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Abstract. Given a set of local datasets held by multiple parties, we
study the problem of learning marginals over the integrated dataset while
satisfying differential privacy for each local dataset. Different from ex-
isting works in the multi-party setting, our work allows the parties to
have different privacy preferences for their data, which is referred to as
the multi-party personalized differential privacy (PDP) problem. The
existing solutions to PDP problems in the centralized setting mostly
adopt sampling-based approaches. However, extending similar ideas to
the multi-party setting cannot satisfactorily solve our problem. On the
one hand, the data owned by multiple parties are usually not identically
distributed. Sampling-based approaches will incur a serious distortion in
the results. On the other hand, when the parties hold different attributes
of the same set of individuals, sampling at the tuple level cannot meet
parties’ personalized privacy requirements for different attributes.

To address the above problems, we first present a mixture-of-multinomials-
based marginal calculation approach, where the global marginals over
the stretched datasets are formalized as a multinomial mixture model.
As such, the global marginals over the original datasets can be recon-
structed based on the calculated model parameters with high accuracy.
We then propose a privacy budget segmentation method, which intro-
duces a privacy division composition strategy from the view of attributes
to make full use of each party’s privacy budget while meeting personal-
ized privacy requirements for different attributes. Extensive experiments
on real datasets demonstrate that our solution offers desirable data util-
ity.

Keywords: Personalized differential privacy - Multiple party - Marginal
release.
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1 Introduction

In many real-life applications, a mass of data are stored among multiple dis-
tributed parties [28]. There are two typical multi-party settings: horizontally
partitioned and vertically partitioned. In the former setting, it is assumed that all
the local databases have the same schema and that the parties possess different
individuals’ information. In the latter one, all of the local datasets are over the
same set of individuals, and each party observes a subset of attributes of the indi-
viduals. Calculating the marginals over such distributed data can lead to better
decision-making. However, since such data may contain highly sensitive personal
information, calculating the marginals in the multi-party setting needs to be con-
ducted in a way that no private information is revealed to other participating
entities or any other potential adversaries. In the multi-party setting, differential
privacy has been widely used in the distributed data analysis [3,8,23,30,32]. All
these above studies afford the same level of privacy protection for the individuals
of all the local datasets. However, it is common that the parties have different
expectations regarding their data’s acceptable level of privacy. That is, users in
different local datasets can have different privacy needs, where some users are ex-
tremely restrictive while others are relatively loose. As a real-world example, an
analyst may want to do medical research on a hospital’s data. This requires in-
tegrated data from different hospital departments. Some departments that treat
sensitive diseases may require a higher level of privacy needs than others. As
another practical example, medical researchers may want to study a potential
correlation between travel patterns and certain types of illnesses. This requires
integrated data from different sources, such as an airline reservation system and
a hospital database. As medical data is usually more sensitive, the hospital may
have a higher privacy need. In the above scenarios, the data analyst employing
differential privacy has limited options. Setting high-level global privacy to sat-
isfy all the local datasets will introduce a large amount of noise into the analysis
outputs, resulting in poor utility. While, setting a lower privacy level may force
the analyst to exclude the local datasets with strict privacy needs from analysis,
which may also significantly harm utility.

This leads to the multi-party personalized differential privacy (PDP) prob-
lem. To achieve PDP in the centralized setting, Jorgensen et al. [18] propose an
advanced method PE. Analogous to the exponential mechanism [21], for each
item in a marginal, PE calculates its noisy count by sampling from an output
set. Specifically, the data owner first calculates the item’s true count. Based on
this count, the owner can compute the score of the true count and the score of
the other noisy counts, and then sample one from these counts according to their
scores. However, such a method cannot be extended to the multi-party setting.
As PE requires knowing the true global count of each item. While in the multi-
party setting, to guarantee differential privacy for each local dataset, it is not al-
lowed for each party to learn the true global count. Other solutions [18,20] mostly
adopt sampling-based approaches. Such approaches capture the additional ran-
domness about the input data by employing non-uniform random sampling at
the tuple level to yield the precise level of privacy required by each individual.
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Unfortunately, extending similar ideas to the multi-party setting cannot sat-
isfactorily solve our problem. In the horizontally partitioned setting, the data
owned by multiple parties are usually not identically distributed. Then there will
be a serious distortion in the results calculated by sampling-based approaches,
i.e., the marginals calculated over the non-uniformly sampled datasets are not
equal to the marginals calculated over the original datasets. In the vertically
partitioned setting, the parties hold different attributes of the same individuals,
and the attributes in different local datasets have different privacy requirements.
Then, sampling will be “invalid” to adjust privacy preference because sampling
at the tuple level cannot meet the parties’ personalized privacy requirements for
different attributes.

