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Abstract. The primary goal of non-small cell lung cancer (NSCLC)
recognition from CT images is to discover representative features, with
each being responsible for NSCLC diagnosis. A key challenge in CT im-
age feature selection is the fact that rich causal dependencies are often
neglected among either radiomics or deep learning-based features. This
leads us to present a constraint-based model to construct a causal net-
work that explicitly discovers and leverages the inherent local causal
variability of these deep and radiomics features under a global view. In
particular, an identified network skeleton is generated to characterize a
unique causal configuration of a particular NSCLC subtype as a variable
number of nodes and links, and as a result, the resulting causal network
satisfies the causal Markov property and all local cause-effect dependen-
cies are globally consistent. Furthermore, a representative node selector is
devised to select the most representative causal features from the causal
network for NSCLC subtype recognition. Empirical evaluations on one
benchmark dataset and one in-house dataset suggest our model signifi-
cantly outperforms the state-of-the-art methods.

Keywords: Non-small cell lung cancer recognition · Constraint-based
network · Cause-effect dependency · Feature selection

1 Introduction

Non-small cell lung cancer (NSCLC), a leading cause of cancer deaths all over the
world, has different characteristics such as adenocarcinoma (ADC) and squamous
cell carcinoma (SCC), and thus its subtype recognition has become an important
research field, given its role in guiding the subsequent treatment for patients with
lung cancer. The golden standard for NSCLC diagnosis is pathological diagnosis,
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which has not yet been fully elucidated and are commonly expensive and time-
consuming. Although experienced doctors can make an initial diagnosis from
radiographic data, there are still urgent needs for data-driven models that can
detect different subtypes from CT images. Currently, these models can be divided
into two categories: conventional models which are required to manually encode
radiological features, and deep models which can automatically discover features
from images. However, these image data generally has the properties of high-
dimensional but small samples, which may bring about degradation in accuracy
and efficiency of recognition model by curse of dimensionality and overfitting [8].
In addition, most features of CT images are unrelated to NSCLC subtypes and
have no effect on their diagnosis or even have negative impacts. Therefore, feature
selection is especially significant for the recognition of NSCLC subtypes [9].

Current techniques are becoming mature to select features. Here, a review [17]
reports a repository of near 40 representative feature selection algorithms, which
have been used in the field of radiomics, such as LASSO [2], PCA [2], RFE [27],
mutual information [23] and other deep-based features. It is worth noting that
these approaches commonly assume that features are independent without con-
sideration of their causal relationships [10]. However, rich causal relations exist
among radiological features in CT images with their unique values in cancer
diagnosis [7, 18]. For example, as illustrated in Fig. 1, it is known that pleural
tag or air bronchogram is the cause of the NSCLC subtype adenocarcinoma in
CT image-based detection. In fact, most of the existing data-driven models may
find that there is a heavy correlation between pleural tag and air bronchogram
but unfortunately cannot discover the further interpretation that the adenocarci-
noma is the common effect of these two symptoms, which leads to their extrinsic
association. As a result, it could be rather difficult to determine the significant
factors, which is extremely important to NSCLC diagnosis because a wrong re-
lease of a patient can have bad consequences. The main focus of this paper is
on causal discovery of features in CT images, since an important assumption for
lung cancer diagnosis is the causal relationships between the radiological imaging
data and cancer types [4].

