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Abstract. Cognitive load recognition is challenging due to the inherent
diversity and causality of multivariate physiological changes, with each of
its instances having its own style of physiological events and their spatio-
temporal causal dependencies. This leads us to define a hybrid model
that employs Granger causality (GC) and Gramian angular difference
fields (GADF) to discover diverse varieties of multivariate physiological
events. In particular, our model introduces a GC network to explicitly
characterize the unique temporal causal configurations of a particular
cognitive state as a variable number of nodes and links. In addition,
GADF maps are constructed to capture the inherit spatio-temporal de-
pendency among multivariate signals in a 2D structural space. A capsule
network is designed to merge these two heterogenous types of features
together in a uniform way, and as a result, all local causal and spatio-
temporal dependencies are globally consistent. Empirical evaluations on
one benchmark dataset and two in-house datasets collected by ourselves
in virtual reality learning environment suggest our model significantly
outperforms the state-of-the-art approaches.
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1 Introduction

Cognitive load recognition, aiming to estimate the amount of an individual’s
mental labor when a specific task is imposed on her/his cognitive system [21],
has become an active field, given its role in facilitating a broad range of ap-
plications. Although psychological experiment-based approaches are becoming
mature to estimate cognitive load by adopting various subjective scales, they are
still limited to obtain the objective states of cognitive load changes in real time.
Since an individual’s cognitive load state is often accompanied by the changes
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of physiological characteristics such as EEG, ECG, EMG, blood pressure and
respiration, it is possible to achieve a deeper understanding of the correlations
between long-term measurements of physiological features and cognitive loads.
The main focus of this work is on causal learning of multiple physiological fea-
tures, since a fundamental assumption for research on cognitive load assessment
is the causal relationship between the physiological characteristics and cognitive
load states.

Despite being a very challenging problem, in recent years there has been a
rapid growth of interest in physiologically-based cognitive load recognition. One
popular paradigm might be that of the knowledge-driven approaches, which
are capable of representing rich relations among physiological events. These ap-
proaches are often semantically clear, logically elegant, and easy to interpret.
However, physiological features and their causal relations need to be manually
defined and extracted, and subsequently they are limited to scale up. For in-
stance, an alarm of a physiological event (e.g., heart rate deviation from a normal
range) is triggered by setting a threshold obtained from the psychological domain
knowledge or expert experience. It could be rather difficult to handcraft all the
signs of features accurately for many practical scenarios where such knowledge
embedded in signals are intricate. In addition, these knowledge-driven models
are sensitive to sensor noise or body movement, which occurs frequently when
performing a task.

On the other hand, data-driven approaches, especially the deep learning-
based models, which may overcome the aforementioned shortcomings by au-
tomating feature extraction from raw physiological signals. As the fundamental
issue in machine learning, current techniques are becoming mature to analyze
physiological time series. We refer interested readers to a recent comprehen-
sive review of varied representative physiological data-driven algorithms [20].
With the great success being achieved, these data-driven models are capable
of handling an astonishing number of correlations between features and are of-
ten robust to errors caused by incorrect physiological detection. However, these
conventional approaches have the assumption that physiological features are in-
dependent without taking into account the causality between them. Their results
are hard to interpret, and therefore, they are rather limited in further uncov-
ering rich cause-effect relationships among features. For instance, the variation
of the amplitudes of ECG P-QRS-T waves (P-QRS-T) or the EEG based zero-
phase phase-locking value (PLV) is the reaction of high load state in cognitive
processes [5]. In fact, most of existing data-driven models may find that there is
a heavy correlation between P-QRS-T and PLV but unfortunately cannot dis-
cover the further interpretation that the high load state is the common cause of
these two symptoms, which leads to their extrinsic association. As a result, it
could be rather difficult to examine the determinant factors, which is extremely
important in cognitive load assessment because a wrong release of an individual
can have bad consequences in some vital scenarios such as aerospace manipula-
tion, surgical rescue, nuclear control and air traffic command. Moreover, since
a single channel of physiological sensor data is often not faithful in cognitive
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load assessment, e.g., a student may learn in a physical environment with high
level of noise or high temperature, it is nonetheless difficult for these algorithms
to specify only one kind of physiological signals like heart rate for desired load
levels. This inspires us to recognize cognitive load states by discovering casual
features from multivariate physiological sensor data.