1.1 Contributions

To address the above challenges, we first present a mixture-of-multinomials-
based marginal calculation approach for the horizontally partitioned setting. In
this approach, stretching [2] is used to adjust the parties’ different privacy prefer-
ences while avoiding the error caused by sampling, and the global marginals can
be formalized as a multinomial mixture model. Thus, it is possible first to calcu-
late marginals over the stretched datasets and then accurately reconstruct the
global marginals over the original datasets by calculating the model parameters.

For the vertically partitioned setting, we propose a privacy budget segmenta-
tion method, which can adjust privacy preferences from the view of the attribute.
This method elaborately divides the privacy budget of each party into multiple
parts, and let the parties assemble some different teams. Each team calculates
an intermediate result by consuming part of the privacy budget. Based on these
intermediate results, this method can reconstruct the marginal by employing
consistency post-processing. Using such a privacy division composition strategy,
this method can fully use each party’s privacy budget while satisfying personal-
ized privacy requirements for different attributes.

We conduct an extensive experimental study over several real datasets. The
experimental results suggest that our methods are practical to offer desirable
data utility.

2 Related work

There exist three kinds of most relevant works, i.e., personalized privacy in the
centralized setting, multi-party differential privacy, and local differential privacy.

In the centralized setting, personalized privacy allows the users have quite
different expectations regarding the acceptable level of privacy for their data.
A line of work, started by Xiao and Tao [36], introduce personalized privacy
for k-anonymity, and present a new generalization framework called personal-
ized anonymity. For differential privacy, Alaggan et al. [2] develop the privacy
notion called heterogeneous differential privacy, which considers differential pri-
vacy with non-uniform privacy guarantees. Following, Jorgensen et al. [18] pro-
pose the privacy definition called personalized differential privacy (PDP), where
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users specify a personal privacy requirement for their data, and introduce an ad-
vanced method PE for achieving PDP. Recently, Kotsogiannis et al. [20] study
the problem of privacy-preserving data sharing, wherein only a subset of the
records in a database is sensitive. To pursue higher data utility while satisfying
personalized differential privacy, Niu et al. [27] propose a utility-aware person-
alized Exponential mechanism. These approaches inspire us to initiate a new
approach to solving our problem. However, unlike the centralized setting, in the
distributed setting, each party is not allowed to reveal the sensitive personal
information that contained in their local datasets to other parties. Besides, the
data owned by multiple parties are usually not identically distributed, and the
attributes of the same individuals may have different privacy requirements. These
new challenges are exactly the focus of our work.

In the multi-party setting, differential privacy has been widely used in the
distributed data analysis [4,7,13,15,25]. Besides, there are some works [3,8,23,30,
32] for differentially privately data publishing in the multi-party setting. Using
the published integrated data, the marginals can also be calculated. Different
from our work, all these studies afford the same level of privacy protection for
the individuals of all the local datasets. In contrast, our work aims to satisfy
each party’s different privacy preferences.

In the distributed scenario, another kind of differential privacy exists, i.e.,
Local Differential Privacy (LDP). There exist some studies of personalized dif-
ferential privacy in the local setting (6,14, 16, 26, 29, 35, 37]. Both multi-party
differential privacy and LDP do not require a trusted data aggregate. However,
as discussed in [34], in LDP, each user independently perturbs their own input
before the aggregation on an untrusted server. This results in a large error of
O(V/N) in the output, where N denotes the number of users. While in multi-
party differential privacy, there is a complementary synergy between secure mul-
tiparty computation and differential privacy. Multi-party differential privacy can
maintain the same level of accuracy as in centralized differential privacy. The
final output has only an error of O(1).

3 Preliminaries

Differential privacy [11] is a recent privacy definition that provides a strong
privacy guarantee. Naturally, differential privacy is built upon the concept of
neighboring databases. Two databases D and D are neighbors if they differ on
at most one record. Differential privacy can be defined as follows.

