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Abstract. Multi-behavior recommendation leverages auxiliary behav-
iors (e.g., view, add-to-cart) to improve the prediction for target be-
haviors (e.g., buy). Most existing works are built upon the assumption
that all the auxiliary behaviors are positively correlated with target
behaviors. However, we empirically find that such an assumption may
not hold in real-world datasets. In fact, some auxiliary feedback is too
noisy to be helpful, and it is necessary to restrict its influence for bet-
ter performance. To this end, in this paper we propose a Bi-directional
Contrastive Distillation (BCD) model for multi-behavior recommenda-
tion, aiming to distill valuable knowledge (about user preference) from
the interplay of multiple user behaviors. Specifically, we design a for-
ward distillation to distill the knowledge from auxiliary behaviors to
help model target behaviors, and then a backward distillation to distill
the knowledge from target behaviors to enhance the modelling of auxil-
iary behaviors. Through this circular learning, we can better extract the
common knowledge from multiple user behaviors, where noisy auxiliary
behaviors will not be involved. The experimental results on two real-
world datasets show that our approach outperforms other counterparts
in accuracy.

Keywords: recommender system · contrastive distillation · multi-behavior
recommender.

1 Introduction

Modern applications heavily rely on recommender systems as an essential tool to
overcome the issue of information overload and improve user experience and sat-
isfaction. Conventional recommenders aim to learn users preference from their
target behaviors on items (e.g., ‘buy’ in e-commerce, ‘watch’ in movies). Re-
cently, it has become a hot research topic to involve auxiliary behaviors of users
(e.g., ‘view’ and ‘add-to-cart’ in e-commerce) for performance enhancement. The
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basic assumption is that auxiliary behaviors are positively correlated with target
ones, and can directly reveal user interest to some extent. Hence, most existing
research takes into account all the auxiliary behaviors [1, 17, 20], and implicitly
works on the same conversion paths among user behaviors [3,8]. Take e-commerce
as an example, the general conversion paths are ‘view→ add-to-cart→ buy’ and
‘view → buy’. That is, users generally browse products on the website or apps,
and then add the products of interest into the shopping cart (and then purchase)
or directly purchase them without add-to-cart. For simplicity, hereafter we use
‘cart’ to represent the ‘add-to-cart’ behavior.

In this paper, we revisit the above assumption on two real-world datasets
(Taobao3, Beibei4), and find that the assumption may not hold in real appli-
cations. Specifically, we conduct data analysis by applying a funnel model on
the two conversion paths. The results show that conversion paths on Beibei are
valid while those on Taobao are less helpful: ‘cart’ is too noisy to be involved
in a conversion path. By removing ‘cart’ from ‘view’ data, we obtain a refined
conversion path that reaches higher conversion rate than the original one. As a
conclusion, not all auxiliary behaviors are positively correlated with target be-
haviors and some noisy behaviors should be removed from existing conversion
paths for better conversion rates.

Therefore, we propose a novel Bi-directional Contrastive Distillation (BCD)
model for multi-behavior recommendation, aiming to distill valuable knowledge
(about user preference) from the refined conversion paths. Specifically, we de-
sign a forward distillation to learn the knowledge from auxiliary feedback to help
model target behaviors, and a backward distillation to learn the knowledge from
target behaviors to enhance auxiliary ones. In this way, we can highlight the com-
mon knowledge (about user preference) from both kinds of user behaviors, and
thus improve recommendation performance. To sum up, the main contributions
of this paper are summarized as follows:
– We conduct a thorough data analysis on two real datasets and find that the

previous assumption may not hold, since some auxiliary behaviors are too
noisy to be involved in the conversion paths.

– We propose a novel bi-directional contrastive distillation model to distill and
transfer the knowledge from one kind of user behaviors to help model the
other kind of user behaviors, whereby better representations of users and
items can be learned.

– We conduct extensive experiments on two real-world datasets, and the ex-
perimental results demonstrate the effectiveness of our proposed approach
in comparison with five competing methods.

