GNN Transformation Framework for Improving
Efficiency and Scalability

Seiji Maekawa! B4, Yuya Sasaki!, George Fletcher?, and Makoto Onizuka'

! Osaka University, 1-5 Yamadaoka, Suita, Osaka, Japan
{maekawa.seiji,sasaki,onizuka}@ist.osaka-u.ac.jp
2 Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, Netherlands
g.h.1l.fletcher@tue.nl

Abstract. We propose a framework that automatically transforms non-
scalable GNNs into precomputation-based GNNs which are efficient and
scalable for large-scale graphs. The advantages of our framework are two-
fold; 1) it transforms various non-scalable GNNs to scale well to large-
scale graphs by separating local feature aggregation from weight learning
in their graph convolution, 2) it efficiently executes precomputation on
GPU for large-scale graphs by decomposing their edges into small dis-
joint and balanced sets. Through extensive experiments with large-scale
graphs, we demonstrate that the transformed GNNs run faster in train-
ing time than existing GNNs while achieving competitive accuracy to
the state-of-the-art GNNs. Consequently, our transformation framework
provides simple and efficient baselines for future research on scalable
GNNs.

Keywords: Graph neural networks - Large-scale graphs - Classification.

1 Introduction

Graph is a ubiquitous structure that occurs in many domains, such as Web and
social networks. As a powerful approach for analyzing graphs, Graph Neural Net-
works (GNNs) have gained wide research interest [30, 25]. Many GNNs have been
proposed for node classification and representation learning including GCN [15],
which is the most popular GNN variant. Most existing GNNs adopt graph con-
volution that performs three tasks; 1) feature aggregation, 2) learnable weight
multiplication, and 3) activation function application (e.g., ReLU, a non-linear
function). By stacking multiple graph convolutional layers, they propagate node
features over the given graph topology. However, these existing GNNs cannot be
efficiently trained on large-scale graphs since the GNNs need to perform three
tasks in graph convolution every time learnable weights are updated. In addition,
large-scale graphs cannot be put on GPU memory for efficient matrix operations.
As a result, graph convolution is not efficient and scalable for large-scale graphs.

A major approach to apply GNNs to large-scale graphs is to separate feature
aggregation from graph convolution so that GNNs can precompute aggregated
features [24,8,18]. These methods are called precomputation-based GNNs. In

2 S. Maekawa et al.

detail, they remove non-linearity, i.e., activation functions, from graph convolu-
tion so that feature aggregation is separated from weight learning. Thanks to the
independence of feature aggregation and weight learning, precomputation-based
GNNs are efficient in learning steps by precomputing feature aggregation before
training learnable weights.

Though some existing works tackle the scalability problem of GNNs as dis-
cussed above, most widely studied GNNs are not scalable to large-scale graphs
for the following two reasons. First, existing studies on precomputation-based
GNNs [24, 8, 18] focus on introducing several specific GNN architectures that are
manually designed. So, it is laborsome to apply the same precomputation idea to
other GNNs. An interesting observation is that they share the common motiva-
tion: precomputation of feature aggregation is indispensable for high scalability.
To our best knowledge, there are no works that study a general framework that
transforms non-scalable GNNs to scalable precomputation-based GNNs. Second,
existing precomputation schemes are not scalable because they need to put com-
plete graphs (e.g., graphs with one billion edges [12]) on GPU memory. Since the
size of large graphs typically exceeds the memory size of general GPU, existing
works precompute feature aggregation on CPU.

To tackle the above issues, we address two research questions: Q1: Can we de-
sign a general procedure that transforms non-scalable GNNs to efficient and scal-
able precomputation-based GNNs while keeping their classification performance?
and Q2: Can we efficiently execute the precomputation on GPU? There are two
technical challenges which must be overcome to answer our questions. First, we
need to automatically transform non-scalable GNNs to precomputation-based
GNNs. We should develop a common transformation procedure that can be
applied to various non-scalable GNNs while preserving their expressive power.
Second, we need to decompose large graphs into small groups each of which can
be handled efficiently with GPU. Typically, graph decomposition suffers from an
imbalance problem since node degree distributions usually follow power law dis-
tributions [19]. Hence, we should divide graphs into balanced groups and select
an appropriate group size so that precomputation time is optimized.

In this paper, we propose a framework?® that automatically transforms non-
scalable GNNs into precomputation-based GNNs with a scalable precomputation
schema. As for the first challenge, we develop a new transformation procedure,
called Linear Convolution (LC) transformation, which can be applied to various
non-scalable GNNs so that transformed GNNs work efficiently and scale well
to large-scale graphs. Our transformation procedure removes non-linear func-
tions from graph convolution, but incorporates non-linear functions into weight
learning. This idea is derived from our hypothesis that it is not crucial to incor-
porate non-linearity into graph convolutional layers but into weight learning for
prediction. Since our transformation preserves the major functionality of graph
convolution and a similar expressive power to original GNNs, the transformed
GNNs can achieve competitive prediction performance to the original ones while
improving their scalability. As for the second challenge, we develop a block-

3 Our codebase is available on (https://github.com/seijimaekawa/LCtransformation).

GNN Transformation Framework for Improving Efficiency and Scalability 3

wise precomputation scheme which optimally decomposes large-scale graphs into
small and balanced blocks each of which can fit into GPU memory. We introduce
a simple decomposition approach to ensure that blocks are balanced and give
minimization formulas that decide the optimal block size under limited GPU
memory.