To address these issues in cognitive load recognition, we present a hybrid
spatio-temporal causal model by employing Granger causality (GC) and Gramian
angular difference fields (GADF) to discover and combine multivariate physio-
logical features. In particular, our approach considers a principled way of dealing
with the inherent spatio-temporal causal variability within physiological signals.
Briefly speaking, to discover causal structures in a single physiological chan-
nel such as heart rate, we present to introduce a temporal causal network (or
GC network) generated from Granger causality test among physiological events.
Now each resulting casual network contains its unique set of directed links to-
gether with their weights that represent cause-effect relations, characterizing a
certain instance of a single channel that possess similar physiological features
and their temporal causal dependencies. In addition, to combine the represen-
tative physiological features from multiple channels, we treat multivariate phys-
iological signals as video-like continuous 2D objects (or called GADF map) by
adopting GADF to characterize the inherit spatio-temporal dependency among
different signals. Specifically, a capsule network is designed to merge the two
heterogenous types of features, i.e., GC network and GADF map, together by
leveraging the encoder-classifier mechanism to efficiently capture their spatio-
temporal causal relations in a uniform way. In this way, our hybrid model is more
capable of characterizing the inherit causal structural variability together with
the spatio-temporal dependencies in cognitive load recognition when compared
to existing methods, which is also verified during empirical evaluations on one
publicly-available dataset and two in-house datasets under virtual reality (VR)
environment collected by ourselves to be detailed in later sections.

2 Related Work

2.1 Knowledge-driven associations between physiological signals
and cognitive load

There has been a fair amount of work on learning and recognizing cognitive load
states by employing physiological signal data, much of them addressed from a
“univariant” perspective. The first study can be traced back to 1963 when Kals-
beek [12] used ECG to analyze cognitive load. Nowadays, a variety of physiolog-
ical events are studied to associate with the cognitive load states. For instance,
different frequency bands in EEG spaces can achieve cognitive load discrimina-
tion within tasks [4,25]. The ECG median absolute deviation and median heat
flux are found to be the most accurate measurements at distinguishing levels of
cognitive load [10]. HRV and PPG that reflect the states of heart activity and
blood vessels behave different trends under different levels of cognitive load [27].
Other physiological signals such as galvanic skin response (GSR), respiration
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(RESP) and electrodermal activity (EDA) have also been used as a measure-
ment criterion for cognitive load assessment [2]. These approaches are capable of
capturing rich relations, but unfortunately the semantic rules and their weights
are typically hand-coded or based on domain knowledge. In particular, it is not
practicable to handcraft the rules whose relations among physiological events
are intricate especially for the multivariate signals.

2.2 Data-driven models for cognitive load assessment

Feature selection-based methods utilize features extracted from one or more
specific signals to detect cognitive load. Most of these methods [22, 28] use tradi-
tional machine learning methods such as SVM and KNN as classifiers. Moreover,
these methods need prior knowledge to decide which features are appropriate in
cognitive load recognition. Currently, deep network-based approaches have been
at the forefront of this research field. RNN [15] and LSTM [11] are widely im-
plemented for cognitive load assessment, which are adopted to capture the tem-
poral features. However, neither of them takes into account the spatio-temporal
connections between physiological signals, and they are computationally expen-
sive and difficult for parallel computing due to their sequential structures. To
fully exploiting spatio-temporal dependencies, a series of CNN-based model and
its variants such as FCN [24], MCDCNN [30], MCNN |[6], CNN-LSTM [13] and
MLSTM-FCN [13] are introduced to manage both spatial relationship from phys-
iological signals. However, these approaches are limited to capture the spatio-
temporal features from multiple physiological signals and ignore the causality
among physiological events.

