-fold. First,
with 136 positive training samples for different myth themes, there are only 10
to 42 samples for each myth theme. This is insufficient for training deep learn-
ing models; therefore, the transformer models (RoBERTa and BERTweet-covid)
and two of the classic models (Count+Bow and Count+TFIDF) perform better
than the deep learning models. The second complexity is the mix of multiple
myth themes, each having different contexts, signal words, and writing styles.
These signals from different myth themes can mislead the classifiers, resulting in
inefficient learning of the positive class. For example, in a batch size of 32, there
are likely samples from at least two myth themes. If their characteristics are
completely different, then the loss computed using the error from the samples
in the batch could be misleading, resulting in under-fitting. While our models
perform comparably to the state-of-the-art ones on this high diversity and im-
balanced data (COVIDLIES), our model performs better on data sets containing
one myth and possible imbalances.

We anticipate that the least complicated data set for this task is COMYTH-
W since it contains one myth theme and is balanced data. On this data set, the
baseline models perform reasonably with F1 scores ranging from 0.7082 (a classic
model with Count features) to 0.9733 (RoBERTa). The notably high F1 score
from RoBERTa shows that the data set is uncomplicated for the misinformation
detection task and implies marginal room for improvement. Our model performs
comparably with RoBERTa, having an F1 score of 0.9762.

Fig. 3: The model performance of DeMis
with and without RL (DeMis–).

We anticipate that the COMYTH-
H data set is the second most com-
plicated because it contains one myth
theme but has a similar level of imbal-
ance as COVIDLIES (the myth ratios
of both data sets are around 10%, see
Table 1). The baseline models have
F1 scores ranging from 0.1953 (CNN-
based model) to 0.7132 (RoBERTa),
indicating that this data set is mod-
erately complex for the task. We see
that the lowest and highest F1 scores

of baseline models on COMYTH-H are much lower than COVIDLIES (0.19/0.71
vs. 0.70/0.97) due to class imbalance and the nature of the myth themes. While
there are only three claims related to COVID-weather, there are 12 claims about
COVID-home-remedies, leading to a more diverse set of topics about home-
remedies, i.e. higher content (vocabulary) diversity. Our model significantly out-
performs all baselines with an F1 score of 0.7887 on COMYTH-H, an approxi-
mate 8% improvement over RoBERTa (second best).

To better understand the characteristics of the misclassified samples, we look
at their distribution. We find that from 20 misclassified samples by RoBERTa
and 14 misclassified samples by our model, 12 samples are the same. Our model
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corrects six false positives and two false negatives that the RoBERTa model
misclassifies, but we have two additional false negatives, meaning that our model
tends to error on the side of false negative, not false positives.

To investigate the advantage of the reinforced selector, we train our DeMis
without RL by substituting it with a random selector (DeMis–). It randomly
selects samples instead of selecting only high-quality samples. The results are
shown in Fig. 3. On COMYTH-W, the F1 score (yellow) of DeMis without RL
is 10% lower than DeMis with RL. Similarly, F1 scores are substantially higher
for DeMis with RL on the other two data sets. We observe that recall scores stay
the same between DeMis with and without RL because the model without RL
still learns good positive examples from the strong-labeled samples. However,
the precision scores drop significantly, producing more false positives when low-
quality samples are selected. These empirical results suggest that incorporating
RL is beneficial for improving the data selection process.

6.2 Robustness of Model

Fig. 4: The model performance of
RoBERTa, RoBERTa+, and DeMis.

We further investigate the robust-
ness of our model on two imbal-
anced data sets, COMYTH-H and
COVIDLIES. We compare our model
with RoBERTa since it is the second-
best performer on COMYTH-H and
performs comparably to BERTweet-
covid on COVIDLIES. A random
oversampling algorithm is used to bal-
ance the class distribution of these
two data sets. We train RoBERTa on
these balanced data sets separately
and report the results (RoBERTa+). We see that making the data sets more
balanced for RoBERTa slightly increases the F1 scores by 0.39% and 2.03%
on COMYTH-H and COVIDLIES, respectively. Without any data modification,
our model that used imbalanced training data outperforms RoBERTa+ by 7.16%
and 0.43%, further highlighting our model’s robustness to data imbalances.