Definition 1. A randomized algorithm ¢ achieves e-differential privacy, if for
any pair of neighboring databases D and D, and all O C Range(yp),

Pr(¢(D) € O) < ¢ x Pr (w(ﬁ) e o) , (1)

where the probability Pr (+) is taken over coin tosses of .
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A fundamental concept for achieving differential privacy is sensitivity [11].
Let F' be a function that maps a database into a fixed-size vector of real num-
bers. For all neighboring databases D and D, the sensitivity of F' is: S (F) =

w01+ (0)

, where ||-||; denotes the L; norm. For a function F’ whose
1

outputs are real, differential privacy can be achieved by the Laplace mecha-
nism [11]. This mechanism works by adding random noise to the true outputs.
The noise is drawn from a Laplace distribution with the probability density func-
tion p(z) = 5xe~ "I/ where the scale A = S (F) /e is determined by both the
function’s sensitivity S (F') and the privacy budget e.

4 Problem Formulation

4.1 System and Threat Models

Following the common convention [5,19,30] in the fields of privacy, we consider
a semi-trusted curator in our setting. With the assistance of the curator, K
parties calculate the marginals over the integrated dataset collaboratively. Both
the parties and the curator are semi-trusted (i.e., “honest-but-curious”). That is,
the parties and the curator will correctly follow the designed protocols, but act
in a “curious” fashion that they may infer private information other than what
they are allowed to learn (e.g., sensitive information about the tuples in the local
datasets). Our threat model also considers collusion attacks. In particular, there
exist two kinds of collusion attacks. One kind is collusion attacks among the
parties, and the other is collusion attacks between some parties and the curator.

In our problem, there is a complementary synergy between secure multiparty
computation and differential privacy. Together they can prevent attackers from
inferring sensitive information about the input local datasets using either in-
termediate results or outputs. Certainly, this requires an additional assumption
of all parties and the curator being computationally bounded in the protocol.
Therefore, in our privacy model, the overall scheme actually satisfies computa-
tional differential privacy [22,34].

4.2 Problem Definition

In the problem of multi-party marginal calculation under personalized differential
privacy, there are K parties (i.e., data owners), each of which P, (1 < k <
K) holds a local dataset Dy and specifies a privacy budget €. The attributes
contained in Dy can be either numerical or categorical. Over the local datasets,
the K parties would like to jointly calculate the marginal of a given attribute
set X, while meeting multi-party personalized differential privacy. Multi-party
personalized differential privacy is a kind of computational differential privacy,
defined below.

Definition 2. There are K parties. All parties are assumed to be computation-
ally bounded, and each of them specifies a privacy budget €. A randomized
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algorithm ¢ achieves multi-party personalized differential privacy, if the com-
puting is secure according to secure multiparty computation, and for any two

sets of datasets {D1,...,Dg} and {Dl,...,DK}, where there exists a k in

{1,2,--- ,K}, Dy and Dy, are ‘neighbors (| Dy, @ Dy| = 1), and for any other
K #kin{1,2,...,K}, Dy = Dy, and for all O C Range(p),

Pr (Sﬁ(UkKl Dy) € o) < ek xPr (w(UkKl Di)e o) .

There are two typical multi-party settings: horizontally partitioned setting
and vertically partitioned setting. In the former setting, it is assumed that all the
local datasets have the same schema (i.e., attribute set) A = {4;,..., A, } and
that a single individual’s information is exclusively possessed by a single party,
and the given attribute set X C A. In the latter one, all of the local datasets
are over the same set of individuals that are identified by a common identifier
attribute. A; denotes the set of attributes observed by P;. It is assumed that, for
any two local datasets D; and D;, A; NA; = ). The attribute set X = Uszl X
and X, C Ag. In the vertically partitioned setting, it is common to assume
that different parties share common identifiers of the users and hold mutually
exclusive sets of attributes [17,23,24]. If the parties have overlapping attributes,
they can send their data schemas to the curator to constructs exclusive sets
of attributes as a preprocessing step of our solution. Since data schemas are
considered public information, such a process does not lead to privacy breaches.

5 Baseline Solutions and Limitations

5.1 Horizontally Partitioned Setting

To solve the problem in the horizontally partitioned setting, there exist three
kinds of baseline solutions. Firstly, a straightforward method lets each party
add noise of different levels to the local marginals before sharing them with
the curator. However, this will lead to the global marginals containing multiple
noises, making the results useless (as discussed in Section 7.2). Secondly, in
the centralized setting, Jorgensen et al. [18] propose an advanced method PE
to achieve PDP. Analogous to the exponential mechanism [21], PE calculates
its noisy count by sampling from an output set for each item in a marginal.
However, such a method cannot be extended to the multi-party setting. As
PE requires knowing the true global count of each item. While in the multi-
party setting, to guarantee differential privacy for each local dataset, it is not
allowed for each party to learn the true global count. Thirdly, a sampling-based
solution can be proposed. Specifically, each party Pj first takes sampling on the
tuples in Dy with the probability pr = LAI to obtain a sampled dataset

efmax —
Dy, where epax = max{ej,9,...,6x}. Based on these sampled datasets, the
curator and the parties can calculate a noisy marginal of X' using €,,, as the
privacy parameter. However, the data owned by multiple parties are usually not
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identically distributed. Sampling with different probabilities on multiple datasets
will seriously distort the results calculated in the sampling-based approaches.