Despite being a very challenging problem, there has been a rapid growth of
interest in selecting causal features in recent years. The most popular modeling
paradigm might be that of the graphical causal modeling, where the Bayesian
network is the most commonly used structure in causal discovery that calculates
the relationships of all features by constructing nodes (e.g., imaging features or
NSCLC subtypes) and edges (i.e. their causal relations) as well as their joint
probability distributions under certain constraints, often entailed by Markov
blanket property. In a typical manner, they can be divided into two main cat-
egories, score-based models which maximize a score criterion to learn a causal
network, and constraint-based models which use conditional independence and
dependence constraints to discovery causal structures of observed variables [11].
However, imaging features are often not causally sufficient (i.e. there exist unob-
served causes for two observed variables [26]). If without assuming causal suffi-
ciency, score-based models must require a predeterminate number of such latent
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Fig. 1. An example of a causal network representing lung cancer and features of CT
images.

variables, which is almost unavailable in CT images. In contrast, the constraint-
based algorithms are more capable of handling the awkward situation of the lack
of such prior knowledge. Moreover, constraint-based algorithms are more com-
putationally efficient than score-based methods, which are NP-hard in terms of
complexity [6].

In this work, we adopt a constraint-based model to discover causal features
in CT images for NSCLC recognition. Normally, most of such models construct
causal structures under Markov blanket property among features by leveraging
exhaustively global search to learn from a complete graphical network. Unfor-
tunately, the main challenge is their computational cost as the number of such
relations and possible causal networks is super-exponential to the number of
variables (i.e., node) [11]. In fact, checking Markov blanket consistency becomes
intractable with the growth of network size. Besides, since Bayesian network
structure is a directed acyclic graph, some highly correlated relations has to be
removed from the the network in order to maintain causal consistency, which
nevertheless would result in information loss. For example, air bronchogram is
the most relevant feature of adenocarcinoma, which is important in NSCLC
diagnosis, but it cannot be identified as a causal variable by existing constraint-
based approaches due to the Markov blanket inconsistency. Subsequently, these
approaches are rather limited in identifying feature variables with meaningful
cause-effect relationships between them in the network [5].

To address these aforementioned issues, we present a constraint-based causal
network model for NSCLC subtypes recognition. Specifically, our model consid-
ers a principled way of discovering and applying causal relations of CT imaging
features associated with NSCLC subtypes. In short, by generating from an iden-
tified network skeleton with highly correlated nodes (features) under the con-
straint of causal Markov property, a causal network is constructed to discover
representative causal features from CT images. Note that the node set in the
identified network is composed of both deep-based features and representative
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radiomics features. Now each resulting causal network contains its unique set
of directed links that represent cause-effect relations, together with other com-
monly used radiomics features such as shape, texture and statistical information
of the tumor lesion. Moreover, we design a representative node selector to choose
the most representative causal features from the causal network for NSCLC sub-
type recognition. In this way, our causal network-based method is more capable
of characterizing the inherit cause-effect dependencies of CT imaging features in
a non-invasive NSCLC diagnosis when compared to existing approaches, which
is also verified during empirical evaluations to be detailed in later sections.

2 Related Work

Existing approaches for NSCLC recognition can be divided into two categories.

2.1 Conventional Models with Radiomics Features

It is commonly known that conventional models can be adopted for diagnosis of
lung cancer with radiomics features, which include high-throughput quantitative
metrics from medical images related to tumor pathobiology and the creation of
minable high dimensional database [13, 14, 19]. Since radiomics data contains
a large number of features describe intensity distribution, spatial relationships
between the various intensity levels, texture heterogeneity patterns, shape and
the relations of the tumour with the surrounding tissues, it is necessary to apply
feature selection to eliminate redundant features that are not relevant to the
label [15]. Wang et al. [22] compared the performance of several conventional
machine learning methods in predicting the prognostic recurrence of NSCLC
using PCA to select features. Zhu et al. [28] successfully performed a radiomics
analysis with LASSO logistic model to distinguish ADCs from SCCs. Han et
al. [12] evaluated ten feature selection techniques as well as ten conventional
models for NSCLC classification. These studies demonstrated that the man-
ually encoded radiological features are capable of characterizing properties as
potential biomarkers for recognizing NSCLC subtypes. However, such features
are normally hand-coded or defined based on domain knowledge, which would
be not practicable since tumor pathobiology in NSCLC is not completely eluci-
dated and its corresponding radiomics images are often intricate. Moreover, the
causal relationships between features cannot be exploited by these conventional
methods, leading to the significant information loss.