2 Data Analysis

In this section, we will revisit the underlying assumption of existing multi-
behavior recommenders based on two real-world datasets, that is, all auxiliary
3 https://github.com/chenchongthu/GHCF
4 https://tianchi.aliyun.com/dataset/dataDetail?dataId=649

https://github.com/chenchongthu/GHCF
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
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Fig. 1: The distribution of different kinds of user behaviors on the Beibei and Taobao
datasets.

user behaviors are positively correlated with target behaviors. The two datasets
are Taobao and Beibei. Beibei is a vertical e-commerce platform in China spe-
cializing in maternal and infant products, while Taobao is one of China’s largest
integrated e-commerce platforms. Both datasets consist of three different types
of user behaviors: view, cart (i.e., add-to-cart) and buy. The distributions of user
behaviors are given in Figure 1.

For the ease of discussion, we first introduce a number of notations to describe
the datasets. Let U = {u1, u2, . . . , um} and V = {v1, v2, . . . , vn} be the set of
users and items, where m and n are the number of users and items, respectively.
Let B = {b1, b2, . . . , bk} be the set of behavior types, where k is the number
of behavior types and bk is the k-th type of user behaviors. Each user may
have multiple interactions with a same item, resulting in multiple types of user
behaviors. Let Vu,bk be the set of items that user u has interacted with by
behavior type bk. In our experiments, we have three different sets of items for
user u, namely Vu,view, Vu,cart, Vu,buy.

From Figure 1, we can observe that the relations of user behaviors follow
Vu,buy ⊂ Vu,cart ⊂ Vu,view in Beibei, indicating that all the purchased items
were added to the shopping cart and browsed by the user in the first place.
In this respect, all the auxiliary behaviors are positively correlated with target
behaviors. In other words, the assumption in question holds in Beibei. However,
this assumption does not hold in Taobao. Specifically, although the area of ‘cart’
and ‘buy’ has some overlaps, the ratio is less than 40%. That is, more than
60% Taobao users have only two kinds of behaviors (rather than all of them)
on items, either ‘view/cart’ or ‘view/buy’. Users in Taobao have only purchased
a small portion of products added to their carts. Hence, we may conclude that
‘cart’ is likely to be a noisy behavior since ‘cart’ in most cases does not imply
‘buy’. As a general e-commerce platform, Taobao covers such a large variety of
product categories that users may not have a strong shopping intent when they
go window-shopping online (maybe for exploring interesting products). In the
contrast, users likely bring a strong intent to meet their needs when visiting a
specialized platform like Beibei.
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(a)  Beibei

(b)  Taobao

Fig. 2: Funnel model diagram of different conversion paths on the Beibei dataset and
Taobao dataset.

To further validate our inference, we apply a funnel model [11] to study
the conversion rate of two general conversion paths (i.e., ‘view→cart→buy’
and ‘view→buy’). The purchase funnel is a consumer-focused marketing model
that depicts the hypothetical customer journey toward buying a product or ser-
vice [11]. Since ‘cart’ is possibly noisy in Taobao, we devise a refined conversion
path by considering the products viewed but not added to cart (and finally pur-
chased), denoted by ‘(view-cart)→buy’. The conversion rate can be calculated
as follows:

rb1→b2 =
1

|U |
∑
u

|Vu,b1 ∩ Vu,b2 |
|Vu,b1 |

rb1→b2→b3 = rb1→b2 × rb2→b3

where rb1→b2 denotes the conversion rate from behavior b1 to b2, and rb1→b2→b3

represents the conversion rate from behavior b1 to behavior b3 through behavior
b2. | · | is the cardinality of a given set. The experimental results on Beibei and
Taobao are illustrated in Figure 2.