We also investigate the robustness of our model when smaller sizes of training
data are provided. We randomly sample training data of sizes 200 and 300 while
keeping the same level of imbalance. Fig. 5 shows the F1 scores of the top
performers. Our model outperforms other baselines on smaller sizes of all training
data sets. However, we see that smaller sizes of data lead to larger performance
deterioration on both imbalanced data sets (COMYTH-H and COVIDLIES) by
all the models. In other words, when there are less than 300 training samples,
the models underfit the data.
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(a) COMYTH-W (b) COMYTH-H (c) COVIDLIES

Fig. 5: The performance of top models on different sizes of training data.

(a) COVID-related tweet count (b) Proportion of misinformation

Fig. 6: Daily tweet counts and proportion of COVID-weather per 10,000 tweets.

6.3 Analysis on Big Data

We conduct a small case study to better understand the prevalence of misinfor-
mation on Twitter, we run our model on data containing Covid-related hashtags
(Section 5.1) to predict levels of misinformation conversation. We find over 20K
misinformation tweets about COVID-weather between March 1 to August 31,
2020. Fig. 6 illustrates the daily number of tweets and the diffusion of mis-
information on Twitter related to COVID-weather by DeMis. Misinformation
conversation was spreading before March and reached its peak on April 24th
(red arrow), the day after the White House promoted new lab results suggesting
heat and sunlight slow coronavirus on April 23rd5. This small analysis high-
lights the level of misinformation on a public health related data stream and
demonstrates the role prominent leaders play in spreading and/or reinforcing it.

7 Conclusions

This paper proposes DeMis, a novel RL-based framework for misinformation
detection that requires only a small amount of labeled training data. We de-
sign a novel RL mechanism, inspired by policy-gradient reinforcement learning,
that provides high-quality data selection, improving our overall detection perfor-
mance. We evaluate models on three data sets, and show that they outperforms
other baselines by up to 8% (F1 score). Our approach is particularly strong in
the presence of class imbalances and comparable to other models when there
is high diversity in the myth themes. Finally, we release a resource package to
support the community to studying misinformation.

5 News on Washington Posts

https://www.washingtonpost.com/weather/2020/04/23/lab-study-coronavirus-summer-weather
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14. Pérez-Rosas, V., Kleinberg, B., Lefevre, A., Mihalcea, R.: Automatic detection of
fake news. In: COLING (2018)

15. Reimers, N., Gurevych, I.: Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks. In: EMNLP (2019)

16. Singh, L., Bansal, S., Bode, L., Budak, C., Chi, G., Kawintiranon, K., Padden,
C., Vanarsdall, R., Vraga, E., Wang, Y.: A first look at covid-19 information and
misinformation sharing on twitter. arXiv preprint (2020)



DeMis: Data-efficient Misinformation Detection using RL 17

17. Singh, L., Bode, L., Budak, C., Kawintiranon, K., Padden, C., Vraga, E.: Under-
standing high-and low-quality url sharing on covid-19 twitter streams. Journal of
computational social science 3(2), 343–366 (2020)

18. Sutton, R.S., Barto, A.G.: RL: An introduction. MIT press (2018)
19. Vo, N., Lee, K.: Where are the facts? searching for fact-checked information to

alleviate the spread of fake news. In: EMNLP (2020)
20. Wang, Y., Ma, F., Jin, Z., Yuan, Y., Xun, G., Jha, K., Su, L., Gao, J.: Event

adversarial neural networks for multi-modal fake news detection. In: KDD (2018)
21. Wang, Y., Yang, W., Ma, F., Xu, J., Zhong, B., Deng, Q., Gao, J.: Weak supervision

for fake news detection via reinforcement learning. In: AAAI (2020)
22. Wu, J., Li, L., Wang, W.Y.: Reinforced co-training. In: NAACL (2018)
23. Yoon, J., Arik, S., Pfister, T.: Data valuation using reinforcement learning. In:

ICML (2020)
24. Yu, F., Liu, Q., Wu, S., Wang, L., Tan, T.: Attention-based convolutional ap-

proach for misinformation identification from massive and noisy microblog posts.
Computers & Security 83, 106–121 (2019)

25. Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evalu-
ating text generation with bert. In: ICLR (2020)

26. Zhou, X., Zafarani, R.: A survey of fake news: Fundamental theories, detection
methods, and opportunities. ACM Computing Surveys 53(5), 1–40 (2020)


	DeMis: Data-efficient Misinformation Detection using Reinforcement Learning