Ezample 1. There exist three parties Py, P>, P3. Each P, (1 < k < K) holds a
local medical dataset Dy, and specifies a privacy budget €. Let the size of each
local dataset be |Di| = |D3| = |D3| = 100, and ¢; = 0.1, = 0.3,e3 = 0.5.
Each local dataset contains some cancer patients, and the number of patients
is 50, 30, 20, respectively. To calculate the probability of the patients over the
global dataset Ui:l D), while satisfying personalized differential privacy for each
local dataset, Py, P», P5 first take sampling on the tuples in their local dataset
1

with the probability p; = 22:2:1 ~ 0.2,ps =~ 0.6,p3 = 1 to obtaining sam-

pled datasets 13/1,1/52,13;,. Based on these sampled datasets, the curator and
the parties can calculate a probability of the patients, approximately equal to

0.2x5040.6x304+1x20  _ ~
0221007062100 100 = 180 0.27. However, the actual probability of the pa-

tients is % = ;)88 0.33. Thus, the result calculated on the sampled

data set is far from the result calculated on the original data set.

5.2 Vertically Partitioned Setting

In the vertically partitioned setting, each party Py holds a local dataset Dy with a
set of attributes Ay, and keeps a privacy budget e, where k € {1,2,..., K}. For
a given attribute set X', where X = Ule X and X}, is from Dy, i.e., X C A,
the curator and the parties want to calculate its marginal under personalized
differential privacy. The intuitive idea is that, following the methods used in
the centralized setting, each party Pk first takes sampling on the tuple level
in Dk with the probability p, = eﬁmax to get a sampled dataset Dy, where
Emax = max{ex|l <k < K}. Then the curator and the parties calculate the

marginal distribution of X over the integrated sampled dataset D<1,€K=1 bvk with
privacy budget e,.x, where 1 denotes the join of two datasets. However, such a
sampling method cannot meet the personalized privacy preference of attributes
in different local datasets. It would also lead to the sampled global dataset
being too sparse, which will reduce the utility of the calculated marginal dis-
tribution. The reason lies in that all the local datasets are over the same set
of individuals in the vertically partitioned setting. Employing sampling at the
tuple level on multiple datasets is equivalent to sampling individuals with the
same small probability. Specifically, for any individual with ID = z, we have

Pr (x el B;) = Hle k. With the increase of K, Hle pi becomes smaller

and Mfle bvk becomes sparser.

By careful analysis, we learn that the main cause of the issue is that, in the
vertically partitioned setting, personalized privacy requirements are for different
attributes, while sampling is working at the tuple level. Therefore, to guarantee
personalized differential privacy for each local dataset while enjoying reduced
noise in the vertically partitioned setting, we need to propose a privacy adjusting
method from the view of the attribute.
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6 Our Solution

This section proposes the mixture-of-multinomials-based approach for the hor-
izontally partitioned setting and the privacy budget segmentation method for
the vertically partitioned setting. Note that, in the multi-party setting, all the
communications between the curator and parties must be secure to guarantee
computational differential privacy for each local dataset. We will first focus on
the noisy marginals computation methods and then describe their implementa-
tion details under encryption.

6.1 Horizontally Partitioned Setting

In this setting, we propose a mixture of multinomials based method. In this
method, the global marginals of X can be seen as a mixture of multinomial
distributions and calculated by maximizing a posterior. The details are as follows.

1. Calculating the local counts. Given the attribute set X, for each X = z;,
where i € {1,2,...,1} and [ denotes the size of the domain of X, each party
Py calculates its local count c¢;; over dataset Dj and multiplies the count by
a scaling factor s, = £, i.e., ¢ix = c;k - 5. This can be seen as performing

statistics on a stretched dataset E; In the stretched dataset, the count of each
tuple is multiplied by sj. Here stretching is used to adjust the parties’ different
privacy preferences to satisfy personalized differential privacy, while avoiding the
error caused by sampling.