2.2 Deep Model-Based Recognition from Raw CT Images

Different from conventional models, deep models have been at the forefront of
this research field, which can automatically quantify radiographic characteristics
of tumor and its surroundings without handcraft from CT images for NSCLC
diagnosis. Among them, CNNs have achieved excellent performance, and not
surprisingly an increasing amount of CNN-based variants are presented in CT
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image-based classification. These algorithms provide a great aid in the diagnosis
of lung cancer, including segmentation of the lung and tumor area, prediction
of invasiveness and survival analysis, etc. [20, 21, 24]. Aonpong et al. [3] found
that the deep models such as ResNet can achieve better result in the diagnosis
of NSCLC compared to conventional models using radiomics features. However,
deep models only take raw CT images as input, which are limited to manage
radiomics information such as texture, shape and density. Several recent studies
attempted to merge such radiomics features in deep models instead of merely
using CT images. Han et al. [12] designed a fusion algorithm that can combine ra-
diomic and deep-based features to help radiologists to differentiate the subtypes
of NSCLC via PET/CT images. Aonpong et al. [2] embedded selected radiomics
features in a deep network for recurrence prediction of NSCLC. It was shown
that these fusion models can achieve better performance than deep models that
use raw images alone. However, a major limitation of these deep models con-
cerns that the relationships that are learned from raw images are often hard to
understand by human beings, which are extremely crucial in cancer diagnosis. In
addition, they usually lack the expressive power to characterize and propagate
rich causal dependencies in NSCLC recognition, and thus they are limited to
capture the inherent causal variability of radiological image features in a global
view. To address the issues, we present a constraint-based causal network to dis-
cover and utilize the cause-effect relations of both radiomics features and deep
features extracted from CT images to discriminate NSCLC subtypes.

3 Preliminaries

3.1 Data Acquisition

In this study two NSCLC datasets are considered, including one in-house dataset
and one publicly-available benchmark dataset.

A public dataset named NSCLC-Radiomics-Lung (P-NSCLC) [1], which in-
cludes 422 NSCLC patients is used in this study. It contains CT images with
manually segmented gross tumor volumes and contour annotations for each pa-
tient. A number of 203 patients were eventually selected in our study (51 patients
were diagnosed with ADC, and 152 patients were diagnosed with SCC).

To our best knowledge, the above mentioned dataset is so far the only ones
publicly available for the field of NSCLC recognition. To this end, we propose
a new NSCLC dataset (named I-NSCLC) collected from a hospital between
May 2018 and September 2019, which includes 466 NSCLC patients’ computed
tomography scans. The inclusion criteria were as follows: (1) Patients were diag-
nosed with a primary NSCLC subtype, i.e., ADC or SCC; (2) Patients received
no treatment before pathological diagnosis; (3) Patients were considered with
available thoracic enhanced CT images. In the entire dataset, 368 patients were
diagnosed with ADC, and 98 patients were diagnosed with SCC. The collected
CT images are consecutive thoracic series in digital imaging and communications
in medicine (DICOM) format. The corresponding CT system we used in this
study is a 64-channel multi-detector CT scanning system (64-slice LightSpeed
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VCT, GE Medical Systems, Milwaukee, WI, USA), with the same scanning pa-
rameters (120kV; 400mAs; detector coverage: 40mm; rotation time: 0.6s; matrix
size: 512×512). A subset of samples are provided in the supplementary material,
and once ready we plan to share the entire dataset in the community.

3.2 CT Image Preprocessing

All the CT images of the enrolled patients in both the in-house and public-
available NSCLC dataset were manually annotated by an experienced radiolo-
gist using ITK-snap software using a standard clinical delineation protocol. Each
single CT image was checked for delineating the corresponding tumor solid le-
sions. Then regions of interest (ROI) of those patients were stored separately as
the mask information of the original CT image.

