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Abstract. Interest in speaker intent classification has been increasing
in multi-turn dialogues, as the intention of a speaker is one of the compo-
nents for dialogue understanding. While most existing methods perform
speaker intent classification at utterance-level, the dialogue-level com-
prehension is ignored. To obtain a full understanding of dialogues, we
propose a Multi-Factor Dialogue Graph Model (MFDG) for Dialogue
Core Intent (DCI) classification. The model gains an understanding of
the entire dialogue by explicitly modeling multi factors that are essen-
tial for speaker-specific and contextual information extraction across the
dialogue. The main module of MFDG is a heterogeneous graph encoder,
where speakers, local discourses, and utterances are modelled in a graph
interaction manner. Based on the framework of MFDG, we propose two
variants, MEDG-EN and MFDG-EE, to fuse domain knowledge into the
dialogue graph. We apply MFDG and its two variants to a real-world on-
line customer service dialogue system on the e-commerce website, J]ﬁ
in which the MFDG can help achieving an automatic intent-oriented
classification of finished service dialogues, and the MFDG-EE can fur-
ther promote dialogue comprehension with a well-designed knowledge
graph. Experiments on this in-house JD dataset and a public DailyDialog
dataset demonstrate that MEDG performs reasonably well in multi-turn
dialogue classification.

Keywords: dialogue classification - core intent classification - graph
neural network.

1 Introduction

There are increasing number of internet firms and platforms providing online
customer services, thus creating lots of available multi-turn dialogues between
customer service staffs and customers, which could be explored further for en-
hancing the user experience and satisfaction. Especially, the ability to recognize
speakers’ intentions, which is officially called Dialogue Intent (DI) classification
[2526], is essential to perceive the customers’ requests across the dialogue. Most
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of works focus on the utterance-level DI classification, ignoring the dialogue-level
comprehension. To promote the full understanding of dialogues, we bring for-
ward a task, Dialogue Core Intent (DCI) classification, aiming to infer the core
intention of the entire dialogue, such as refund promoting, product consultation,
service complaint and etc. Early works regarded multi-turn dialogues as ordinary
texts [I]. They simply concatenated the utterances in the dialogue, preventing
them from learning the dialogue-level contextual dependency among utterances.

Dialogues have their own specific characteristics. As an example shown in
Table m the speakers of a dialogue talk in a random order, breaking up the con-
tinuity of adjacent utterances in the dialogue. Moreover, topic transitions are
common in human-human dialogues, which brings a new challenge of modeling
the dependency among remote but interrelated utterances. The key point to ad-
dress dialogue classification is adopting speaker-specific and contextual modeling
[2].

Firstly, the speaker-specific dialogue modeling considers speaker information
contained in the dialogue. It consists of two aspects: intra and inter speaker
dependency. Intra-speaker dependency is used to reflect the affect that speakers
have on themselves, which can contribute to the understanding of individual
speakers. Inter-dependency implies the dynamic interactions among speakers.
Modeling intra and inter speaker dependency in dialogues relies on plenty of
factors, such as topic, speakers’ personality and viewpoint [2]. Secondly, the
contextual information coming from both neighbouring and distant utterances is
indispensable for dialogue understanding. While the importance of neighbouring
utterances is generally considered, it should be stressed that distant utterances
can sometimes offer supplementary information when speakers refer to the same
word that appears at former utterances.

In term of the above two points, DialogueGCN was proposed in [3], which
built a directed graph to model both speaker dependency and contextual infor-
mation in the dialogue. Later, other works inherited the graph modeling pattern
and introduced discourse relations [45], position encoding [6] to the dialogue
graph for enhancing the understanding of utterances in the dialogue.

It reminds us to acquire the comprehension of the dialogue based on a dia-
logue graph. Besides, considering the lack of additional factors’ annotation, we
focus on the very nature of multi-turn dialogues and build a multi factor dia-
logue graph. Not like prior methods using edges to inject speaker dependency,
we explicitly define speaker nodes to represent the contextual information of
speakers in the dialogue.