2.3 Granger causality

As aforementioned in the previous section, currently either knowledge-driven
models or data-driven models are rather limited in further uncovering rich cause-
effect relationships. Granger causality [9] is a way that can investigate causality
between two physiological events that combines temporal relations with prob-
abilistic description. GC-based model can capture event interactions and their
temporal dependencies. Especially, it demonstrates the effectiveness in explor-
ing causal event sets. In the field of cognitive load assessment existing GC-based
models [18] exploit temporal dependencies between time series from raw physio-
logical signals and use them to detect physiological events. However, they usually
lack the expressive power to capture and propagate rich temporal dependencies
in physiological events. Most importantly, since cause and effect are unidirec-
tional, these models have to check triangle relationships to maintain causal con-
sistency, which implies temporal consistency in the meantime. These methods
often uses GC as a tool to discover temporal dependencies but fail to maintain
causal consistency, which are computationally expensive or even intractable in
discovering causal dependencies, where the event size is large. Moreover, it is dif-
ficult or even meaningless to understand the causes and effects that are learned
from raw time series. It is worth clarifying that Granger causality does not imply
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“true” causality since the question of “true causality” is deeply philosophical. It
can be thought of as a tool of specifying a necessary condition for a temporal
causal relation. To address the problems in these models, we present our hybrid
model to explicitly capture the inherent causal structural varieties by combining
physiological event-based causal networks together with spatio-temporal depen-
dency map of multivariate physiological signals under consistency.

3 Problem Formulation

Given a dataset D collected from C' channels of physiological signals, a hybrid
model is constructed with respect to the temporal causal relations as well as
spatio-temporal maps among multivariate physiological events. Each sample is
a sequence of T physiological events, denoted by S =< s1,89,...,87 >. A
physiological event (or event for short) s; is a vector of C' attributes at time
interval ¢, with each being associated with a certain physiological channel. We
denote it as s; = (8¢1, 8t2,. - ., Stc), where 8. is a vector of K data points col-
lected from the c-th channel measured within the ¢-th time interval, written
by Ste =< $tc(1),...,8tc(K) >. In addition, a sequence of k (k < K) contin-
uous observations in an individual channel event s;. is denoted by 8:.(k) =<
Ste(1), ..., Ste(k) >. It is worth noting that all events are synchronized for any
channel and are spaced at a uniform time interval of length K.

GC network. For each individual channel ¢, a GC network can be used to
represent the temporal causal relationships between physiological events, where
a node vy, represents the corresponding physiological event s;. and a directed
link describes the temporal causality between two related events. In what follows,
we ignore the subscript ¢ in the network for simplicity. Denote a GC network
Xg4e = (V,E) the corresponding network of a sample S, where V is a set of T’
nodes. An event s; is a direct cause of s; if there is a directed link from v; to v;
in E, denoted by v; — v;, where v;,v; € V. Any link v; — v; in a GC network
X4e must satisfy Granger causality test, which defines v; as the cause of v; if
the past values of v; contain helpful information for predicting the future value
of v;. More formally, for each channel ¢, given the sequences of k observations
of s;c and sj. (k < K), v; is the cause of v; with respect to data point k if
P(sje(k+ 1) | 8ic(k),8c(k)) # P(sjc(k+1) | 85.(k)), and also states that v;
is not the cause of v; if P(sjc(k + 1) | 8ic(k),8jc(k)) = P(sje(k +1) | 5j0(k)).
Since causality is transitive, irreflexive and anti-symmetric, it can be verified
that the resulting GC network is a directed acyclic graph. A GC network should
be consistent that the temporal causal relations on every triangle of nodes Aijk
in the network satisfy the transitivity property such that if v; — v; and v; — v,
then v - v;. In this way, for each channel a network can characterize only a
possible style (or an instance) of a cognitive load state.

GADF map. To capture the spatio-temporal correlation between physi-
ological events, a unique feature map Xgqqr is generated for each event sy.
Here, each data point s;.(¢) can be represented in polar coordinates by encod-
ing its corresponding angular cosine value ¢(i) = arccos (s¢.(i)) with the radius
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p(i) = %, where [ is a constant factor to regularize the span of the polar co-
ordinate system. Due to the monotonicity of the cosine function in [0, 7], each
channel of an event can be used to generate a unique polar map. Moreover, the
temporal dependence between elements in a event can be preserved through the
property of the varying radius p(¢). In this way, for any physiological event, we
can readily identify spatial-temporal correlations by measuring the trigonomet-
ric differences between any pair of its corresponding points, i.e., a GADF map,
defined as Xgqqr = [sin (¢(i) — ¢(j))]; j=1 p» Which is a T' x T" matrix.
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Fig. 1. Illustration of physiological events and their corresponding GC network and
GADF map.