Specifically, in Figure 2(a) the conversion rates from both paths ( ‘view→cart→buy’
and ‘view→buy’) are very close, indicating that users in Beibei have similar pur-
chase pattern, i.e., either immediately buy products after browsing or firstly add
products to cart and then purchase. In fact, there is 40% conversion from ‘cart’
to ‘buy’. In Figure 2(b), the conversion rate from ‘view→cart→buy’ is extremely
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small in comparison with other conversion paths. It shows that users in Taobao
only purchase a small portion of products added to cart, and the conversion rate
from ‘cart’ to ‘buy’ is around 14.5%. By removing ‘cart’ from ‘view’, as illus-
trated in Figure 3, the conversion rate of path ‘(view-cart)→buy’ is close to that
of path ‘view→buy’, which is much greater than that of path ‘view→cart→buy’,
implying that ‘cart’ is quite a noisy behavior. This conclusion will be further
validated by our experiments in Section 4.6.

view

cart buy
converse

Fig. 3: Illustration of our refined conversion path. The white part of the view indicates
that we have removed the items that the user added to the cart from the collection of
items she viewed.

To sum up, we find that not all auxiliary behaviors are valuable in providing
knowledge about user preference. Their usefulness is domain dependent, that is,
a same auxiliary behavior (e.g., ‘cart’) is helpful in one dataset but maybe noisy
in another one. The potential noise involved in auxiliary behaviors motivates us
to design a bi-directional contrastive learning for common knowledge distillation
from multiple user behaviors.

3 Our Proposed Model

The overall architecture of our proposed BCD model is illustrated in Figure 4.
It contains three main components: graph convolutional network (GCN), Bi-
directional Contrastive Distillation (BCD) and prediction modules. Specifically,
the GCN module is to learn representations of users, items and behaviors from
the graph structure of user-item interactions by each kind of behaviors. The BCD
module further refines those representations by applying contrastive learning,
i.e., to increase the similarity among the same kind of behaviors and highlight
the difference among different kinds of behaviors. Then, a forward distillation
process is used to distill valuable knowledge (about user preference) from auxil-
iary to target behaviors. After that, a backward distillation is designed to distill
knowledge from target to auxiliary behaviors, to strength the common knowledge
among user behaviors and to enhance the task of auxiliary behavior prediction.
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Fig. 4: An overview of our model, which contains three main modules, namely Graph
Convolutional Network (GCN), Bi-directional Contrastive Distillation (BCD) and
multi-behavior prediction.

Lastly, the prediction module is to predict user’s possible behaviors on a given
item. We will elaborate each module in next subsections.

3.1 Multi-behavior GCN

Since each user may have multiple behaviors on a same item, we construct an in-
directed graph to accommodate user-item interactions for each kind of behaviors.
The graph nodes are users and items, and the edges are interactions among
users and items. We aim to learn user and item representations from the graph
structure through graph convolutional networks (GCN) [9, 22], which models
nodes propagation based on message-passing architecture. Specifically, user u’s
embedding e

(l)
u,bk

in layer l (under behavior bk) can be learned by aggregating
the representations of his/her neighbors (i.e., interacted items in layer (l − 1)),
which is formally defined as follows:

e
(l)
u,bk

= σ

( ∑
v∈Nu

1√
|Nu| |Nv|

W(l)φ
(
e(l−1)
v � e

(l−1)
bk

))

where Nu and Nv are the set of immediate neighbors of user u and item v,
respectively; W(l) is a weight matrix in the l-th propagation step, φ is a compo-
sition operator to incorporate behavior embeddings. σ(·) is the LeakyReLU [18]
activation function. � denotes the element-wise product of two vectors. The nor-
malization term 1√

|Nu||Nv|
is used to avoid the scale of embeddings increasing

with graph convolution operations. The representation of item v can be learned
in the similar way. Besides, we update behavior embedding e

(l)
bk

in layer l by
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applying a linear transformation to its representation in previous layer, defined
by:

e
(l)
bk

= W
(l)
bk
e
(l−1)
bk

where W
(l)
bk

is a layer-specific weight matrix representing the linear transforma-
tion. In this way, behaviors are also transformed into the same embedding space
as users and items, whereby mathematical operations can be imposed on them.
To start with, we adopt an ID embedding layer to initialize the embeddings of
users, items and behaviors in the first hop, denoted as e(0)u,bk

, e
(0)
v,bk

, e
(0)
bk

.