Through extensive experiments, we validate that our transformation proce-
dure and optimized block-wise precomputation scheme are quite effective. First,
we show that our LC transformation procedure transforms non-scalable GNNs to
efficient and scalable precomputation-based GNNs while keeping their node clas-
sification accuracy. Second, we show that our precomputation scheme is more
efficient than that of existing precomputation-based GNNs. In summary, our
transformation procedure provides simple and efficient baselines for future re-
search on scalable GNNs by shining a spotlight on existing non-scalable methods.

The rest of this paper is organized as follows. We describe notations and
fundamental techniques for our method in Section 2. Section 3 proposes our
framework. We give the purpose and results of experiments in Section 4. Section
5 describes the details of related work. Finally, we conclude this paper in Section
6.

2 Preliminaries

An undirected attributed graph with class labels is a triple G = (A, X, C) where
A € {0,1}"*" is an adjacency matrix, X € R"*? is an attribute matrix as-
signing attributes to nodes, and a class matrix C € {0,1}™*¥ contains class
information of each node, and n,d,y are the numbers of nodes, attributes and
classes, respectively. If there is an edge between nodes ¢ and j, A;; and Aj;
are set to one. We define the degree matrix D = diag(Dq,...,D,) € R**™ as
a diagonal matrix, where D; expresses the degree of node i. We also define an
identity matrix I = diag(1l,...,1) € R™*™ and an adjacency matrix extended
with self-loops A = A + I. We define node embeddings H € R"*" where h is
the dimension of a hidden layer. We summarize notation and their definitions in
Table 1.

2.1 Graph Convolutional Networks

Multi-layer GCN is a standard GCN model which was proposed in [15]. GCNs
learn a feature representation for the feature of each node over layers. For the
k-th graph convolutional layer, we denote the input node representations of all
nodes by the matrix H*~1 and the output node representations by H®*). The
initial node representations are set to the input features, i.e., H® = X. Let S
denote the normalized adjacency matrix

S=D:AD 3. (1)

This normalized adjacency matrix is commonly used as a graph filter for graph
convolution. The graph filter is known as a low-pass filter that filters out noise

4 S. Maekawa et al.

Table 1: Notation and definitions

n number of nodes
d dimension of features
y number of classes
h dimension of hidden layer
K number of hidden layers
A e R™*™ adjacency matrix
A e RVXN extended adjacency matrix
S e R normalized adjacency matrix
X e R4 feature matrix
C e R™Y class matrix
D e R™*™ degree matrix
H ¢ R node embeddings
W, e R¥E Wy, ..., Wk_1 € RV? Wi e R weight matrices
Y € R™*Y predicted label matrix

in node features [15]. For each layer, GCN propagates the embedding of a node
to its neighbors as follows:

H® = o(SH*YVwW,), (2)

where W}, denotes the weight matrix of the k-th layer and o denotes a non-linear
function, e.g., ReLU. In the output layer, K-layer GCN outputs a predicted label
matrix Y € R"*Y as:

Y = softmax(SHE VW), (3)
where softmax(P);; = % for a matrix P. The number of layers is
j=1 ij

typically set to K = 2 [15].

2.2 Precomputation-based GNNs

Several precomputation-based GNNs have been proposed recently [24,8,18].
Their fundamental and common idea is to remove non-linear functions between
each layer in order to precompute feature aggregation. We explain Simplifying
Graph Convolution (SGC for short) [24] which is the simplest precomputation-
based GNN. Thanks to the removal, K-layer GCN can be rewritten as follows
by unfolding the recursive structure:

Y =softmax(S...SXW;.. Wk). (4)

The repeated multiplication with the normalized adjacency matrix S can be
simplified into a K-th power matrix S% and the multiple weight matrices can
be reparameterized into a single matrix W = W7 ... Wi. The output becomes

Y = softmax(S* XW). (5)

GNN Transformation Framework for Improving Efficiency and Scalability 5

Input Graph Non-scalable GNNs (e.g., GCN and JKNet) Prediction
— H, =
Xz Xe / H, = 6 Non-linearity /Y2 PR
/ Xq wpi H® = ReLU(H™) \ Y,
X \/)| H A £ -
XS_—_XS = H3 -~ Hs for kin [1,..., K 1/3——),5
Feature Aggregation . s - prediction label
HY =X i - eight Multiplication O prediction labe)
H® = SHE q B = W, QY = softmax(COMB(H®, ... H()))
—-—-—-—-—-—-—-—-——-!—LCTransformation —————————————————————————
- - T ~
Input Graph LC Ve;m_ % | ok in 1 K] Prediction
— /% x- S | Non-linearity Yz!_ Y.
/Xz X~) \ H®) = ReLU(H®)) / \ Y4’
X, \ 7 ‘ S| X3 X; X e ~ Y, (-
Xy K-step Feature Aggregation | orkin(l,.... k 1/3——'ys
s (Precomputation) 1 . .
[X.8X....,8Kx] 1| Weight Multiplication O: prediction label)
=HY HDY, ., H") * H*) = HOw, Y = softmax(COMB(H®, ..., H))

Fig. 1: Example of LC transformation. Upper part: non-scalable GNNs operate
K-layer graph convolution combining feature aggregation, weight multiplication,
and activation function application (ReLU). This example corresponds to K-
layer GCN if COMB outputs only H¥. Lower part: LC transformation separates
feature aggregation and weight learning while keeping the similar architectures
with the original GNNs. LC versions avoid recomputing feature aggregation
whenever learnable weights are updated at each learning step.