As shown in Fig. 1, GC network and GADF map can form a mixing feature
space that describes a unique cognitive load states. This inspires us to present in
what follows a hybrid model where these temporal causal and spatio-temporal
features can be systematically discovered and combined to characterize the cog-
nitive states of interests.

4 Our Approach

Let us consider a dataset D of M samples {(Sy,, ym )} over Y classes (i.e. different
levels of cognitive load states), where y,, is the label of the sample S,,, 1 <m <
M. Here each sample S,, € D is associated with C-channel sequences of T
physiological events s; = {s4.}¢;, 1 <t < T. Our objective is to construct
GC networks and GADF maps and encode them in a uniform way from these
physiological events for cognitive load recognition tasks. The overview of our
approach is illustrated in Fig. 2.
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Fig. 2. The overall framework of our approach.

4.1 GC Network Generation

There are two steps to generate a GC network, i.e., network skeleton construction
and causal link orientation.

Network Skeleton Construction. We first determine the network skeleton,
i.e., which pairs of nodes (events) and their links (temporal causal relations)
should be considered as candidates in the network. Formally, given two events of
K observations of data points of c-th channel s;. and s;., which are individually
and jointly stationary, sj. causes s;. if adding s;. helps predict s;., according
to the definition of Granger causality. Subsequently, the jointly autoregressive
model can be expressed as follows:

L L

Sic(k) = Z bii(T)sic(k — 7') + Z bij (T)Sjc(k‘ - 7') + ,Bki, ﬁki ~ N(O, Ei), (1)

T=1

=1
L
sje(k Z T)sjc(k—T —l—ZbJZ T)Sic(k—T)+ Brj,  Brj ~N(0,%2;), (2)

where b“-(T), b;;(7), bi;(7) and bji(’i') are regression coefficients, fi; and fg;
are regression estimation residuals, and X; = var(By;) and X; = var(fi;). L
is a finite value called lag order, which can generally determined by Akaike
Information Criterion (AIC).

More generally, for an individual channel ¢, we define the vector autoregres-
sion model regarding all pairs of physiological events (or nodes) as follows:

L
= B(r)s(k —7) + B, (3)

where B(7) is the T'x T coefficient matrix at lag 7 where its entry b;;(7) € B(7)
is the regression coefficient that indicates the effect on link v; — v;, and B; is

lc. Polar Coordinates!| d. GADF map. Hybrid Feature Encoder.
o
RS O (oo, - sin(ér - ]
01 0 o l' )
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its corresponding residual vector of size T'. We adopt the LASSO algorithm [1]
to estimate these parameters as follows:

~

K T
bj = argbmin Z ||Sjc(k) - Zbls(kﬁ L)||§ + )‘Hijl
i=1

I k=L+1 i
. T (4)
=argmin ) [lsje(k) = D D bji()sic(k = 7)II3 + Albylls
Pi k=L+1 i=17=1

where bj; is the i-th vector of coefficients bj, i.e., b;; = [bi(1),...,b5(L)],
and §(k, L) is the concatenated vector of L lagged observations, i.e. §(k,L) =
[sje(k—L),...,sjc(k—1)]. In this way, the links that have little influence between
any pair of events (i.e., bj; ~ 0) can be eliminated by the regularization in
LASSO algorithm, and thereby ensuring the sparsity in the network, avoiding
the exhaustive computation. Now we can construct the initial network skeleton
X7 by setting v; — v; € E if and only if Bji is a nonzero vector.

Causal Link Orientation. Now there still exists the awkward situations where
bidirectional links such as v; <+ v; or cyclic triangles (e.g., v; = v; = vy — v;)
exist in X7 , which may lead to causal inconsistence. To this end, we further
orientate the links in X7 through the d-separation criterion, that is, if v; and
v; are d-separated by vy, then v; and v; are independent given vy; otherwise, v;
and v; are interdependent given vj,. Here, we consider four types of d-separation
based on the orientation rules [17]. After applying these rules, we can finally
obtain a resulting GC network X, . that is causally inconsistent.