3.2 Bi-directional Contrastive Distillation

The previous module separately learns multiple representations for each user and
item by applying GCN technology on a constructed user-item interaction graph
(for each kind of behaviors). We now proceed to refine those representations
by taking into account two kinds of relations among user behaviors, namely
intra-behavior and inter-behavior relations. Specifically, for the intra-behavior
relation, we devise a contrastive learning strategy [21, 30, 32] to strengthen the
similarity between two different forms of the same user, and to increase the
difference between two different users in the meanwhile. Hence, we design edge
dropout on the user-item interaction graph by randomly dropping out a certain
ratio of edges. By varying different dropout ratios, we obtain two variants of
original interaction graph, from which two forms of user presentations (i.e., e1u,bk
and e2u,bk) can be learnt by the GCN module. For clarity, we use symbols ba,
bt, bk to denote auxiliary behavior, target behavior and any kind of user behav-
iors, respectively. For auxiliary behavior ba, the objective function of contrastive
learning can be formulated as follows.

Lba→ba = −
∑
u∈U

E

log exp
(
sim

(
e1u,ba , e

2
u,ba

)
/τ
)

∑
p∈U

exp
(
sim

(
e1u,ba , e

1
p,ba

)
/τ
)


where sim(·, ·) is a similarity function to measure the closeness of two input vec-
tors, and inner product is often used for easy computation. τ is a temperature
parameter. The numerator term is to maximize the similarity between two em-
beddings of user u, while the denorminator term is to maximize the difference
between user u and any other user p. To avoid mode collapse [14], hereafter we
only adopt the first variant of user embeddings during the model learning other
than the numerator term.

For the inter-behavior relation, we aim to distill valuable knowledge about
user preference from auxiliary behaviors ba to guide the learning of target be-
havior bt. The basic idea is similar with that of intra-behavior relation, i.e., to
maximize the similarity between auxiliary and target behaviors of a same user,
and meanwhile to maximize the difference of auxiliary and target behaviors be-
tween two different users. Formally, the objective loss function of contrastive
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learning from auxiliary behavior ba to target behavior bt can be formulated as
follows:

Lba→bt
= −

∑
u∈U

E

log exp
(
sim

(
e1u,ba , e

1
u,bt

)
/τ
)

∑
p∈U

exp
(
sim

(
e1u,ba , e

1
p,bt

)
/τ
)


Through the above two-stage operations which we denote as forward distilla-
tion, the knowledge from auxiliary behaviors can be well learned and transferred
to model target behaviors. Inspired by the bi-directional sequence learning in
natural language processing [6, 19], we design a backward distillation to distill
the knowledge from target behavior and help model auxiliary behaviors in re-
turn (see Figure 4). Specifically, we apply contrastive learning on target behav-
iors to refine its representation and then perform knowledge distillation where
(modelling of) target behavior is used as a teacher and auxiliary behaviors as
a student. This curriculum learning strategy is to better extract the common
knowledge between the two kinds of user behaviors and enhance not only the
predictive task of target behavior, but also the prediction of auxiliary behaviors.

Hence, the overall objective of our BCD module is to minimize the following
loss function:

LBCD =
∑
ba

(Lba→ba + Lba→bt)︸ ︷︷ ︸
forward distillation

+
∑
ba

(Lbt→bt + Lbt→ba)︸ ︷︷ ︸
backward distillation

3.3 Prediction and Learning

We first adopt weighted average across all the behavior-specific embeddings to
get the final representations of both users and items, defined by:

eu =
∑
bk

λbkeu,bk , ev =
∑
bk

λbkev,bk

where λbk indicates the importance of behavior bk relative to target behavior
bt. The setting of (λview, λcart, λbuy) follows the suggestions given by [1] on two
dataset. Then the likelihood that user u will perform the k-th behavior on item
v can be estimated by:

ŷuv,bk = e>u · diag (ebk) · ev =

d∑
i

eu,iebk,iev,i

where diag(·) is a function that converts an input vector into a diagonal matrix,
and d is the embedding size.