By separating graph feature aggregation and weight learning, SGC precom-
putes SX X before learning W. The other methods also follow the same idea:
separating feature aggregation and weight learning and precomputing feature
aggregation.

3 GNN Transformation Framework

We propose a general framework that automatically transforms non-scalable
GNNs to efficient and scalable precomputation-based GNNs and efficiently ex-
ecutes precomputation of feature aggregation on GPU. We first introduce a
transformation procedure that automatically rewrites the formulations of non-
scalable GNNs so that the transformed GNNs run efficiently and scale well to
large-scale graphs (Section 3.1). We also describe a limitation of our transforma-
tion, namely, that it does not support GNNs that require dynamical changes of
graph filters during weight learning. Our transformation procedure is applicable
not only to GCN [15] but also to the state-of-the-art GNNs, such as JKNet [27],
H2GCN [32] and GPRGNN [7]. Next, we introduce a block-wise precomputation
scheme that efficiently computes feature aggregation for large-scale graphs (Sec-
tion 3.2). The core idea is to decompose an adjacency matrix and feature matrix
into disjoint and balanced blocks each of which can be handled on GPU. Also,
we formulate and solve an optimization problem that decides the optimal size
of blocks. Note that this scheme is a general approach since it can be applied to
existing precomputation-based GNNs [24, 8, 18].

6 S. Maekawa et al.

3.1 Linear Convolution Transformation

LC transformation is the first concrete procedure that transforms non-scalable
GNNs to efficient and scalable precomputation-based GNNs, which have a sim-
ilar functionality to the input GNNs. We call the output the LC wversion of
the input GNN. LC transformation is motivated by the effectiveness of SGC
and Multi-Layer Perceptron (MLP). SGC preserves the major benefit of graph
convolution with efficient training by precomputing feature aggregation, but it
degrades the accuracy due to the lack of non-linearity [7]. Beside, MLP outper-
forms linear regression in classification task by using non-linear functions but
does not capture the structures of graphs. LC version of GNN leverages both
the strengths of SGC and MLP by precomputing feature aggregation and then
learning weights with non-linearity.

Figure 1 demonstrates an example of LC transformation by comparing it
with non-scalable GNNs. Intuitively, LC transformation separates feature aggre-
gation from graph convolution that performs 1) feature aggregation, 2) weight
multiplication, and 3) activation function application (e.g., ReLU, a non-linear
function). Notice that a normalized adjacency matrix S is adjacent to the fea-
ture matrix X in the formulation of LC versions (see the left part of the red
box of the figure). So, we can precompute S*X in the same way as SGC [24].
Thanks to the separation, LC versions can avoid computing feature aggregation
whenever learnable weights are updated at each learning step (see the right part
of the red box of the figure). Hence, LC versions efficiently work and scale well
to large-scale graphs.

Discussion. We discuss why LC versions work from two aspects, feature aggre-
gation and weight learning. As in the discussion on the spectral analysis [24],
feature aggregation acts as a low-pass filter that produces smooth features over
the graph, which is the major benefit of graph convolution. In this sense, L.C
versions are expected to have the same functionality as the input GNNs since LC
transformation preserves feature aggregation within multi-hops. As for weight
learning, LC versions have a similar learning capability to their original GNNs
since they have a similar model architecture of multi-layer neural networks. As a
result, LC versions can achieve a similar prediction performance to their original
GNNs while scaling to large-scale graphs.

Procedure. Next, we describe the procedure of LC transformation, which re-
moves non-linear functions from graph convolution, but incorporates non-linear
functions into weight learning. We first give the definition of LC transformation
below:

Definition (LC transformation). Given a non-scalable GNN algorithm, LC
transformation iteratively applies a function frc to the formulation of the input
GNN since non-scalable GNNs have multiple graph convolutional layers. frco
commutes matriz multiplication of S and a non-linear function o as follows:

fre + 92(So(91(X))) o 92(0(Sg1(X))), (6)

GNN Transformation Framework for Improving Efficiency and Scalability 7

where g1 and go indicate any functions that input and output matrices. The
iteration continues until the formulation does mot change. LC transformation
outputs a precomputation-based GNN having the transformed formulation, i.e.,
the LC version of the input GNN.

To intuitively explain the details, we use JKNet [27] as an example, which is
a widely used GNN. The formulation of JKNet (GCN-based) is as follows:

H = COMB}_,(So(So(...(SXW)) ... \Wy_1)Wy), (7)

where COMB expresses a skip connection between different layers, such as con-
catenation of intermediate representations or max pooling. By applying a soft-
max function to feature representations H, JKNet outputs a prediction result Y,
i.e.,, Y = softmax(H). We apply frc to it in order to transform the formulation
of an input GNN. To this end, we assign g1(X) = So(...(SXW7)...)\Wy_
and g5(So(g1(X))) = COMB}_, (So(g1(X))Wy). By utilizing frc, g1, and g,
we transform Eq (7) as follows:

H — COMB_, (0(8%0(...(SXW)) .. \Wyi_1)Wy). (8)

LC

Then, we iteratively apply frc to the formulation by appropriately assigning g;
and go for each iteration. Finally, we obtain the formulation of the L.C version
of the input GNN, HLC as follows:

HLC = COMBE_, (o(o(... (S*XW1) ...) Wi_)Wy). (9)

Then, in the same way as the input GNN, the LC version outputs a predicted
label matrix Y = softmax(H).