For each raw CT image, an intensity normalization was applied to rescale the
pixel intensity to [0, 255]. Combined with the mask information, each CT image
with tumor lesion was center cropped to 128 × 128 pixels. Radiomics features
were extracted from the ROIs of the CT images. These features were divided into
the following seven categories: 19 first order statistics features, 16 shape-based
(3D) features, 10 shaped-based (2d) features, 34 gray level co-occurrence matrix
(GLCM) features, 16 gray level run length matrix (GLRLM) features, 16 gray
level size zone matrix (GLSZM) features and 14 gray level dependence matrix
(GLDM) features. All the features were extracted from the raw CT images except
for shape that are independent of gray value. For each raw image, a set of filters
were leveraged to generate derived images, which could also be used for feature
extraction. In particular, most of the features are consistent with the standard
definitions as described by the Imaging Biomarker Standardization Initiative
(IBSI) [29].

3.3 Problem Formulation

Given a NSCLC dataset D of N samples from a set of C subtypes, with each
sample representing a patient consisting of a series of CT images of size C×W×H
(indicating channels, width and height, respectively) and a mask of tumor lesion.
Each sample consists of M features extracted from patients’ CT images and a
corresponding NSCLC subtype. A causal network G = (X,E) indicates the
causal dependencies of a variable set (including NSCLC feature variable and
label variable), where a node in X represents a variable and a link in E between
any two nodes represents their causal relationship [25]. There are two types of
link in E: directed links (→) and undirected links (↔) (can also be seen as two-
way links). A directed link (→) in E describes that the head node xi is a direct
cause of the tail one, denoted by xi → xj , where xi, xj ∈ X. An undirected link
xi ↔ xj means that there exist two Markov equivalence class of G containing
xi → xj and xj → xi respectively, indicating a cause-effect relation between xi
and xj with uncertain direction.

A causal network is a fully completed partially directed acyclic graph (i.e.,
its directed subgraphs does not contain a directed cycle) because causality is
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transitive, irreflexive and anti-symmetric. For any {xi, xj} ∈ V, xi and xj are
conditionally independent if there is a set of variables X′ ⊆ X\ {xi, xj} over the
dataset D satisfying P (xi, xj | X′,D) = P (xi | X′,D)P (xj | X′,D), denoted by
xi ⊥⊥ xj | (X′,D).

A causal network G must satisfy causal Markov condition. That is, give a
node xi ∈ X and its parents Pa (xi), if xi is not a cause of xj , then xi is
conditionally independent of xj given Pa (xi), i.e., xi ⊥⊥ xj | Pa (xi), where xj ∈
V\ {xi,Pa (xi)}. There are three important structures on a triplet 〈xi, xj , xk〉 in
the causal network, v-structure, chain and fork, as illustrated in Table. 1. The d-
separation criterion captures exactly the conditional independence relationships
that are implied by the Markov condition. Let A, B and C be disjoint subsets
of the nodes of X. P is a acyclic path between node xi and xj , where xi ∈ A,
xj ∈ B. We say P is blocked by the subset C if and only if (1) there is a chain
xi → xk → xj or a fork xi ← xk → xj such that xk ∈ C; or (2) P contains
a v-structure xi → xk ← xj and neither xk nor any of its descendants are in
C. The causal networks constructed according to the conditional independence
determined by d-separation are not unique, they are Markov equivalence classes
of the real Bayesian network with the same skeleton and v-structures.