2. Construction of the likelihood function. Based on the local counts, the parties
and the curator can obtain the number ¢; of the tuples with X' = x; for each ¢ €
{1,2,...,1} that contained in the stretched datasets, i.e., ¢; = Zszl Cir- As the

distribution of X’ in each local stretched dataset Dy, (referred to as Pr (X |ka))
follows a multinomial distribution with parameters {u1g, fiok, - - -, fuk}, where
Wik = Pr (:EJB;) And the prior probability of each multinomial element is

ap =Pr (lf)vk) = (g |Dk|)/2§(:1(sj -|D;|). Thus the curator can calculate the
probability £ = Hi:l (Pr (xl))a, where Pr (z;) = Zle Pr (xz\lf)vk) -Pr (m) =

25:1 Wik - ag. L can be referred to as the likelihood function. The corresponding
logarithmic likelihood function is:

l

g (0) = tog ([T_, (Pr(eo)™ ) = X, 5+ tow (2, - )

Note that, 22:1 wir = 1 and Zle ap = 1. Thus, it can be seen as a constrained
maximization problem.
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3. Calculation of model parameters ;. Given the local datasets Dy and the
scaled factors si (where 1 < k < K), a = (sg - ‘DH)/Zf:l(SJ -|D;|) can be
seen as a constant. And p,, can be calculated by using the criterion of maximum
likelihood estimation. We introduce Lagrange multipliers A (1 < k < K) to en-
force the normalization constraint and then reduce the constrained maximization
problem to the unconstrained maximization problem:

L= Ziﬂ & - log (Z; pik - ak) - Zszl (Ak (Z;l ik = 1))

4. Recalculation of the marginal of X. The local marginal of X in the stretched
dataset b\; is equal to that in the original dataset Dy, i.e., Pr (z;|Dy) = Pr (xﬁb}) =
wir- Based on the calculated g, the curator can recalculate the marginal dis-
tribution of X over the original datasets:

].:T(IE\Z) _ Zszl Hik * |Dk| (2)

K
Zk=1 |Dk|

6.2 Vertically Partitioned Setting

In the vertically partitioned setting, we propose a privacy budget segmentation
method, which is a privacy adjusting method from the view of the attribute.
The method mainly consists of the following 4 steps.

1. We first sort the parties Py, P, ..., Px according to their privacy budget.
The sorted result can be denoted as Ps,, Ps,, ..., Ps,, where for any 1 <i <
Jj < K, e, <es,. Note that, e, = min{e1,e2,...,ex}.

2. Foreach k € {1,2,..., K}, the party Ps, splits ¢, into €5, —e,,_, and &5, _,,
where ¢, = 0.

3. For each i € {1,2,..., K}, the parties Ps,, Ps,,..., Ps, calculate the noisy
marginal distribution of Uf:l X, under (ssi - Esifl)—differential privacy.

4. The curator takes consistency post-processing on the above calculated marginal
distributions to obtain a more accurate marginal distribution of Ule X

Using the above privacy division composition strategy, such a method can make
full use of the privacy budget of each party while satisfying personalized privacy
requirements for different attributes according to the composition property of
differential privacy. In the above process, the core is Step 4.

For ease of understanding, let us first consider two-party setting. There exist
two parties P; and P», who hold D; with attribute set A; and Dy with attribute
set Ao, respectively. P, and P, want to calculate the marginal distribution of
(X1, X2) while satisfying e;-differential privacy for D; and eo-differential pri-
vacy for Dy, where X; € A; and Xy, € Ay, the domain of X; and X, are
assumed to be both {0,1}, and £; < e5. In addition, in order to show the ad-
vantages of the proposed method more intuitively, we choose Gaussian noise as
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the added noise. This is because Gaussian distribution satisfies additivity. In
Gaussian mechanism, the function satisfies (g, ¢)-differential privacy, if it injects
a Gaussian noise with the mean p = 0 and standard deviation o > ¢s/e into the
output, where ¢* > 21In(1.25/4), and s denotes the sensitivity of the function
and ¢ € (0,1) denotes the relaxation factor.