Besides, the weight on each link v; — v; can be estimated in terms of its
causal power, as defined by:

[ In(®;/®;), ifvi »v; €Eandi#j
Wi = 0, otherwise.

(5)

where @; measures the prediction accuracy of v; based on its own previous values,
and ¥;; measures it from the previous values of both v; and v;. If ¥;; < @;, which
means v; have a causal influence on v;. Theoretically, the larger w;;, the stronger
the causal influence.

4.2 GADF Map Construction

It is straightforward to construct a GADF map from an individual channel of
an event s;.. Specifically, an approximate representation of s;., written as $;.,
can be calculated by applying a simple piecewise aggregation approzimation [14],
that is, §;. = % Zle sie(j) (t=1,...,T). Here, each §. is normalized within
the range of [—1,1]. Next, we transform each event representation §;. to a pair
(¢(t), p(t)) in the polar coordinate system. Formally, a GADF map Xgqqr is a
T x T matrix with its entry being calculated as:

Xgadf(ihj) = Sln(¢<2) - ¢<]>) = (§lC - §JC) \/ 1- §126 \/ 1- §§c (6)
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It is verified that GADF maps can provide intuitive spatio-temporal details as
well as a cross-boundary division [23].

4.3 Capsule Network-Based Recognition Model

Now we are ready to build a hybrid model that can merge these two types of
encoded features (i.e., X,. and Xqqr) together as new inputs for cognitive load
state recognition. Here we design an encoder-classifier model, which consists of
two parts: a hybrid feature encoder that discovers the deep features by combining
GC network and GADF maps, and a capsule network-based classifier to achieve
the tasks of classifying different levels of cognitive load states [29].

Hybrid Feature Encoder. The input feature tensor X is a concatenation
of Xge, Xgadf € REXTXT of all the channels, and thus X € RE*2xTXT  Firgt,
a convolution layer F.,,, aims to transform these causal and spatio-temporal
information jointly into a higher-level feature space, where the output feature

tensor is denoted by Z € RE™*2xTxT (C' < (), as defined:

Layer D:  Feonw: X = (21,...,xc) = Z = (21,...,2¢")

c (7)
with 2o = ke * X = ZCZI/{C/ xxo,c =1,...,0,

where k. is a filter kernel and * is the convolution operator.

Next, we compress the global spatial information from several separate chan-
nels by adopting the global average pooling (gap) layer, and its output is fed
into two fully-connected (fc) layers with ReLU activation function and sigmoid
function o, as formulated:

Layers 2-@):w = F}.(Fgap(Z)) = o(W2 - ReLUW 1 - (avg(2c))o—y. ) (8)

where W1, Wy € RS %" are the corresponding weights.
The last layer of our encoder is defined by a channel-wise soft-threshold op-
eration:

Layer ®): M=X+Z|T

9
with T =w O Fgep(Z), Z | 7= (2: | 7o) 1<e<cr )

where ® is the element-wise product, and | is the soft-threshold operation. In
this way, w and 7 contain the scaling weights and the thresholds for all the
channels, respectively.

CapsNet-Based Classifier. The capsule network is used as a classifier of cog-
nitive load levels, where it takes the previous encoder’s output M € RO XTXT gg
its input and output a vector of size Y indicating the different levels of cognitive
load states. Our classifier consists of three layers: a standard convolutional layer,
a primary capsule layer and a cognitive capsule layer.
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In details, the standard convolutional layer has 64 different 3 x 3 filters with
a stride of 2 and a ReLU activation function. The primary capsule layer has
64 types of primary capsules U; (i = 1,...,64). Each U, is generated by a
convolutional operation with 8 different 2 x 2 filters and then is reshaped as a
tensor of 8D vectors U; = [ 1,...,%;q4) where d = 8K?. Last, the cognitive
capsule layer transforms these vectors to Y different 16D vectors by employing
a specific weighting and routing procedure as follows:

Fuwr 1 U = (Wik)i=1,. 64k=1,..a Y = (Y;)j=1,.v (10)

More specifically, F,,, includes two steps. First, for each ¢ (i = 1,...,64), the
primary capsules in U; = (i;,1, . - ., @; ) pass through a shared 8 x 16 weight ma-
trix W, ; to generate ﬁj” = ()31, Uj)5q) (J=1,...,Y). Next, a dynamic
routing procedure routes each primary capsule output w;; , to the j-th cogni-
tive capsule and produces the output y; foralli =1,...,64and k=1,...,d. A
squashing function is employed to ensure that short vectors get shrunk to almost
zero length while long vectors get shrunk to almost a unit length, as defined as
follows:

le;|® ej
y, = squash(e;) = ) (11)
’ 4 el el
where e; = > _owaiin) “ |k and gj|;  is an internal parameter which

“k E};l exp(Qj|i,1L)
is updated by gji,x < gjji,k + Uik - Y; at each iteration. The loss function of
our CapsNet-based classifier is defined below:

Loss; = I; max (O,mJr — HyJH)2 +v (1 —1I;) max (O, ||yJH — m_)2 (12)

where I; is an indicator function that indicates whether the true label of a sample
is class j, m™* (resp. m™) refers to the upper (resp. lower) boundary, and  is
a regularization weight. HyjH €[0,1] and j = maxj{HyjH} indicates the final
result is recognized as the class of j.

5 Empirical Evaluations

5.1 Datasets and Preprocessing

Three cognitive load assessment datasets are considered in our experiments, in-
cluding one publicly-available cognitive load datasets and two in-house dataset
on VR learning environment collected by ourselves.

CLAS [16]: This is a publicly-available dataset, which contains synchronized
ECG, PPG, and EDA signals (256 Hz) captured from 62 subjects with each 30-
minute recording involved in purposely designed interactive or perceptive task
indicating two cognitive load states. According to the description of related pa-
per, when the subjects were in the sub-task session, the cognitive load was high,
while in the neutral stimulus session, the cognitive load was low. For a better
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comparison with our data set, we set the original CLAS dataset as a sample set
with a sliding window size of 5s.

3s-COGSET and 5s-COGSET: To our best knowledge, the above mentioned
dataset is so far the only one publicly available and suitable for deep learning
methods in the field of cognitive load assessment. In particular, the instances
of the cognitive tasks in the experiments of CLAS are relatively simple without
considering the practicality of the test scenario. To this end, we conducted a new
experiment, which is still an ongoing effort, and at the moment 16 subjects (8
male and 8 are female) with their ages ranging from 18 to 24 were recruited to
learn 50 modules of courses that are designed by ourselves in VR environment.
Each module is performed 10 runs by each participant. Three types of physio-
logical signals, i.e., PPG, RESP and EDA, were recorded during performing the
tasks by means of wearable sensors with the sampling rate of 64Hz. Our exper-
iment contains around 5,000 annotated samples about three levels of cognitive
load states (i.e., low, medium and high.) on VR learning environment. A subset
of samples are provided in the supplementary material, and once ready we plan
to share the entire dataset in the community. Considering the different settings
of physiological events, our records were divided into two new datasets by using
the event sizes K of 3s and 5s, respectively.

5.2 Experimental Set-Ups

Our model is implemented by Keras with backend of Tensorflow. It is optimized
by Adam optimizer (#; = 0.9 and B, = 0.999) with the learning rate of 1 x 1074
and the step size of ¢! on one GeForce GTX 750Ti GPU. We set the parameter
K =28, m"=0.9,m™ =0.1, vy = 0.5. The batch size is fixed to 14. We compare
the classification performance of our model with 7 conventional models and 11
deep models. To make a fair comparison, we did not use any data augmentation
or pre-trained weights to improve performance. The ratio of training and testing
sequences is 4 : 1. Accuracy was used as the evaluation metric, which is calculated
as the proportion of true results among the total number of samples.