The main purpose of behavior prediction is to minimize the error of prediction
and ground truth, defined by:

Lbk =
∑
u∈U

∑
v∈V

cuv,bk (yuv,bk − ŷuv,bk)
2
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where cuv,bk denotes the weight of entry yuv,bk . To learn model parameters more
effectively and stably, we apply the efficient non-sampling learning technique [1,
7, 16] to optimize our model. Specifically, we simplify cuv,bk to cv,bk and re-
formulate the above loss function as follows:

Lbk =
∑
u∈U

∑
v∈Vu,bk

((
c+v,bk − c

−
v,bk

)
ŷ2uv,bk − 2c+v,bk ŷuv,bk

)

+

d∑
i=1

d∑
j=1

(
(ebk,iebk,j)

(∑
u∈U

eu,ieu,j

)(∑
v∈Vu

c−v,bkev,iev,j

))

where Vu represents the items set that user u has interacted with; c+v,bk and
c−v,bk are the weights if item v has been interacted with behavior bk and other
behaviors, respectively.

The final loss function consists of three components: loss value of behavior
predictions, loss value of bi-directional contrastive learning and regularisation
terms, which is:

L(Θ) =
∑
bk

λbkLbk + LBCD + µ||Θ||22

where Θ is the set of model parameters; µ is a regularisation parameter, and
‖ · ‖2 denotes the Frobenius norm.

4 Experiments

4.1 Datasets

As discussed before, Beibei and Taobao are used for our experiments. Their
statistics is presented in Table 1. Both datasets are publicly available and the
training, validation and test sets are given as well. Specifically, the last purchase
records of users are used as test set, the second last records are used as validation
set, and the remaining records are used for training. The same two datasets are
also used in previous works [1].

Table 1: Statistics of our experimental datasets.

Dataset #User #Item #View #Add-to-cart #Purchase
Beibei 21,716 7,977 2,412,586 642,622 304,576
Taobao 48,749 39,493 1,548,126 193,747 259,747
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4.2 Comparison Methods

To demonstrate the effectiveness of our BCD model, we compare it with several
state-of-the-art methods. The baselines are classified into two categories based
on whether they utilize single-behavior or heterogeneous data. The compared
single-behavior methods include:

– ENMF [2]: This is a state-of-the-art nonsampling recommendation method
for Top-N recommendation.

– LightGCN [10] : This is a state-of-the-art graph neural network model
that simplifies the design of GNNs and thus makes them more suitable for
single-behavior recommendation.

The second category that leverages heterogeneous data are as follows:

– NMTR [8] : This is a state-of-the-art method which combines the recent
advances of NCF modeling and the efficacy of multi-task learning.

– EHCF [3]: This is a multi-behavior recommendation algorithm which cor-
relates the prediction of each behavior in a transfer way and adopts non-
sampling learning for multi-behavior recommendation.

– CML [27]: This is a state-of-the-art multi-behavior recommendation algo-
rithm which proposes a multi-behavior contrastive learning framework to
distill transferable knowledge across different types of behaviors via the con-
structed contrastive loss.

– GHCF [1]: This is a state-of-the-art graph neural network model that sim-
ulates high-order heterogeneous connectivities beneath each behavior in the
user-item integration graph.

4.3 Parameter Settings

We empirically search for optimal parameter settings on the validation set. To
speed up searching, model-specific parameters are initialized by the suggested
values in the original papers. Other parameters are set as follows. Batch size
is 256, the dimension of embeddings is 64, and learning rate is set to 0.0001.
For sampling-based methods (LightGCN, NMTR), we set the negative sampling
ratio to 1:1. For non-sampling methods (EHCF, GHCF, BCD), we set the neg-
ative weight to 0.01 on Beibei and 0.1 on Taobao. The number of graph layers
is set to 4 on Beibei and 2 on Taobao to avoid over-fitting, the dropout ratio is
set to 0.8 on both datasets. For Beibei, the temperature parameters of forward
distillation are set to (2, 1.5) and those for backward distillation is set to (0.5, 3).
For Taobao, we set the temperature parameters of forward distillation to (1.5,
4) and those for backward distillation to (1, 1.5).