Moreover, we find the consecutive utterances spoken by the same speaker are
generally highly correlated and supplementary to each other. A real example is
shown in Table [} The customer speaks Ul, U2 and U3 continuously to explain
the problem he (she) faces, thus it’s helpful to integrate them to know the back-
ground information of the customer. We add local discourse nodes to aggregate
such consecutive utterances for generating a dialogue representation later. The
multi factor dialogue graph we build has three types of nodes, namely utterance
nodes, speaker nodes and local discourse nodes. And the graph has five different
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Table 1. An example dialog from JD dataset. The core intent label of this dialogue is
'refund urging’. Bold font denotes the pre-defined entities coming from a well-designed
knowledge graph for JD dataset.

Speaker |Utterance

U1l |[Customer|Hello? I can not reach the merchant.

I bought some bread with a shelf life of a week, and it has been

U2 |Customer 4 days after T ordered.

U3 |Customer|I haven’t receive the bread, but it is probably expired at that time.

U4 |Staff We are sorry for our neglect. We will connect the merchant right now.
U5 |Customer|I demand for return.
U6 |[Staff You can apply for Refund of unreceived goods on the app.

I have tried. This needs the permission of the merchant

U7 |Customer and I can not reach him.

U8 |Staff We can apply for Order dispute for you.

U9 |Staff Then you need to provide some evidence, after that
we help you with the refund.

U10|Customer |all right.

types of edges, i.e., speaker edges, local edges, local-speaker edges, utterance-
order edges and local-order edges. By applying a Graph Convolution Network
(GCN) to this graph, we propagate contextual information among multi factors
and obtain a multi-factor representation of the dialogue.

To sum up, we propose the Multi-Factor Dialogue Graph model (MFDG) by
explicitly modeling the relations among speakers, utterances and local discourses
in dialogues. We believe that the representation contains richer information rel-
evant to core intent than other graph-based and text classification models. The
results are shown in Section [El

Furthermore, we discover there exist entities that contain domain-specific
knowledge in online customer service dialogues. As shown in Table[I} pre-defined
entities 'Refund of unreceived goods’ and 'Order dispute’ always appear with the
refund demand of the customer. It will be helpful to take advantage of such do-
main knowledge. We explore two ways to fuse the fine-grained entity information
into our original model MFDG, namely MFDG-Entity Node (MFDG-EN) and
MFDG-Entity Embedding (MFDG-EE). On the basis of MFDG, MFDG-EN
adds entity nodes to the dialogue graph and considers the inclusion relations
among utterances and entities, MFDG-EE combine the token-level and entity-
level representations and generate knowledge-aware initial representations for
utterance nodes.

In summary, our main contributions are as follows:

— We propose a novel model, MFDG, to infer the core intention of a multi-turn
dialogue by obtaining a full understanding of the entire dialogue.

— We build a heterogeneous dialogue graph to model the interactions among
multi factors in the dialogue. Especially, we create local discourse nodes
to aggregate consecutive utterances spoken by the same speaker and add
speaker nodes to explicitly capture the speaker information.
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— Additionally, we propose two variants of MFDG to explore an appropriate
way to fuse domain knowledge into the dialogue graph.

2 Related Work

In this section, we firstly introduce current deep learning models for text classifi-
cation, as dialogue core intent classification is a specific type of text classification.
Considering the lack of dialogue-level classification models, we then introduce
related works for utterance-level dialogue classification from the following two
perspectives: recurrence-based models and graph-based models.

— Text Classification Deep learning models have achieved state-of-the-art
results in many domains, including a wide variety of NLP applications.
TextCNN [7] firstly migrated Convolutional Neural Networks (CNN) from
computer vision to natural language processing. CNN makes use of convo-
lution kernel to generate latent semantic features across the sentences, and
performs much better than traditional feature-based text classification mod-
els. However, CNN does not take sequential information among sentences
into consideration. As Recurrent Neural Network (RNN) is designed to rec-
ognize the sequential characteristics of data, it’s a powerful model for text,
string and sequential data classification [§]. Furthermore, an attention-based
Long Short-Term Memory (LSTM) network [9] was proposed to dynamically
integrate text information.

— Recurrence-based Models Utterances of the dialogue are inherently se-
quential, then [I0] proposed RNN and LSTM models for utterance intent
classification task. DialogueRNN [12] used two Gate Recurrent Units (GRU)
to track individual speaker states and global context across the dialogue.
COSMIC [13] shared a similar network with DialogueRNN and incorporated
different elements of commonsense to learn interactions between speakers
participating in a dialogue.