The LC transformation procedure is applicable not only to JKNet but also
to general non-scalable GNNs including APPNP [16], MixHop [1], H2GCN [32],
and GPRGNN [7]. We give another example of applying LC transformation in
Appendix A.

Limitation. Precomputation-based GNNs can use multiple graph filters such
as an exact 1-hop away adjacency matrix and Personalized PageRank diffusion
matrix [16]. Those GNNs do not dynamically control the propagation of features
during weight learning, since they use constant graph filters in order to precom-
pute feature aggregation. Since our framework also leverages a precomputation
scheme, it cannot support those existing GNNs [22, 26, 21] which dynamically
sample edges or modify the importance of edges during weight learning. For
example, Dropedge [21] randomly reduces a certain number of edges at each
iteration. A possible future research direction is that we simulate random edge
reduction by utilizing the deviations of feature aggregation.

3.2 Efficient Precomputation

Existing precomputation-based GNNs need to use CPUs to compute feature
aggregations for large-scale graphs since they do not fit on GPU memory. This
CPU computation has large cost and a deteriorating effect on efficiency.

8 S. Maekawa et al.

To tackle this problem, we propose a simple yet efficient block-wise precom-
putation scheme and provide a formulation for optimal decomposition for our
block-wise precomputation scheme. The core idea is to decompose the edge set
of a given graph into disjoint and balanced groups, while existing approaches [31]
decompose the node set into groups, i.e., row/column wise decomposition. Our
scheme is inspired by edge partitioning [17, 9], which aims to decompose a graph
into groups having similar numbers of edges such that communication costs for
graph operations are minimized in distributed environments. Our scheme con-
sists of three steps. First, it decomposes an adjacency matrix and feature matrix
into small disjoint blocks each of which can be put on GPU memory. Second, the
scheme computes block-wise matrix operations for the disjoint blocks on GPU.
Third, it aggregates the results of the block-wise matrix operations and obtains
the whole matrix operation result.

Precomputation on GPU. There are two matrix operations to be precom-
puted, adjacency matrix normalization and feature aggregation. First, we de-
scribe the computation of adjacency matrix normalization shown by Eq. (1).
Since an adjacency matrix is typically sparse, we utilize adjacency list (i, j) € &,
where Aij = 1. To obtain small blocks each of which can be loaded on GPU
memory, we decompose £ into disjoint sets that include similar numbers of edges,
EM U ... UE&@, where a is a number of sets and £P) N WD = Pifp # q.
Note that the sizes of the sets £V, ..., €@ are balanced. Then, we decompose
A=AD 4. .4 A@ where AD . Al@) ¢ Rr*n and Agé) = 1if (i,5) € ED.
Then, we can rewrite Eq. (1) as follows:

S=D2AD =% D :A0D 3. (10)

By appropriately selecting the number of blocks a, D:AUD~2 can be exe-
cuted on GPU. We sum the results of the block-wise matrix computations. This
summation can be efficiently computed on CPU by disjoint union of edge lists
since EW i.e., AD is disjoint each other. Since our decomposition is agnostic on
nodes, the decomposed blocks can be easily balanced while row/column(node)-
wise decomposition approaches suffer from an imbalance problem. Further dis-
cussion on Limitations follows below in this subsection.

Next, we introduce a block-wise computation for feature aggregation on GPU.
Algorithm 1 describes the procedure of the computation. To obtain small blocks
of a normalized adjacency matrix S, we decompose it into S, ..., §®) ¢ Rn*"
where b is a number of blocks (line 2). Similarly to the decomposition of A,
each corresponding edge list is disjoint and includes similar numbers of edges.
Also, in order to obtain small blocks of a feature matrix X, we decompose
it into XM ..., X where ¢ is a number of blocks (line 5). Since we as-
sume that X is a dense matrix, we adopt column-wise decomposition, i.e.,
X = concat(X®, ..., X(9)), Then, we compute matrix multiplication U)X)
for each pair on GPU (line 9). We aggregate S) by summation (line 10) and
aggregate Xy, by concatenation (lines 11-14). X, is updated by the ag-
gregated features X .one (line 16). We repeat this aggregation K times (lines
4-16).

GNN Transformation Framework for Improving Efficiency and Scalability 9

Algorithm 1 Block-wise feature aggregation.

Require: normalized adjacency matrix S, feature matrix X, number of layers
K
Ensure: aggregated feature list SX _list

1: SX _list =[]

2: SW 8@ 81 = gplit(S) > disjoint edge sets
3 Xprev =X

4: for k=1to K do

5 XMW X® X = split(X pren)

6: fori=1tocdo

T Xipmp = [0]xTd/¢] > same size to X (*)
8: for j =1tobdo

9: Zipp = S X0 > on GPU
10: Xtmp = Xtmp + Ztmp > on GPU
11: if i == 1 then
12: Xeone = Ximp > on CPU
13: else
14: Xcone = concat(Xeone, Xemp) > on CPU
15: SX _list.append (X onc)
16: Xprev = Xeconc

Optimal graph decomposition. We discuss an optimal decomposition for
our block-wise precomputation scheme. We have two requirements to decompose
large matrices into disjoint blocks. First, each matrix operation for disjoint blocks
can be executed on GPU. Second, the number of disjoint blocks is as small as
possible to reduce the number of block-wise matrix operations. To simplify the
discussion, we assume that the running time of a matrix operation on GPU is
the same regardless of the matrix size.