4.4 Evaluation Metrics

We adopt three popular evaluation metrics, namely HR (Hit Ratio) [12], NDCG
(Normalized Discounted Cumulative Gain) [26], and MRR (Mean Reciprocal
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Table 2: Performance of all the comparison methods on the Taobao and Beibei datasets.
Row ‘p-value’ indicates the significance score of BCD relative to the second best ap-
proach (i.e., GHCF) on each evaluation metric.

Taobao HR@K NDCG@K MRR@K
K=3 K=5 K=10 K=15 K=3 K=5 K=10 K=15 K=3 K=5 K=10 K=15

ENMF .0116 .0152 .0227 .0283 .0091 .0106 .0129 .0144 .0082 .0090 .0100 .0104
LightGCN .0195 .0258 .0371 .0443 .0155 .0181 .0217 .0236 .0141 .0155 .0170 .0176
NMTR .0263 .0317 .0417 .0549 .0189 .0232 .0268 .0284 .0184 .0197 .0219 .0231
EHCF .0286 .0358 .0482 .0572 .0234 .0264 .0304 .0327 .0216 .0233 .0249 .0256
CML .0346 .0469 .0693 .0885 .0284 .0294 .0413 .0432 .0236 .0268 .0299 .0328
GHCF .0380 .0521 .0777 .0977 .0291 .0349 .0432 .0485 .0261 .0293 .0327 .0343
BCD .0385 .0533 .0799 .0983 .0297 .0360 .0442 .0492 .0266 .0299 .0333 .0348
p-value 0.125 2.4e-4 7.6e-5 0.006 0.018 7.0e-4 2.5e-4 0.002 0.078 0.002 6.8e-4 0.002

Beibei HR@K NDCG@K MRR@K
K=3 K=5 K=10 K=15 K=3 K=5 K=10 K=15 K=3 K=5 K=10 K=15

ENMF .0129 .0196 .0356 .0493 .0099 .0126 .0177 .0213 .0089 .0104 .0124 .0135
LightGCN .0227 .0295 .0325 .0390 .0177 .0206 .0216 .0232 .0159 .0176 .0180 .0185
NMTR .0221 .0356 .0679 .1005 .0157 .0212 .0316 .0401 .0135 .0166 .0207 .0233
EHCF .0688 .0966 .1483 .1862 .0531 .0645 .0811 .0911 .0477 .0540 .0608 .0638
CML .0783 .1069 .1785 .2163 .0574 .0706 .0911 .1018 .0496 .0595 .0673 .0704
GHCF .0814 .1214 .1900 .2343 .0600 .0765 .0983 .1103 .0527 .0618 .0708 .0744
BCD .0836 .1233 .1906 .2380 .0614 .0777 .0996 .1120 .0538 .0628 .0718 .0755
p-value 0.033 0.007 2.1e-5 0.001 3e-4 0.015 0.012 0.013 0.078 0.040 0.048 0.043

Rank) [23]. Specifically, HR measures to what extent a recommendation list
contains items that users actually like. NDCG gives more weights to the relevant
items if being ranked top in the recommendation list. MRR scores high if the
first relevant item appears early in the recommendation list.

4.5 Performance Comparison

Table 1 summarizes the performance of all comparison methods on the two
datasets. The results show that multi-behavior recommendation methods are
superior to single-behavior ones in terms of all evaluation metrics, implying the
usefulness of multiple auxiliary behaviors. Among multi-behavior recommenders,
our approach BCD consistently outperforms the other methods. Since other
methods may also adopt the non-sampling technique for model learning other
than multiple user behaviors, we believe it is our bi-directional contrastive dis-
tillation module that leverages both intra- and inter-behaviors relations of user
behaviors and thus improves the recommendation performance. Specifically, the
average improvements relative to the second best approach (i.e., GHCF) are
around 1.61% and 1.89% on Beibei and Taobao, respectively. The larger im-
provements on Taobao can be explained by the fact that we refine the original
conversion path by removing the noisy auxiliary behavior ‘cart’.
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Table 3: Effects of two important components, where ‘BCD-ib’ and ‘BCD-bd’ indicate
the variants of BCD without the consideration of intra-behavior relations and backward
distillation, respectively.