— Graph-based Models Many recent utterance-level dialogue classification
models utilized graph-based neural networks to adopt speaker-specific and
contextual modeling. DialogueGCN [3] firstly leveraged self and inter-speaker
dependency of the speakers in a graph-based framework to model a con-
versational context, treating each dialogue as a graph where each utter-
ance is connected to its surrounding utterances. Based on DialogueGCN,
RGAT [I6] added relational positional encodings that provide RGAT with
sequential information implying in the dialogue. Besides, some other methods
[45] draw support from pre-defined discourse relations between utterances.
Lately, DAG [22] attempted to combine the advantages of recurrence-based
models and graph-based models, which designs a directed acyclic graph to
model the connections between nearby and distant utterances.
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Sequential Encoding Module Original Dialogue

L1 | [ui]€: Hello?

vz L2 [U2] §: Yes, Are you having problems in this order ?

us <:| [U3] C: When can | get my goods?
L3 [U4] C: Was not it sent from the nearest store house?

[U5] C: Too slow...I have urged the order once.

L4 [UB] §: The goods is out of stock. It will take longer time.

L5 | [U7]C: Ok

Multi Factor Dialogue Graph Module Classification Module
N :

Core Intent Label

Fig. 1. The overall framework of MFDG. First, a sequential encoding module is used
to obtain the initial representations of utterances in the dialogue. Then, in multi factor
dialogue graph module we construct a dialogue graph consisting of three types of nodes
and five types of edges. We utilize a graph convolutional network to update the nodes’
features. Finally, three types of nodes are pooled and then concatenated together to
be the dialogue representation which is fed to a fully connected layer for dialogue-level
core intent classification.

3 Methodology

3.1 Problem Definition

In the following sections, let D = {Uy,Us, ...,Un, } be a dialogue with NN, utter-
ances, and let there be N, speakers S = {s1, $2,..., sy, } in dialogue D, where
each utterance U; is associated with the ID of its corresponding speaker by a
mapping function P(U;). Given D, S and P, DCI attempts to predict the core
intention label I of the dialogue.

3.2 Model

Now we present our Multi-Factor Dialogue Graph model (MFDG), which mainly
consists of three modules as shown in Figure

— Sequential Encoding Module. This module is used to produce context-
dependent representations for utterances without considering speaker-specific
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information, which will be used as the initial node features for the dialogue
graph.

— Multi Factor Dialogue Graph Module. In this module, we organize
the dialogue context as a heterogeneous graph. The detailed process of dia-
logue graph construction is below. Then a Relational Graph Convolutional
Network (R-GCN) is applied to integrate contextual and speaker-specific
information from multi factors in the dialogue graph.

— Classification Module. The last module predicts the core intention of a
dialogue over the multi-factor involved dialogue representation.

Sequential Encoding Module Firstly, we follow [7] to make use of a CNN
to extract features for each utterance. We use a simple CNN with one layer of
convolution followed by max-pooling and a fully connected layer to learn the
representations for the utterances.

Then, in order to obtain inherent contextual information among utterances,
we feed the output of CNN to a Bidirectional Long Short-Term Memory (Bi-
LSTM). Let H = {g1, g2, ---gn,, } be the output of the former CNN, the output
features of utterances through Bi-LSTM can be represented as:

wi = [LSTM(g:); LSTM (g;)] (1)

for i = 1,2,...N,,, where u; is the sequential contextual feature for utterance
U;. Then uj,ug,...,uy, are used to initialize the node features of the dialogue
graph.

Multi Factor Dialogue Graph Module In view of the characteristics of
dialogues mentioned before, we explicitly model the interactions between utter-
ances, speakers and local discourses. A heterogeneous graph with these three
types of nodes is built to model the dialogue. Figure [2is an example of dialogue
graph for the original dialogue in Figure

Same as prior works, each utterance in a dialogue is viewed as a node to rep-
resent the information of each turn in this dialogue, and the number of utterance
nodes in a dialogue graph is same as that of turns in the dialogue. Then, speaker
nodes are added for obtaining speaker information. The number of speaker nodes
is decided by the speakers involved in the dialogue. In the online customer ser-
vice scenario, there are usually two speakers, staff and customer. Besides, local
discourse nodes denote the aggregated information for the sets of local longest
continuous utterances uttered by the same speaker.