Table 1. Orientation rules in d-separation. Adj(nonAdj) means two nodes do(not) have
a link

Structure Probability Definition
v-structure

xi → xk ← xj

P (xk | xi, xj) =
P (xk | xi)P (xk | xj)

xk is a common effect of xi and xj .
xk is called a collider

chain
xi → xk → xj

P (xk | xi, xj)
=P (xk | xi)

xi is an indirected cause of xk

fork
xi ← xk → xj

P (xj | xk, xi)
=P (xj | xi)

xk is a common cause of xi and xj

Generally, the constraint-based algorithms consist of two key steps to deter-
mine a causal network: (1) identifying the network skeleton (the candidate nodes
and links); (2) orienting links as many as possible. Notice that we assume the
node set X (observed variables) is causal sufficient, i.e., all the relevant features
in the network have been observed and there is no unobserved common cause.
A causal network characterizes the relationships between variable features and
labels. This inspires us to present in what follows a constraint-based method
where these networks can be systematically discovered to construct the final
causal network characterizes the causal relationships among various radiomics
and deep features for the NSCLC subtypes.
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4 Our Model

To generate a causal network for histologic subtypes of NSCLC, two types of
features (nodes) are considered in our model. That is, deep features are learned
from a deep model while representative radiomics are selected as the nodes of the
skeleton. A causal network is then generated by causal link orientation. Finally,
the most important causal features are selected for the classification of NSCLC
histologic subtypes. The main procedure of our approach is illustrated in Fig. 2.

Fig. 2. The framework of our approach.

4.1 Skeleton Identification

To discover causal relationships between features using a constraint-based ap-
proach, a network skeleton consist of candidate nodes and links of the final causal
network needs to be extracted first.

Learning Deep Features. A homogeneous deep model is constructed to ex-
tract deep features related to NSCLC subtypes from CT images automatically.
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It consists of two main components: convolution layer and residual block. First,
a convolution layer is defined as:

ConvLayer: Y = Fc(A) = ReLu(W · BNγ,β(Conv(A))),

with Conv(A) : A = (a1, ...,ain) 7→ Y = (y1, ...,yout),
(1)

where W is the corresponding weight vector of the ReLu function, γ and β are
the internal parameters in the BatchNorm function. Conv is the convolution
function with the sizes of the input channels in and output channels out. Note
that yc = Ksc ∗ A (c = 1, ..., out), where Ksc is the c-th convolution kernel of
the size s and ∗ is the convolution operator. Subsequently, a residual block is
constructed as follows:

ResBlk: Y = Fr(A) = A+

Cad∑
i=1

FT (A),

with FT (A) = F3
c(A),

(2)

where FT is a transformation including 3 ConvLayers with the kernel sizes of
1× 1, 3× 3 and 1× 1 consecutively. Cad is the cardinality that is introduced to
control the number of complex transformations. In this way, the split-transform-
merge strategy is exploited in the block to reduce the number of parameters in
an easy and extensive way.

Given a CT image I ∈ RC×W×H and its corresponding label c, our deep
model aims to discover the deep features by leveraging the following structures:

I1 = MaxPool(Fc(I)),
I2 = F4

r(I1),
VMd

= FC(GAP(I2)),
c = softmax(FC(VMd

)),

(3)

where GAP is the global average pooling and FC is a fully connected layer.
Finally, VMd

represents the vector of Md deep features learned from our model.

Selecting Nodes from Radiomics Features. Now let us consider a radiomics
feature set R = {(s1, c1), ..., (si, ci), ..., (sN , cN )} where si is the i-th sample
composed of R radiomics features denoted by [si1, ..., siR], ci ∈ {1, ..., C} is its
corresponding NSCLC subtype and N is the number of samples. Our goal is
to find a weighting vector w that reflects the importance of each feature to the
corresponding label. The weighting vector could be denoted asw = [w1, . . . , wR],
where wr represent the importance weight of the r-th feature.