As for the block-wise adjacency matrix normalization, we minimize a number
of disjoint blocks, a. We formulate the minimization as follows:

min(a), subject to “aBatasBs 4 opBL < Bapy, (11)

where a4, ag, ap indicate coefficients for executing matrix operations regarding
A, S, D, respectively, and By, Bs, Bp, Bapy indicate the volume of an adja-
cency matrix, the volume of a normalized adjacency matrix, the volume of a
degree matrix, and the available volume of a GPU, respectively. As for block-
wise feature aggregation, we minimize the number of pairs of disjoint blocks, bc.
We formulate the minimization as follows:

miny, .(be), subject to BS% + ﬁx% < Bapu, (12)

10 S. Maekawa et al.

Table 1: Summary of datasets.

Dataset ‘ Nodes Edges Features Classes
Flickr 89, 250 899, 756 500 7

Reddit 232,965 11, 606, 919 602 41
arxiv 169,343 1,166,243 128 40

papers100M|111,059,956 1,615,685,872 128 172

where (g, 8x indicate coefficients for executing matrix operations regarding
S, X, respectively, and Bx indicates the volume of a feature matrix. Note that
aa,as,ap, fBs, and Bx depend on execution environments?.

Next, we discuss optimization regarding Eq. (11) and (12). As for Eq. (11),
it is trivial to find the minimum number of blocks a since there are no other
parameters. As for Eq. (12), an exhaustive search is applicable since the number
of combinations of b and ¢ (natural numbers) is not large. Consequently, these
optimization problems can be easily solved.

Limitation. Our precomputation scheme focuses on feature aggregation on a
whole graph. This indicates that our scheme is not suitable for node-wise opera-
tions since it may decompose the edge set of the same node into different groups.
However, accelerating feature aggregation on a whole graph is still crucial since
many graph neural networks [24, 8, 18, 15] adopt it.

4 Experiments

We design our experiments to answer the following questions; Q1: Can our LC
transformation improve the efficiency and scalability of GNNs? Q2: Can our
block-wise precomputation scheme accelerate precomputation?

Dataset. We use four commonly used datasets, Flickr [29], Reddit [10], ogbn-arxiv
(arxiv for short), and ogbn-papers100M (papersl00M for short) [12]. Table 1
provides the summary of the datasets. The sizes of the datasets range from 9K
nodes to 110M.

In the Flickr dataset, nodes represent images uploaded to Flickr. If two im-
ages share common properties such as same geographic location, same gallery,
comments by the same users, there is an edge between the nodes. Node features
represent the 500-dimensional bag-of-words associated with the image (node).
As for node labels, the authors of [29] scan over 81 tags of each image and man-
ually merged them to 7 classes. In the Reddit dataset, nodes represent posts. If
the same user left comments on two posts, then there is an edge between the
two posts. Node features are the embedding of the contents of the posts. The la-
bels of nodes indicate communities which the nodes belong to. In the ogbn-arxiv

4 In real environments, users can measure oa, as,ap, Bs, and Sx by monitoring the
memory usage on small graphs, even if users do not know the details of their own
environments.

GNN Transformation Framework for Improving Efficiency and Scalability 11

dataset, nodes represent ARXIV papers and edges indicate that one paper cites
another one. Node features represent 128-dimensional feature vectors obtained
by averaging the embeddings of words in titles and abstracts. Node labels indi-
cate subject areas of ARXIV CS papers®. In the ogbn-papers100M (papers100M)
dataset, its graph structure and node features are constructed in the same way
as ogbn-arxiv. Among its nodes, approximately 1.5 million nodes are labeled
with one of ARXIV’s subject areas. As in [28], Flickr and Reddit are under the
inductive setting. ogbn-arxiv and ogbn-papers100M are under the transductive
setting.

Baseline. We compare three types of existing methods as baselines; non-scalable
GNNs, precomputation-based GNNs, and sampling-based GNNs which are scal-
able but inefficient (we discuss the details in Section 5). As for non-scalable
GNNs, we use GCNS [15], JKNet” [27], and GPRGNNS [7]. As for precomputation-
based GNNs, we use SGC? [24] and FSGNN!0 [18]. As for sampling-based GNN,
we use ShaDow-GNN! [28]. FSGNN and ShaDow-GNN are the state-of-the-art
precomputing-based and sampling-based GNNs, respectively. We note that we
use our block-wise precomputation to the precomputation-based GNNs instead
of using its original CPU computation for a fair comparison.

Setup. We tune hyperparameters on each dataset by Optuna [2] and use Adam
optimizer [14]. We adopt mini-batch training for precomputation-based GNNs,
sampling-based GNNs, and LC-versions to deal with large-scale graphs'2. As for
ShaDow-GNN, we use the best hyperparameter sets provided by the authors
and adopt GAT [22] as a backbone model since ShaDow-GAT achieves the best
accuracy in most cases reported in the paper. We measure training time on a
NVIDIA Tesla V100S GPU (32GB) and Intel(R) Xeon(R) Gold 5220R CPUs
(378GB).