The initial representations of utterance nodes are the outputs of sequential
encoding module. In addition, each speaker node initializes itself by averaging the
representations of utterance nodes uttered by this speaker. Similarly, the mean
of the representations of local longest continuous utterance nodes is used as the
initial representation of the corresponding local discourse node. The number of
speaker and local discourse nodes is denoted as N, N, respectively.
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Fig. 2. Dialogue graph of the original dialogue in Figure [[] For brevity, we omit the
self-loop edges. We set both utterance-level and local discourse-level context window
to [1, 1].

In this heterogeneous graph, we define several different types of edges to
indicate different aspects of knowledge. Here is the introduction of edges in the
dialogue graph.

— speaker edge: Each of the speaker nodes is connected to all of its spoken
local discourse nodes with the speaker edge so that the speaker node can
learn speaker information in the dialogue.

— local edge: To strengthen the connections among local continuous utter-
ances, we create the local discourse node for each of the sets of local longest
continuous utterance nodes and connect the local discourse node with every
utterance nodes in the set by the local edge.

— local-speaker edge: Despite using speaker edges to explicitly include the
speaker information, local discourse nodes spoken by the same speaker are
fully connected with the local-speaker edge to inject the intra-speaker de-
pendency into the graph.

— utterance-order edge and local-order edge: To obtain the contextual
information that comes from both neighbouring and distant utterances, two
types of edges are created to introduce utterance-level and local discourse-
level contextual information, respectively. Each utterance is connected to its
contextual utterances by the utterance-order edge, and we set a utterance-
level context window [p,q] so that each utterance node has an edge with
its past p utterances and latter q utterances. Besides, it should be empha-
sized that an utterance node only has utterance-order edges with utterance
nodes which connect to the same discourse node with it. Likewise, each local
discourse node is connected to its contextual local discourse nodes by local-
order edges with a local discourse-level window size [m, n], which promotes
the message passing among distant utterances.
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Apart from above five types of edges, we also add self-loop edges for each
node in the dialogue graph to facilitate effective computation. Therefore, there
are totally six types of edges in the dialogue graph.

After acquiring the initial representation hj for each node nj; and the edges
among nodes, we feed the node features and the adjacent matrix into a graph
neural network to obtain structural and semantic information of the dialogue.
We apply R-GCN [15] to acquire the high-level hidden features with multi factors
considered. The graph convolutional operation for node n,, at the [+ 1 layer can
be defined as:

R =RELU [ Y > wn 4 b (2)
r€R a€N,(v)

where R denotes different types of edges, N,.(v) is the set of one-hop neighbors of
node n,, under edge 7, Wr(l) and bgl) denote the edge-specific learnable parameters
at the [-th layer. Furthermore, h;co) = hy, for k =1,2,..., N, where N = N, +
N, 4+ N; denotes the total number of nodes in the dialogue graph.

In addition, it is a natural thought that different types of edges can not be
treated equally. We make use of the gating mechanism when aggregating infor-
mation from different relations [I4]. The simple idea is to compute a coefficient
between 0 and 1 for each relation:

M = Sigmod(hP W) (3)

Therefore the message passing process for node n, at the [ 4+ 1 layer in the
R-GCN can be overwrote as:

WD =RELU | 3" > DwOnd + b0 (4)
r€R a€N,(v)

Classification Module Finally, we concatenate the pooling results of output
features of speaker nodes, utterance nodes and local discourse nodes at each
GCN layer as hidden graph features. Here the pooling operation can be either
max or mean pooling. Then, we concatenate the hidden graph features of all the
GCN layers as the representation of the dialogue and makes the prediction using
a fully-connected network.