Methods Beibei Taobao
HR@5 @10 NDCG@5 @10 HR@5 @10 NDCG@5 @10

BCD-ib 0.1196 0.1880 0.0755 0.0976 0.0530 0.0789 0.0356 0.0439
BCD-bd 0.1191 0.1882 0.0753 0.0976 0.0531 0.0783 0.0356 0.0438
BCD 0.1233 0.1906 0.0777 0.0996 0.0533 0.0799 0.0360 0.0442

We conduct statistical significance test (paired t-tests, confidence 0.95) be-
tween our approach and GHCF on both datasets, and the results are presented
in the last row of Table 2. The results (all p-values much smaller than 0.05)
demonstrate that our approach is statistically significant in comparison with the
second best comparison method.

4.6 Ablation Study

Intra-behavior Learning & Backward Distillation In this section, we will
study two important components of our approach, namely intra-behavior con-
trastive learning and backward distillation. We denote ‘BCD-ib’ and ‘BCD-bd’
as the variants of our BCD model without the component of intra-behavior con-
trastive learning and that of backwared distillation, respectively. The results on
two datasets are presented in Table 3. It can be observed that BCD outperforms
both BCD-ib and BCD-bd variants. We may conclude that (1) it is beneficial to
take into account intra-behavior relations for recommendation performance. We
can obtain better representations of users/items by applying contrastive learning
on the same behaviors. (2) backward distillation is indeed useful to distill the
knowledge from target behaviors to enhance the modelling of auxiliary behaviors.

Auxiliary Behaviors for Inter-behavior Learning The inter-behavior dis-
tillation will learn better user preference from the knowledge distillation of aux-
iliary behaviors on target behaviors. As discussed in Section 2, not all auxiliary
behaviors are helpful. We further validate this finding by conducting a series of
experiments based on different auxiliary behaviors. Specifically, we select differ-
ent behaviors for the inter-behavior distillation to investigate their usefulness.
The results are given in Table 4. On Beibei, we can find that both inter-behaviors
(‘view→buy’ and ‘cart→buy’) have similar results and are slightly smaller than
our BCD method, which considers both kinds of inter-behavior relations. On
Taobao, the effect of inter-behavior relation (‘cart→buy’) is worse than the other
ones, indicating the noisy information brought by ‘cart’ behaviors. By remov-
ing ‘cart’ information from ‘view’ (i.e., the relation ‘view-cart→buy’), we can
improve the recommendation performance.
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Table 4: Effect of Inter-behavior Learning, where ‘v-c→buy’ is short for ‘view-
cart→buy’.

Inter- Beibei Taobao
behavior HR@5 @10 NDCG@5 @10 HR@5 @10 NDCG@5 @10
view→buy 0.1206 0.1900 0.0758 0.0982 0.0528 0.0792 0.0358 0.0441
cart→buy 0.1206 0.1897 0.0759 0.0985 0.0520 0.0784 0.0354 0.0436
v-c→buy - - - - 0.0525 0.0791 0.0356 0.0439
BCD 0.1233 0.1906 0.0777 0.0996 0.0533 0.0799 0.0360 0.0442

4.7 Parameter Analysis

Fig. 5: Effect of temperature parameters on two datasets. (tf1, tf2) are the temperature
parameters of forward distillation and (tb1, tb2) are for backward distillation.