5.3 Experimental Results

Comparison Against Conventional Models. Table 1 depicts the compar-
ison results under different settings of physiological channels. In order to inte-
grate various existing feature extraction methods, we extracted 787 features (e.g.
Fast Fourier Transformation coefficients, etc.) in total, which however need to
be manually encoded from prior knowledge. Generally, our model outperforms
these models by a large margin. This is because our hybrid model is capable of
capturing causal dependencies and spatio-temporal features among multivariate
physiological events.

Comparison Against Other Deep Models. Table. 2 shows the comparison
results with other deep models that recognize cognitive load states directly from
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Table 1. Accuracy comparisons on three datasets under different settings of physio-
logical channels.

Conventional models Accuracy
LR SVM GNB DT RF XGBoost KNN Ours
CLAS 0.60 0.61 0.59 0.550.60 0.64 0.66 0.75
3s-COGSET 0.49 0.58 0.57 0.550.67 0.63 0.70 0.86
5S-COGSET 0.58 0.65 0.51 0.610.54 0.75 0.77 0.92

under different combinations of physiological signals
5S-COGSET (PPQG) 0.49 0.49 0.54 0.510.48 0.54 0.57 0.70
5S-COGSET (RESP) 0.48 0.50 0.54 0.56 0.55 0.60 0.59 0.65
5S-COGSET (EDA) 0.49 0.50 0.49 0.480.51 0.55 0.58 0.62
5S-COGSET (PPG+EDA) [|0.60 0.54 0.54 0.46 0.63 0.70 0.69 0.79
5S-COGSET (PPG+RESP)||0.60 0.60 0.62 0.66 0.65 0.64 0.70 0.76
5S-COGSET (RESP+EDA)||0.62 0.60 0.64 0.59 0.67 0.66 0.74 0.81

raw physiological signals. Apparently, it can be observed that our model can is
significantly more accurate than other models with around 5%-30% performance
boost. Notably, MLP and MCDCNN get relatively acceptable results of identi-
fying states. This is mainly due to their abilities to take advantage of the rich
hierarchical and temporal dependency information between various physiologi-
cal events. It is also clear that our model is superior to other models including
those that combine CNN and LSTM (or RNN) structures that can also capture
spatio-temporal dependencies among multivariate signals. This is mainly due to
the reason that GC network can describe the temporal causal relation between
any pair of events.

Table 2. Accuracy comparisons against other deep models. The percentage in the
bracket shows the accuracy change taken our approach as a baseline.

Deep models Accuracy
CLAS 3s-COGSET 5s-COGSET
MLP [24] 0.67(-0.08)  0.80(-0.06) 0.85(-0.07)
FCN [24] 0.69( 0.06) 0.57(-0.29) 0.58(-0.34)
ResNet [24] 0.70(-0.05) 0.61(-0.25) 0.56(-0.36)
Inception (8] 0.61(-0.14) 0.67(-0.19) 0.70(-0.22)
MCDCNN [30] 0.60(-0.15) 0.76(-0.10) 0.84(-0.08)
MCNN |[6] 0.54(-0.21) 0.57(-0.29)  0.56(-0.36)
1D-CapsNet [3] 0.50(-0.25)  0.75(-0.11) 0.60(-0.32)
Parallel CNN-LSTM [13]||0.63(-0.12)  0.76(-0.10) 0.83(-0.09)
Serial CNN-LSTM [19] ||0.56(-0.19) 0.50(-0.46)  0.49(-0.43)
MLSTM-FCN [13]  ||0.61(-0.14) 0.57(-0.29)  0.61(-0.31)
Grid-CNNs [26] 0.45(-0.30)  0.49(-0.37) 0.56(-0.36)
Ours 0.75 0.86 0.92
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Convergence Speed Fig. 3(a) displays the training time of our model. It can
be seen that our model converges after 30 epochs. Fig. 3(b) reports the compar-
ison results of convergence speeds among different models. Notably, our model
converges faster than other methods, which is beneficial to the training and op-
timization process. Theoretically, the time complexity of our models consists of
three parts O(MTK?), O(MTK?) and O(Y}L, M2K2H, 1 H,), indicating the
GC network generation, GADF map construction and capsule network-based
classifier, respectively. H represents the number of layers of the classifier, and
H;_1 and H; refer to the sizes of input and output feature tensors at the [-th
layer, respectively.