At the beginning, we split 5 into €; and €3 — 1. The parties Py, P, and
the curator calculate the marginal distribution Pr (X3, Xs) over D; U Dy and
inject Gaussian noises with ¢ = ¢s/e; into each item of Pr (X7, X5), the noisy
results can be denoted as pjy, Plg, Pb1s P11, respectively. Given the calculated
Dbo> Plos Poi» Phi, the curator can calculate Pr(Xy = 0) = py, + plo = pj and
Pr(Xs =1) = p{; + pi; = p}. Besides, the party P, calculates the marginal
distribution Pr(X3) over Dy and injects Gaussian noise with o = ¢s/(e2 — €1)
into each item of Pr (X2). The noisy results are denoted as p{j, p7, respectively.
Thus, we have that, for the attribute X5, we get two noisy marginals. In reality,
there can only exist one marginal distribution of X5. We recalculate the marginal
distribution of X5 by employing consistency post-processing and learn that:

(cs/(e2 —e1))* - pp +2(es/e)” -pf _ (es/(ea—e1))*-ph +2(es/e1)” - pf

T 2(es/e) 4 (es)(ea—e)® T 2(es/er)’ + (es)(ea — 1))

As po+p1 =1, (o, p1) can be an estimated marginal of X5. Further more, based
on the reconstructed of Pr(X3), i.e., pg and p;, we can reconstruct Pr(Xy, X5):

/ / / /

~ - Poo ~ - Pio -~ -~ Po1 =~ .
Poo = Po - gvplo =Do - #,Pm =DP1- $>P11 =p1- #
Po Py V41 by

The above conclusions can be extended to the multi-party setting , where there
exist K parties, where K > 3. Specifically, after Step 3, the curator can ob-

tain noisy marginals, Pr (Ufi L X, |l Dsj), Pr (Ufi o X, ol Dsj), .

Pr (X, |Ds, ). Based on each of these marginals, the curator can calculate:

Sy Pr(Uf:kXSj|m§;kDSj), k<i<K
X, X

Wk = Si—1 (3)
K .
Pr (Uj:k Xs_j |D<]§<:k Ds]') 5 i=k
i—1 .
. 9] , k<i<K
Bri = Il ’ Xej ‘= (4)
1) Z = ]{7

At this time, for each i € {1,..., K}, the curator gets multiple noisy marginal

distributions of attribute set Uj(:z Xs;, 1.e., wig, ..., wy. Based on these results,
the curator can calculate:

(UL e) - (S i) (Sam) O
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where o, = ¢s/(er — ex—1). Furthermore, for each k£ € {1,2, ..., K — 1}, the
curator can iteratively calculate:

K K Tk Tk
Pr ( i=k Xsi> =P <Ui—k+1 Xsi) Pr (Ul—k XSi) /; Pr <Ui—k X'Si)'
Sk

—

Pr (Ufil Xs,i) is the final noisy marginal of the attribute set X' = Ufil X,

6.3 Implementation Details

We first consider the problem in the horizontally partitioned setting. After
stretching, the parties and the curator privately calculate the marginal distri-
bution of a given attribute set X C A over the stretched datasets by using the
threshold Homomorphic encryption [9]. In particular, for each X = z;, where
x; € 2x and 1 < i < |f2x], the parties first jointly generate a Laplace noise
n; with scale A = ﬁ by employing the Distributed Laplace Noise Generation
(DLNG) method proposed in [31]. DLNG can allow the parties jointly generate
a Laplace noise 7; while preventing any parties and the curator from learning
the value of 7; and facilitate subsequent calculation. Specifically, DLNG ran-
domly divides 7; into K parts and shared among the parties, i.e., ; = Zszl Niks
and Py,..., Pk hold n;1,...,m;k, respectively. In [31], it has be proven that the
randomness of each 7;; is greater than 7; and the privacy 7; cannot be violated
even when there exist some (even K — 1) colluding parties. Then, each party
Py, locally counts the number of tuples that have X = x;, which can be referred
to as c;r. Next, P cal(:ll\ljaites ¢k + 1k and sends it to the curator. After that,
the curator calculates ¢ (z;) = Eiil (Cir +nix) = Eszl Cik + ;. Based on the
above results, the curator can construct the likelihood function and solve the
model parameters, and then calculate the noisy marginal distribution of X over
the original datasets.

Calculating the marginal distribution in the vertically partitioned setting is
rather complicated because the attributes are in different local datasets. We
need some other security protocols to solve the problem, e.g., the secure scalar
product protocol [12]. In particular, after privacy budget sort and segmenta-
tion, for each i € {1,2,..., K}, the parties Ps,,..., Ps, jointly calculate the
marginal distribution of X = UkK:Z- X, over their local datasets, while satisfying
(ssi — ssi_l)—diﬁerential privacy, where X, C A;,.