Here, the probability Pij of si and sj with the same NSCLC subtype can be
defined as follows:

pij =

{ K(dw(xi,xj))∑
k 6=i K(dw(xi,xk))

, if i 6= j

0, if i = j
(4)
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where K(z) = exp
(
− z
σ

)
is a kernel function with a kernel width of σ and

dw(si, sj) =
∑R
r=1 w

2
r |sir − sjr| is a weighting distance function. To this end,

the optimal radiomics feature weight vector ŵ over dataset R can be computed:

ŵ = argmin
w
{L(w,R)} = argmin

w

 1

N

N∑
i=1

N∑
j=1,j 6=i

Pij (1− cij) + λ

R∑
r=1

w2
r

 ,

(5)
where λ > 0 is regularization parameter to alleviate overfitting, and cij = 1 when
si and sj are of the same class, otherwise cij = 0. A gradient based optimizer
can be used to optimize the above objective function, such as delta-bardelta or
conjugate gradients. It is worth noting that the larger the weight value in ŵ,
the greater the importance it has in NSCLC classification task. We select top
Mr features with the largest weight values as the skeleton nodes of radiomics
features.

Skeleton Initialization. A complete undirected graph G1 = (X,E1)is con-
structed to initial the skeleton for causal link orientation, where X composed
of Md deep features nodes, Mr radiomics features nodes and their correspond-
ing NSCLC subtype label, and K = |V| = Md + Mr + 1. Then, conditional
independence test is performed for each edge xi ↔ xj in the graph. xi and
xj are not independent given any subset of nodes in X except xi and xj , i.e.,
E1 = {xi ↔ xj : ∀U ⊆ V \ {xi, xj} , xi 6⊥⊥ xj | U}. In consequence, all links that
with two conditionally independent nodes are removed from the graph to satisfy
causal Markov condition.

4.2 Causal Link Orientation

Now we have a causal network skeleton G1 which is an undirected graph without
any determined causal relation. We continue to direct the links in G1. First
we construct a network G2 = (X,E2) by analyse the v-structures in G1. For
any triplets 〈xi, xj , xk〉 with the structure of xi ↔ xk ↔ xj in E1, if E1 dose
not contain such a link xi ↔ xj and xk dose not belong to any subset U ⊆
V\ {xi, xj} so that xi ⊥⊥ xj | U, then we add the link xi → xk ← xj to E2;
otherwise, we still keep the undirected link xi ↔ xk ↔ xj in E2. After analysing
all v-structures in E1, we get a partially directed acyclic graphG1, which satisfies
causal Markov condition.

Next, we further orientate other undirected links in G2 according to the d-
separation criterion, where if xi and xj are d-separated by xk. then xi and xj are
independent given xk; otherwise, xi and xj are interdependent given xk. Four
orientation rules of the corresponding sub-graph are illustrated in Fig. 3. With
these rules, we get a set of different networks G by orientating specific undirected
links. These networks in G are Markov equivalent due to their same skeleton and
same v-structures.

The final causal network G = (X,E) is the union of the networks in G, where
a directed link xi → xj exists in E if and only if it exists in every network in G,



Recognizing NSCLC Subtypes by a Constraint-Based Causal Network 11

Fig. 3. Four types of orientation rules in d-separation. A red cross means there does
not exist any link between the two nodes.

otherwise xi ↔ xj remains in E. Note that G is a completed partially directed
acyclic graph representing a Markov equivalence class of G and thus satisfies
causal Markov condition. Besides, the causal probability ξij of any two nodes xi
and xj can be calculated in term of standard deviations:

ξij =
σ2
axi+bxj

− σ2
axi−bxj

σ2
axi+bxj

+ σ2
axi−bxj

, (6)

where σX =
√

Var(X).

4.3 Representative Node Selection

To estimate the cause-effect level of each feature node on label node in the
causal network G, we introduce a representative node selector that estimates
the regression coefficients [16] defined as follows:

Ls (ws, λ1, λ2) = ‖C− Sws‖22 + λ1 ‖ws‖1 + λ2w
T
s Φws, (7)

where ws = [ws1, . . . , wsK ] is a vector, referred as to causal weights, representing
the cause-effect level of each feature node in G. S ∈ RN×K is a sample matrix
from dataset D where its (i,m)-th entry is the m-th feature of i-th sample
sim and C ∈ RN is its corresponding vector of labels of the NSCLC subtypes.
Φ ∈ RK×K is a Laplacian matrix for the network G with the (i, j)-th element
defined by:

Φij =


1/degi, if i = j and degi 6= 0

−ξij/
√
degi degj , if Adj (xi, xj) ∈ E

0, otherwise,
(8)

where degi =
∑

Adj(xi,xk)∈E ξik and Adj (xi, xk) means that there exists a link
between the two nodes. The first term in Ls only seeks to minimize regression
errors by regrading each node (variable) individually. The last term considers
the coefficient and correlation of two neighboring variables having cause-effect
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relations. The tuning parameters λ1, λ2 control the amount of regularization for
sparsity and smoothness, respectively.

Now we are ready to evaluate the causal weights by minimizing the following
function using the sparse Laplacian shrinkage with the graphical Lasso estimator:

ŵs = argminLs
ws

(ws, λ1, λ2) = (C− Sws)
T
(C− Sws)+

λ1
∑
i

|wsi|+ λ2
∑

Adj(xi,xj)∈E

(
wsi√
degi

− wsj√
degj

)2

ξij .
(9)

To recognize NSCLC subtypes, we select the features whose causal weight ŵs is
greater than a threshold θ1 as well as the features whose important weight ŵ is
greater than a threshold θ2.

5 Experiments

In our experiments, all the competing models for NSCLC histologic subtypes
are evaluated over accuracy, sensitivity, specificity and area under the curve
(AUC) of receiver operating characteristic (ROC). The accuracy measures the
proportion of the correctly classified samples among the total tested samples.
The sensitivity and specificity show the ability to correctly identify samples
with ADC or with SCC. The AUC is employed to measure the quality of the
model’s predictions.

5.1 Comparison Results Against Other Competing Models

Three types of models for NSCLC classification have been taken into account
in this part, i.e., five conventional classifiers merely using radiomics (LR, KNN,
SVM, RF and GBDT), two deep models directly learning from raw CT images
(VGG16 and ResNet) and two fusion models that combine the radiomics and
deep features (ResNet_Fusion [2] and VGG16_Fusion [12]). Table. 2 shows the
accuracy, sensitivity, specificity and AUC performance. Our approach clearly
outperforms other NSCLC classification methods on both datasets with a more
stable performance with around 2% − 20% boost. This is mainly due to our
approach utilized a combination of deep and radiomics features to generate the
causal skeleton and subsequently take advantage of the causal-effect dependency
information. Also, it is obvious that the two fusion models that merge deep net-
work (for image features) and conventional models (for radiomics features) have
better performance than either of them. This might explain why our approach
achieves the best performance by a large margin with nearly 20% boost at most
compared with LR on I-NSCLC dataset where a large number of features exist
but only a few causal features are discovered, which are extremely significant for
NSCLC recognition.
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Table 2. Performance of different models in NSCLC Classification. The value in the
bracket shows the metric change taken our model as a baseline.

Dataset Method Metrics (%)

Accuracy Sensitivity Specificity AUC

P-NSCLC

LR 74.5(-9.1) 76.9(-7.7) 70.6(-12.6) 76.8(-8.9)
KNN 75.9(-7.7) 78.3(-6.3) 68.6(-14.6) 77.5(-8.2)
SVM 70.8(-12.8) 72.4(-12.2) 66.7(-16.5) 74.6(-11.1)
RF 74.2(-9.4) 76.3(-8.3) 68.8(-14.4) 76.1(-9.6)

GBDT 72.1(-11.5) 73.7(-10.9) 70.6(-12.6) 75.4(-10.3)
VGG16 76.5(-7.1) 80.3(-4.3) 65.9(-17.3) 78.3(-7.4)
ResNet 79.4(-4.2) 81.4(-3.2) 73.8(-9.4) 82.5(-3.2)