S5s Acc. —=— 5s Loss — MLP Inception
35 Ace. — 3s  Loss MCDCNN -+ CNN-LSTM
: —— MLSTM-FCN Ours
e R
1 N 04 [ B
. 10 = ;
£ 08| | 2 g i
S . - 10 -0.5 8 5 0.5 3 V4 N
o - o Y. ’&—
: | | - ?‘mﬂ
0.6 1006
il | I 1] Lol Lol
10
Epochs Epochs
(a) Our model (b) Comparison with others

Fig. 3. Convergence speed comparison.

5.4 Ablation Study

In this section, we conduct three ablation studies to measure the effectiveness of
the modules in our model.

Feature Encoding. We compared our hybrid features of GC network and
GADF map with other three commonly used encoded features, i.e., Markov
Transition Fields (MTF) 23], Recurrence Plot(RP) [26] and a simple grid struc-
ture (Grid) [7]. Fig. 4(a) shows that our hybrid features clearly outperform other
encoded features in accuracy on the two in-house datasets. This is because the
hybrid features contain not only the temporal causal configurations of a par-
ticular cognitive state but also the inherit spatio-temporal dependency among
multivariate signals.

Optimum Parameter Selection. We also compared various settings of lag
order L in our model. Here we increase the lag order L from 1 to 10 with a step
of 1. The result shows that changing the lag order cannot lead to negative effects
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(a) Accuracy comparisons of fea- (b) Accuracy changes on different
ture encoding methods A (L =3)

Fig. 4. Convergence speed comparison.

on the performance of our model on the datasets. This is mainly because the
duration of cognitive load responses in a subsequence is very short. For instance,
there are instantaneous loads, which fluctuate every moment from the beginning
to the end of performing a task or set of tasks, such as cognitive dissonance and
cognitive overload in a certain subsequence, so the variation of L is limited to
affect the final results. Although the selection of lag order still remains an open
issue, we suggest to set the lag order with a value that is slightly larger than the
ordinary length of physiological events. Note that a very large value of L may
result in computational burden.

The sparsity regularization parameter A in Eq.(4) is an important parameter
for link sparsity optimization. Its effect on classification performance on the
three datasets is shown in Fig. 4(b) by fixing the lag order to L = 3. It is clear
that increasing the value of A strengthens the regularization effect. On the other
hand, a small value of A will bring about a great number of noisy links in the
network, which may also be unfavorable to the recognition results.

Encoder-Classifier Component Effectiveness. The effectiveness of differ-
ent components in encoder-classifier mechanism are separately evaluated by re-
moving or replacing them with other conventional models. We evaluated two
types of modules, including the encoder (i.e., remove the encoder and directly
use the raw GC network and GADF map as input) and the classifier (i.e. remove
the CapsNet-based classifier and only adopt a one-dense-layer for classification).
Table. 3 reports the comparison results on the two in-house datasets, which
indicates that changing the components may have a negative impact on the
performance of our model. Obviously, classification performance degrades when
either component is removed. This might be due to the hybrid encoding of both
causal and spatio-temporal information in a uniform way in our model. Besides,
when removing both components, the model gives worse performance than that
using either our encoder or classifier, which indicates that our model is more
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effective to capture causal and spatio-temporal dependencies at the same time
than obtaining either of them individually.

Table 3. The impact of the components in our model. Xmeans no such component,
while v/ denotes the reservation of it.

. Accurac
No.|Encoder Classifier 35-COGSET 5S-éOGSET
1 |X X 0.54 0.52
2 |V X 0.55 0.53
3 |X v 0.76 0.85
4 |V v 0.86 0.92

6 Conclusion and Future Work

In this paper, we present a hybrid cognitive load recognition model by merging
Granger causality network and Gramian angular difference fields map together
for multivariate physiological data, which can capture the inherit causal and
spatio-temporal varieties of physiological events in a uniform way. It is more
efficient and flexible than existing methods on cognitive load recognition. As for
future work, we will explore the applications of our model on more VR learning
classes, and we will consider extending our model to detect multiple cognitive
states with probabilities and will instead learn a model under uncertainty.
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