At the beginning, each party Ps, first locally generates a vector v, =
{vskl, . ’U5k|Ds,€\} with length |Ds, | for each X;, = z;,, where |Dy, | denotes
the size of the local dataset D, . Note that, all of the local datasets have the same
size, which can be referred to as |D|. Each element v, ; in vs, is 1 if X, = x5, in
the t'" tuple of Dy, , otherwise Vs,; = 0. Then, the parties calculate the number
of tuples that have Uszl Xs, = (s, ..., Ts,) by computing lezll H,[f:l Vsyj I
a secure way, and divide the result into K parts r1,...,7x, and share among
the parties. Next, by employing DLNG, the parties generate a Laplace noise
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2

s; " €si1

n with scale A = - , and divide n into K parts 7;1,...,7;x and shared
among the parties. Af/ter that, each party sends r1 + 7;1 to the curator, and the
curator calculates ¢ (z) = Zszl (rg (z) +mg) = Zle ri () +n . Finally, based

on ¢ (z)’s, the curator can calculate:

Pr(z) = c(z)/>

e

c(xh).

' €Ny

6.4 Privacy Analysis

Combining secure multiparty computation with differential privacy, we can guar-
antee that both the mixture-of-multinomials-based method and the privacy bud-
get segmentation method satisfy e, —multi-party personalized differential privacy
for each local dataset Dy,.

7 Experiments

7.1 Experimental Settings

Datasets . In our experiments, we use two real datasets, NLTCS' and BR2000*.
NLTCS contains records of 21,574 individuals who participated in the National
Long Term Care Survey. BR2000 consists of 38,000 census records collected from
Brazil in the year 2000. Each of the two datasets contains both continuous and
categorical attributes. For each continuous attribute, we discretize its domain
into a fixed number b of equi-width ranges (we use d = 16).

To simulate the horizontally partitioned setting, we employ two categories of
sampling methods (i.e., uniform sampling and non-uniform sampling) on the in-
put dataset to obtain multiple local datasets that follow identically distributed,
and that not. In addition, the size of each local dataset can be flexibly set. To
simulate the vertically partitioned setting, we vertically partition the attributes
among different parties randomly. We observe similar trends under different ran-
dom partitionings.

Competitors . We first demonstrate the utility of the mixture-of-multinomials-
based approach (denoted MM) for the horizontally partitioned setting by com-
paring it with four main approaches:

— Independent. The parties first add different noise levels to the local marginals
independently according to their privacy preferences before sharing it with the
curator. Then the curator aggregates these noisy local marginals together.

— Minimum (MH). The parties and the curator jointly calculate marginals
over the original datasets using €,,,;, as the privacy parameter, where €,,;, =
min {ex|1 < k < K} and ¢, denotes the privacy preference specified by P.

T http://lib.stat.cmu.edu/.
* https://international.ipums.org.
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— Sampling-based method (SAH). It works by first sampling Dy, with prob-
ability ef:i% and then calculating marginals over the sampled datasets using
Emaz 8s the privacy parameter, where €,,,, = max {ex|1 < k < K}.

— Stretching-based method (STH). It works by first multiplying the value
of each tuple in Dy by a scaling factor e:i - and then calculating over the
stretched datasets using €,,,4, as the privacy parameter.

— Product. In the Product method, the attributes are assumed to be inde-
pendent and the k-way marginal is estimated with the product of k 1-way

marginals.

Then, we evaluate the utility of the privacy budget segmentation method (de-
noted PBS) for the vertically partitioned setting by comparing it with Minimum
and sampling-based methods for the vertically partitioned setting (denoted as
MYV and SAV, respectively).

Metrics . To measure the accuracy of a noisy marginal obtained by each method,
we calculate the total variation distance [33] between the noisy marginal and its
noise-free version, i.e., half of the L distance between the two distributions. For
each task, we repeat the experiment 100 times and report the average.

Parameters . There are three key parameters involved in our solutions:

— Privacy preferences. Following the setting in [18], we provide three kinds
of privacy preferences for the parties i.e., €min, Emid, and €mq,. In particular,
Emaz 1S always set to be 1, g,,;, varies from 0.1 to 0.5, and &,,;4 is set to be
Emid = EmintEmaz

— Number of parties. We let the number of parties vary from 2 to 10. Accord-
ing to the privacy preferences, the parties can be divided into three groups
that with privacy preferences €,,in, €mid, and €pmqz, respectively.

— Fraction of users. In the horizontally partitioned setting, the fraction of
users that choose different privacy preferences will affect the utility of our
solutions. We denote the fraction of each group to be fiin, fmid, and fmaz-
The fraction can be set based on findings from several studies regarding user
privacy attitudes (e.g., [1]). In particular, fi,.q is always set to be 0.4, frin
varies from 0.1 to 0.5, and fi,4z is set to be frae =1 — finin + frnid-

Computing environment setup . All methods were implemented in Python. All
methods were evaluated in a distributed environment using a cluster of nodes,
which are connected by a 100Mbit network. Each node with an Intel Core i5-
8300H processor and 16 GB of memory acts as either a curator or a party. The
number of curator is 1, and the number of parties is up to 10.