4.1 Effectiveness of LC Transformation (Q1)

Table 2 shows the test accuracy of LC versions and the baselines. LC versions
(GCN_LC, JKNet_LLC, and GPRGNN_LC) achieve comparable test accuracy
with their original GNNs (GCN, JKNet, and GPRGNN) for all datasets. Next,
Table 3 shows the training time of LC versions and the baselines. The LC versions
run faster than their original GNNs. Note that LC versions tend to stop earlier
than non-scalable GNNs since LC versions train their models more times due

® https://arxiv.org/archive/cs
5 https://github.com/tkipf/pygen
7 Since official codes of JKNet from the authors are not provided, we simply implement
JKNet based on the implementation of GCN.
& https://github.com /jianhao2016/GPRGNN
9 https://github.com/Tiiiger/SGC
10 https://github.com /sunilkmaurya/FSGNN
Y https://github.com/facebookresearch /shaDow_GNN
12 We will provide hyperparameter search space and the best parameters to reproduce
experiments on our codebase that will be publicly available on acceptance.

12 S. Maekawa et al.

Table 2: Comparison on test accuracy. We report the average values (standard
deviation) over 5 runs.

| Flickr Reddit arxiv
GCN 0.525(0.003) 0.945(0.000) 0.702(0.005)
JKNet 0.526(0.004) 0.941(0.006) 0.712(0.001)
GPRGNN |0.494(0.006) 0.918(0.012) 0.694(0.006)
SGC 0.494(0.037) 0.948(0.001) 0.692(0.004)
FSGNN 0.513(0.001) 0.964(0.001) 0.722(0.003)
ShaDow-GAT |0.531(0.003) 0.947(0.003) 0.716(0.004)
GCN_LC 0.515(0.003) 0.947(0.001) 0.710(0.001)
JKNet LC |0.517(0.004) 0.951(0.000) 0.710(0.003)
GPRGNN_LC|0.513(0.001) 0.961(0.000) 0.720(0.004)

Table 3: Comparison on training time (per epoch/total). Note that total training
time includes precomputation time for SGC, FSGNN, ShaDow-GAT, GCN_LC,
JKNet_LC, and GPRGNN_LC. We report the average values over 5 runs.

\ Flickr Reddit arxiv
GCN 64.62[ms] / 120.24[s] 654.70[ms] / 1309.40[s] 210.81[ms] / 421.63[s]
JKNet 170.43[ms] / 253.25[s] 1428.51[ms| / 2552.45[s] 529.05[ms] / 1058.10]s]
GPRGNN 272.86[ms] / 539.48[s] 1456.01[ms] / 2806.62[s] 523.08[ms] / 961.76[s]
SGC 51.18[ms| / 30.31[s] 141.68ms] / 285.43[s] 50.27[ms] / 42.23[3]
FSGNN 346.97[ms] / 133.63[s] 1066.66[ms] / 1793.91[s] ~ 284.73[ms] / 382.67[s]
ShaDow-GAT|120.85¢3[ms] / 3634.65[s] 376.42¢3[ms] / 11321.09]s] 163.67¢3[ms] / 4913.29[3]
GCN_LC 56.75[ms] / 49.85[s] 165.73[ms] / 212.16]s] 62.59[ms] / 120.60[s]
JKNet_LC 144.78ms] / 78.24]s] 430.41ms] / 865.71]s] 138.52[ms| / 277.63s]
GPRGNN_LC| 287.54[ms] / 164.88[s] 818.13[ms] / 1645.49[s] ~ 219.66 [ms] / 204.56]s]

to mini-batch training. For example, in Flickr data LC versions more efficiently
train than non-scalable GNNs even if they have similar training time per epoch.
These results indicate that our framework transforms non-scalable GNNs to ef-
ficient precomputation-based GNNs with the comparable classification accuracy
to the original GNNs.

Comparison on large-scale graph. Table 4 shows the performance compar-
ison on papers100M having more than 100 million nodes and one billion edges.
Non-scalable GNNs (GCN, JKNet, and GPRGNN) cannot work on papers100M
since the whole graph cannot be put on GPU memory. GPRGNN_LC achieves
comparable accuracy (approximate one percent difference) with FSGNN, which
is the state-of-the-art precomputation-based GNN while GPRGNN_LC runs
faster than FSGNN. Though ShaDow-GAT achieves the highest accuracy, it
requires more than 10x total training time than other models. This is because
it needs to operate graph convolutions on many enclosing subgraphs extracted
from the whole graph. SGC obtains lower accuracy than GCN_LC. This result

GNN Transformation Framework for Improving Efficiency and Scalability 13

Table 4: Results on papers100M. We show test/validation accuracy (standard
deviation) and training time (per epoch / total). Total training time includes
precomputation time. OOM indicates that the execution is out of memory.

‘Test accuracy‘Val accuracy‘ Time (epoch / total)

GCN OOM OOM OOM

JKNet OOM OOM OOM
GPRGNN OOM OOM OOM

SGC 0.623(0.007) [0.667(0.002)| 425.15[ms] / 2211.23[3]
FSGNN 0.665(0.003) |0.706(0.001) | 3550.82[ms] / 8612.48]s]
ShaDow-GAT | 0.666(0.003) |0.703(0.001) |2948.50e3[ms] / 92264.76[s]
GCN_LC 0.647(0.006) | 0.688(0.002)| 611.90[ms] / 2477.55s]
JKNet_ LC | 0.641(0.003) [0.689(0.004) | 1488.80[ms] / 3396.69]s]
GPRGNN_LC| 0.658(0.002) [0.696(0.001)| 2749.27[ms] / 7410.47[s]

9
© 0.7 r,w
S
906 ‘ — SGC
© ‘ —— FSGNN
g 0.5 ShaDow_GAT
= o —— GCN_LC
S = JKnet_LC
= —— GPRGNN_LC
S o3
0 2000 4000 6000 8000 10000

Precomputation + weight learning time [sec]

Fig. 2: Validation accuracy over training time (precomputation and weight
learning time) on papers100M. Plots indicate epochs. LC versions (GCN_LC,
JKNet_LC, and GPRGNN_LC) are faster than FSGNN and ShaDow-GAT while
achieving competitive accuracy.

validates that non-linearity contributes to weight learning for better classifica-
tion.