Analyses on Temperature Parameter The temperature parameter has been
a key parameter for most existing knowledge distillation-based recommendation
algorithms. In this section, we intend to analyze the effect of temperature pa-
rameters on our recommendation performance. Specifically, we denote (tf1, tf2)
as the temperature parameters of forward distillation and (tb1, tb2) of backward
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Fig. 6: Effect of different number of training epochs for either forward or backward
distillation before moving to the next step. Other metrics follow similar trends and are
omitted for space saving.

distillation. We adjust the value of a single temperature parameter in the range
{0.5, 0.7, 1, 1.5, 2, 3, 5, 7, 10}, and when we adjust this temperature parameter,
we will fix all other temperatures to 1. The experimental results on two datasets
as given in Figure 5. It is observed that the metric values for any temperature
parameter fluctuate within a small range, implying that our model is insensitive
to temperature parameters. We attribute it to the fact that our model is able to
distinguish the preference representations of two different users during training
for smaller temperature parameters and thus learn more personalized knowl-
edge. Meanwhile, for a larger temperature, our model can learn some common
knowledge from other users and behaviors to assist with recommendations. As a
result, our approach is not limited to a strict setting of temperature parameters.

Parameter Analysis of Stage Epochs An important parameter for our
model training is the number of training epochs for either forward or back-
ward distillation. The results are illustrated in Figure 6. We can find that the
best performance can be reached when each stage of distillation is trained 7
epochs before moving to the next step. Other parameter settings will decrease
the performance to a certain extent.
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5 Related Work

5.1 Multi-behavior Recommendation

We will briefly review a number of representative multi-behavior recommenders
that are most relevant to our work. These works are mainly built upon con-
version paths among user behaviors. For example, ChainRec [24] explores the
monotonic behavior chains based on conversion paths to model the effect of aux-
iliary behaviors on target behaviors. NMTR [8] construct a cascade prediction
structure from conversion paths, which is then used to predict subsequent behav-
iors according to the prediction of previous behaviors. EHCF [3] propose to share
parameters based on cascading relationships of conversion paths for evolution-
ary knowledge learning. MRIG [25] opt to construct a graph structure (rather
than a cascading chain) from auxiliary behaviors to enhance the prediction of
target behaviors. MBGCN [13] learns discriminative behavior representations
using graph convolutional network. MB-GMN [29] uses graph meta network for
learning the heterogeneity and diversity among different behaviors. GHCF [1]
further adopt the operation of graph convolution to capture higher-order rep-
resentations of users under each behavior. CML [28] proposes a multi-behavior
contrastive learning framework to distill transferable knowledge across different
types of behaviors via the constructed contrastive loss.

However, all the above works implicitly assume that all the auxiliary be-
haviors are positively correlated with target ones, which may not hold in real
datasets as discussed in Section 2. Our work argues that it is better not to involve
noisy auxiliary behaviors for performance improvement.

5.2 Contrastive Distillation in Recommendations

Contrastive learning, which aims to learn high-quality representations via self-
supervised pretext tasks, recently achieves remarkable success in the field of
computer vision [4, 5]. Till now, only few works have been proposed to leverage
contrastive distillation for recommendation. DE-RDD [15] designs a contrastive
distillation loss function to make better use of the knowledge from a teacher
model to guide the learning of a student recommendation model. MICRO [31]
adopts contrastive distillation to maximize the agreement between item represen-
tations under each modality and the fused multi-modal representation, whereby
a more precision item representation can be obtained. Hence, our work focuses on
different problem settings (i.e., multi-behavior recommendation) from the above
two relevant works (one for model compression and the other for multi-modal
recommendation).

6 Conclusions and Future work

In this paper, we conducted thorough data analysis on two real datasets, and
found that not all auxiliary behaviors were positively correlated with target
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behaviors. We proposed a Bi-directional Contrastive Distillation (BCD) model
to distill the common knowledge from multiple user behaviors via forward and
backward distillation. We conducted a series of experiments and verified that our
approach beat other methods in terms of ranking accuracy. For future work, we
plan to explore the manners of data augmentation to enhance recommendation
performance under each auxiliary behavior. Besides, we will try to reduce the
computational cost due to the additional graph convolution operations on users’
interaction graph and further speed up our algorithm.
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