7.2 Utility of Methods in the Horizontally Partitioned Setting

We first evaluate the impact of differences between private preferences by vary-
ing the value of the minimum privacy preference €,,;,, where €,,,, = 1 and
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Fig. 1: Utility of methods in the horizontally partitioned setting.

Emid = W Besides, the fraction of the group with privacy preference
Emam/smid/gmin is set to be fmam = 037 fmid = 047 fmzn = 033 respeCtiveIY'
Fig. 1 shows the effects of differences between private preferences on each
approach over NLTCS and BR2000, where the marginals are 3-way marginals.
Figs. 1(a)-1(b) show the total variation distance of each method when the local
datasets follow identically distributed, and Figs. 1(c)-1(d) present the total vari-
ation distance of of each approach when the local datasets follow non-identically
distributed. MM can always obtain the utility better than the others in all ex-
periments. In particular, MM can obtain the utility better than Independent
and Product. This is because Independent adds multiple shares of noise into the
global marginals, reducing the utility of the results. In Product, it is assumed
that the attributes are independent, this will incur a lot of precision loss. When
the local datasets follow identically distributed, STH can obtain the utility as
well as MM. But when the local datasets do not follow identically distributed,
MM can obtain the utility better than STH. The reason lies in that, when the
local datasets do not follow identically distributed, the calculated results in STH
will be distorted. While by employing the Expectation-Maximization (EM) al-
gorithm [10], MM can reconstruct the marginal distributions without distortion.
Note that, £,,4 is fixed at 1, €,,59 is set to be e = W As emin
increases, the difference between €,,44, €mid, and €4, gradually narrows. The
performance of MM, STH, and MH is all progressively close to that of the strat-
egy that injects noise into the marginals according to a unified privacy budget.
However, with the increase in the difference between private preferences, the
superiority of the MM becomes more apparent, and MM can always obtain the
utility better than the others. This is because, as the difference between private
preferences increases, STH will stretch the data in the datasets that with the
privacy preference €,,;, by a smaller scaling factor. This will incur more dis-
tortion. And M H sets high-level global privacy to satisfy all the local datasets.
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Fig. 2: Utility of methods in the vertically partitioned setting.

This will introduce a large amount of noise into the marginals, resulting in poor
utility.

We also evaluate the impact of group fractions by varying the fraction f,:n
of the local dataset, and find that, MM can obtain the utility better than the
others, and with the increase in f,,;,, the superiority of the MM becomes more
apparent. Due to the space limitation, we do not show the experiments.

7.3 Utility of Methods in the Vertically Partitioned Setting

In the vertically partitioned setting, we compare PBS with MV and SAV. We
evaluate the impact of differences between private preferences by varying the
value of the minimum privacy preference €,,;,, where €4, = 1 and €,,59 =
W Note that, all of the local datasets are over the same set of individuals,
we need not consider the impact of group fractions in the vertically partitioned
setting. In addition, to conveniently evaluate the performance of each method,
in this experiment, we select one attribute from each local dataset and calculate
3-way marginals. Generally, for a given attribute set X, if there exist multiple
attributes contained in the local dataset Dy, denoted XF,... ,Xlk‘, then these
attributes can be treated as a new attribute, whose domain is (ZX{c X e X .QXL;C,

where {2y denotes the domain of one attribute XF.

Fig. 2 shows the effects of differences between private preferences on each ap-
proach over NLTCS and BR2000. In all experiments, PBS can obtain the utility
better than the others. The reason lies in that, by the privacy budget segmenta-
tion and composition, the PBS method can make full use of the privacy budget
of each party. In addition, it is interesting that the sapling-based method SAV
performs even worse than the Minimum method MV. This confirms our analysis
in Section 5.2, i.e., the sampling-based method leads to a sparse sampled global
dataset, which will reduce the utility of the calculated marginal distributions.

8 Conclusions

In this paper, we studied the problem of multi-party marginal distribution cal-
culation under personalized differential privacy. We proposed the mixture-of-
multinomials-based approach for the horizontally partitioned setting and the
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privacy budget segmentation method for the vertically partitioned setting. We
formally proved that these approaches guarantee multi-party personalized dif-
ferential privacy for each local dataset. Extensive experiments on real datasets
demonstrated that our solution offers high data utility.
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