In order to analyze the results on papersl00M in details, we show the val-
idation accuracy at each epoch over total training time in Figure 2. Note that
total training time consists of precomputation and weight learning time. We ob-
serve that GCN_LC, JKNet_LC, and GPRGNN_LC are plotted in the upper left
corner of the figure. This observation indicates that they require less total train-
ing time than FSGNN and ShaDow-GAT. The LC versions achieve competitive
performance with them. Through these experiments, we demonstrate that LC
versions are efficient and scalable for large-scale graphs.

14 S. Maekawa et al.

$ 5000 mmm Naive CPU computation
n i i
:4000 mmm Block-wise computation (Ours)
€

S 3000

c

.© 2000

-+

!

g L

X

oo

ation . . .
Norma“z:;‘; jon with® :; 05 n with\? Z;‘;S on within 3noP
Ag9" Ago" r

Fig. 3: Precomputation time comparison between a naive CPU computation and
our block-wise computation.

4.2 Precomputation Efficiency (Q2)

To validate the efficiency of our block-wise precomputation, we compare it with
naive CPU computation adopted by existing works [12, 18]. We use a large-scale
graph, papers100M, which requires a 67GB normalized adjacency matrix and a
57GB feature matrix. For adjacency matrix normalization, we set the number of
disjoint blocks of an adjacency matrix to a = 3, which satisfies Eq. (11). Also, for
feature aggregation we set numbers of disjoint blocks of a normalized adjacency
matrix and feature matrix to b = 10, ¢ = 16, respectively, which satisfy Eq. (12).

Figure 3 shows the precomputation time for normalization and feature ag-
gregation on CPU and GPU. The result demonstrates that our block-wise pre-
computation is 20x faster than CPU computation for normalization. Also, the
result indicates that our precomputation is up to twice faster than CPU com-
putation for feature aggregation. Hence, we conclude that our precomputation
is more efficient than CPU computation on a single machine.

5 Related Work

Relationship between non-scalable GNNs and LC versions. We discuss
the background of non-scalable GNNs and their LC versions. Graph convolution
is motivated by the 1-dim Weisfeiler-Lehman (WL-1) algorithm [23] which is
used to test graph isomorphism; two graphs are called isomorphic if they are
topologically identical. WL-1 iteratively aggregates the labels of nodes and their
neighbors, and hashes the aggregated labels into unique labels. The algorithm
decides whether two graphs are isomorphic or not by using the labels of nodes at
some iteration. Non-scalable GNNs such as GCN [15] replace the hash function
of WL-1 with a graph convolutional layer which consists of feature aggregation,
weight multiplication, and non-linear function application. As for LC versions,
they replace the hash function of WL-1 with feature aggregation. These obser-
vations indicate that WL-1 is analogous to feature aggregation of LC versions,
similarly to graph convolution of non-scalable GNNs.

GNN Transformation Framework for Improving Efficiency and Scalability 15

Sampling-based GNNs. Sampling-based GNNs [10, 5, 6, 29, 28] avoid keeping
a whole graph on GPU by computing node representations from enclosing sub-
graphs of the input graph. The major drawback of the sampling-based GNNs is
that they need costly training time since they need to operate graph convolutions
on many enclosing subgraphs extracted from the input graph.

GNNs dynamically modifying the importance of edges. As we discussed
in Section 3.1, our transformation cannot support GNNs which dynamically
control the propagation of features during weight learning. An example of such
GNNs is GAT [22], which learns attention parameters controlling the importance
of edges for each iteration. Another example is GIN [26] learns a parameter con-
trolling a weight between self features and features from neighbors. One possible
direction is that we first determine the parameters by training on a subset of an
input graph, then fix them in order to precompute feature aggregation.

Distributed matrix operations. Matrix operations can be parallelized for
distributed computing [4] [3]. For example, the authors of [11] proposed Mars
which is an approach for hiding the programming complexity of MapReduce
on GPU. Also, MR-Graph [20] is a customizable and unified framework for
GPU-based MapReduce. It allows its users to implement their applications more
flexibly. As for distributed graph neural network training, DistDGL [31] has
proposed mini-batch training on graphs, which scales beyond a single machine.
It suffers from an imbalance problem since it uses a typical graph clustering
algorithm METIS [13] to partition large-scale graphs into subgraphs, while our
scheme can partition an edge set into balanced subsets. For further scale up
of graphs, it would be important to combine distributed computing and our
block-wise precomputation for graphs.