VGG16_Fusion 78.8(-4.8) 80.2(-4.4) 75.1(-8.1) 80.2(-5.5)
ResNet_Fusion 81.7(-1.9) 82.5(-2.1) 79.7(-3.5) 83.3(-2.4)

Ours 83.6 84.6 83.2 85.7

I-NSCLC

LR 86.9(-3.5) 70.1(-19.9) 91.3(+0.8) 90.0(-2.1)
KNN 86.1(-4.3) 84.2(-5.8) 86.4(-4.1) 86.3(-5.8)
SVM 85.2(-5.2) 82.7(-7.3) 86.0(-4.5) 87.5(-4.6)
RF 86.9(-3.5) 86.5(-3.5) 88.7(-1.8) 90.9(-1.2)

GBDT 88.7(-1.7) 73.9(-16.1) 92.3(+1.8) 90.0(-2.1)
VGG16 85.9(-4.5) 77.3(-12.7) 89.1(-1.4) 88.6(-3.5)
ResNet 87.1(-3.3) 73.9(-16.1) 92.3(+1.8) 90.6(-1.5)

VGG16_Fusion 88.9(-1.5) 72.2(-17.8) 96.5(+6.0) 90.1(-2.0)
ResNet_Fusion 87.7(-2.7) 78.9(-11.1) 90.1(-0.4) 90.9(-1.2)

Ours 90.4 90.0 90.5 92.1

5.2 Comparison Results Against Other Radiomics Feature Selection
Approaches

To further explore the role of constraint-based method on feature selection, we
compared the performance of four commonly used feature selection approaches
in radiomics (i.e., LASSO, RFE, PCA, MI) [2,23,27]. Since the features selected
by these approaches including ours can be employed in arbitrary classifiers. They
were evaluated in several individual classifiers. The results are reported in Fig. 4.
Overall, the constraint-based model outperforms other conventional approaches
as being capable to capture causal features. This is mainly because the other
approaches are greatly affected by outliers, including confounding factors and
hidden variables, which often appear in medical datasets. Note that other ap-
proaches mainly consider the correlation between features, while ignoring those
causal relationships. In addition, it can be seen that the samples generated by
our approach are more classifier-agnostic than those of other approaches, which
can be adopted by various classifiers. Theoretically, the time complexity of our
model is O(K3 + NK2) + O(N2RMr) + Odf , where the first value represents
the complexity of causal network construction, while the latter two values in-
dicate the complexity of radiomics feature selection and deep feature learning,
respectively, and thus it is affordable for practical usage in NSCLC recognition.
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Fig. 4. Accuracy and AUC comparison against other feature selection methods.

5.3 Ablation Study

In this section, we conducted ablation studies to measure the effectiveness of
the modules in our model. We evaluate the impact of the respective sizes of
deep and radiomics feature nodes in the network skeleton on causal relation
discovery and final classification performance. As shown in Fig. 5, it is clear
that the combination of both types of features can achieve better classification
performance than merely the usage of either of them. It is worth noting that
Md = 0 (resp. Mr = 0) represents that the skeleton is completely composed of
radiomics features (resp. deep features). There is an improvement in accuracy
when Md and Mr grow to 32 and 24 on I-NSCLC, respectively. Similarly, it can
be seen that the best setting on P-NSCLC isMd = 24 andMr = 24. In addition,
a large value ofMd andMr will bring about a very complicated network structure
with a great number of nodes (features), which results in a huge computational
complexity.
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Fig. 5. Accuracy comparison of different settings of our model.

6 Conclusion

In this paper, we present a constraint-based network approach where causal
Markov condition is incorporated to exploit the causal-effect dependencies among
a combination of deep and radiomics features for NSCLC recognition from CT
images. It is more reliable and flexible than existing methods on NSCLC sub-
type classification by explicitly discovering representative features under a causal
view. As for future work, we will further consider utilizing not only the selected
variables (nodes) but also their causal relations (links) as features to train our
model, and we will explore the applications of our approach on other types of
cancers.
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