6 Conclusion

We presented a framework that automatically transforms non-scalable GNNs to
efficient and scalable precomputation-based GNNs. There are two major charac-
teristics of our framework: 1) it supports a novel transformation procedure that
transforms non-scalable GNNs to efficient and scalable precomputation-based
GNNs having a similar functionality to the original GNNs, 2) the precompu-
tation of the transformed GNNs can be efficiently executed by our block-wise
precomputation scheme that decomposes large-scale graphs into disjoint and
balanced blocks each of which can be handled on GPU memory. Through our
experiments, we demonstrated that the transformed GNNs run more efficiently
than their original GNNs and can be scaled to graphs with millions of nodes
and billions of edges. Due to the strong performance of LC versions, we argue
that LC versions will be beneficial as baseline comparisons for future research
on scalable GNNs.

Acknowledgement. This work was supported by JSPS KAKENHI Grant

Numbers JP20H00583 and JST PRESTO Grant Number JPMJPR21C5.

16

S. Maekawa et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N., Lerman, K., Harutyun-

yan, H., Ver Steeg, G., Galstyan, A.: Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In: ICML (2019)

Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation
hyperparameter optimization framework. In: KDD (2019)

Awaysheh, F.M., Alazab, M., Garg, S., Niyato, D., Verikoukis, C.: Big data re-
source management & networks: Taxonomy, survey, and future directions. IEEE
Communications Surveys & Tutorials (2021)

Boehm, M., Dusenberry, M.W., Eriksson, D., Evfimievski, A.V., Manshadi, F.M.,
Pansare, N., Reinwald, B., Reiss, F.R., Sen, P., Surve, A.C., et al.: Systemml:
Declarative machine learning on spark. PVLDB 9(13) (2016)

Chen, J., Ma, T., Xiao, C.: Fastgcn: fast learning with graph convolutional networks
via importance sampling. arXiv preprint (2018)

. Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-gcn: An

efficient algorithm for training deep and large graph convolutional networks. In:
KDD (2019)

Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive universal generalized pager-
ank graph neural network. In: ICLR (2021), https://openreview.net/forum?id=
n6j17fLxrP

Frasca, F., Rossi, E., Eynard, D., Chamberlain, B., Bronstein, M., Monti, F.: Sign:
Scalable inception graph neural networks. In: ICML 2020 Workshop on Graph
Representation Learning and Beyond (2020)

Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: Dis-
tributed graph-parallel computation on natural graphs. In: 10th USENIX sym-
posium on operating systems design and implementation (OSDI 12). pp. 17-30
(2012)

Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: NeurIPS (2017)

He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: a mapreduce
framework on graphics processors. In: PACT (2008)

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., Leskovec, J.:
Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint
(2020)

Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on scientific Computing 20(1), 359-392 (1998)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
(2014)

Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

Klicpera, J., Bojchevski, A., Giinnemann, S.: Predict then propagate: Graph neural
networks meet personalized pagerank. In: ICLR (2019)

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:
Distributed graphlab: A framework for machine learning in the cloud. PVLDB
(2012)

Maurya, S.K., Liu, X., Murata, T.: Improving graph neural networks with simple
architecture design. arXiv preprint (2021)

Newman, M.E.: Networks: An Introduction. Oxford University Press (2010)

GNN Transformation Framework for Improving Efficiency and Scalability 17

20. Qiao, Z., Liang, S., Jiang, H., Fu, S.: A customizable mapreduce framework for
complex data-intensive workflows on gpus. In: IPCCC (2015)

21. Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: Towards deep graph convolu-
tional networks on node classification. arXiv preprint (2019)

22. Velickovi¢, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint (2017)

23. Weisfeiler, B., Lehmann, A.; A.: A reduction of a graph to a canonical form and
an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia,
2(9):12-16 (1968)

24. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph
convolutional networks. In: ICML (2019)

25. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems 32(1) (2020)

26. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826 (2018)

27. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Represen-
tation learning on graphs with jumping knowledge networks. In: ICML (2018)

28. Zeng, H., Zhang, M., Xia, Y., Srivastava, A., Malevich, A., Kannan, R., Prasanna,
V.K., Jin, L., Chen, R.: Deep graph neural networks with shallow subgraph sam-
plers. CoRR abs/2012.01380 (2020), https://arxiv.org/abs/2012.01380

29. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: GraphSAINT: Graph
sampling based inductive learning method. In: International Conference on Learn-
ing Representations (2020), https://openreview.net/forum?id=BJe8pkHFwS

30. Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: A survey. IEEE TKDE
(2020)

31. Zheng, D., Ma, C., Wang, M., Zhou, J., Su, Q., Song, X., Gan, Q., Zhang, Z.,
Karypis, G.: Distdgl: distributed graph neural network training for billion-scale
graphs. In: 2020 IEEE/ACM 10th Workshop on Irregular Applications: Architec-
tures and Algorithms (IA3). pp. 36-44. IEEE (2020)

32. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily
in graph neural networks: Current limitations and effective designs. NeurIPS 33
(2020)

A LC Version of GPRGNN

We show an example of LC transformation for the state-of-the-art GNN model,
GPRGNN [7]. We give the formulation of GPRGNN as follows:

H=Y1 o wS*o(...0(XWy)...)W), (13)

where v, is an attention parameter learning the importance of k-th layer and
T is the number of layers for Multi-layer perceptrons. Note that S* cannot
be efficiently precomputed since the number of non-zero elements significantly
increases when k > 2 for large-scale graphs. By iteratively applying frc to
Eq. (13), we obtain the formulation of its LC version as follows:

HYC =S8 y(o(...o(SEXW,)...)Wr). (14)

S* X can be precomputed since it does not need to be updated when learnable
weights Wi ... W and a parameter v are updated.