3.3 Domain Knowledge Integration

Utterances of online customer service dialogues contain lots of domain-specific
entities. An example is shown in Figure [I} where the entities come from a well-
designed knowledge graph for JD dataset. Here we design two approaches to take
advantage of the fine-grained entity information based on MFDG, MFDG-EN
and MFDG-EE. Both of them utilize pre-trained knowledge graph embedding
so we firstly give a brief introduction to knowledge graph embedding and then
detail the two variant models.
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Knowledge Graph Embedding Knowledge Graph (KG) is composed of
triples in the form of (head entity, relation, tail entity). Given all the triples
in a KG, knowledge graph embedding aims to learn representation for each en-
tity and relation that preserves structural information of the KG. There exist
many translation-based knowledge graph embedding methods, such as TransE
[18], TransH [19], TransR [20]. Considering those methods lack the ability of
using the graph structures to enforce the local/global smoothness in the embed-
ding spaces for entities and relations [21], we apply a simple R-GCN to acquire
entity embedding from a pre-defined KG. Let us denote the pre-trained entity
embedding as [Ey, Ea, ..., Ej, ..., Ei], where K is the total number of entities of
the KG and E; is the generated embedding for entity e; in the KG.

MFDG-EN The first variant of MFDG is proposed by adding entity nodes
to the dialogue graph, named as MFDG-Entity Node (MFDG-EN). That is,
every individual entity appearing in a dialogue is treated as a entity node in
the dialogue graph, and each utterance node is connected to entity nodes that
contained in the corresponding utterances by entity-utterance edges. Besides, the
entity embedding generated from above is used to initialize the entity node. In
this way, utterances containing the same entities can be indirectly connected by
two consecutive entity-utterance edges, which was designed to promote message
passing of domain knowledge in the dialogue graph.

MFDG-EE MFDG-Entity Embedding (MFDG-EE) leaves the dialogue graph
unchanged, combining the token-level and entity-level representations and gen-
erating knowledge-aware initial representations for utterance nodes.

Here we use U = ty1., = [t1,t2,...,tn] to denote the raw sequence of an
utterance in dialogue D, where n is the number of tokens in U. Then the token-
level vectors for U can be obtained from a look-up word embedding table, which
is denoted as W = [wiws...wp].

The entity-level vectors E = [g1ga...gn] for U is generated as below:

{Ej if ¢; is in the span of entity e;(j = 1,2, ..., K)
gi =
else

Considering entity vectors are not in the same vector space with token vectors,
we introduce a transformation function F' for entity vectors:

F(E) = [F(91)F(g2)---F(gn)] ()

, where F' can be either linear or non-linear mapping function.

Then we align and stack the token-level and entity-level embedding matrices
as M = [[w1F(g1)][waF(g2)]...[wnF(gn)]]. M will be fed into the sequential
encoding module to compute knowledge-aware utterance representations. The
rest of MFDG-EE is same as MFDG.
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4 Experiment Setting

4.1 Datasets

We investigate several public dialogue datasets and find little information is
available about dialogue-level labels. For this reason, we evaluate our MFDG
model and its two variants on JD and DailyDialog datasets. The statistical
information of them is shown in Table [2] Both the two datasets are composed
of multi-turn dialogues where at least two speakers involve.

— JD Dialogue dataset This dataset is supplied by the customer service de-
partment of JD. Dialogues in this dataset are produced when customers con-
sult the online customer service staffs about a series of issues. Each dialogue
consists of several utterances with speaker annotations. The dialogues are
annotated with one of 50 core intent labels, which are carefully designed by
experts to summarize the essential intention of the customer during conver-
sation. The dataset has 20,000 samples of dialogues, with a total of 437,060
utterances. We use 18,000 dialogues for training, 1,000 for validation, and
the remaining for test.

— DailyDialog This dataset [23] reflects our daily communication way and
covers various topics. Each dialogues in DailyDialog is annotated with one
of the 10 certain topics, ranging from ordinary life to financial. It totally
has 13,118 dialogues and 102,979 utterances. We use 11,118 dialogues for
training, 1,000 for validation, and the remaining for test. Despite it does
not have speaker annotations for utterances, we assume the utterances are
spoken by two speakers one by one like previous works did.

Table 2. Statistical information of datasets. #Turn refers to the average number of
utterances in a dialogue.

Dataset #Dialogue #Utterances #Turn #Class
JD dataset 20,000 473,060 23.65 50
DailyDialog 13,118 102,979 7.85 10

4.2 Evaluation Metrics

We adopt several widely used evaluation metrics, which are accuracy, HQ3, HQ5,
macro-F1 and weighted-F1, to evaluate the performance of MFDG. Besides, we
remove HQ5 for DailyDialog, as there are just 10 classes in this dataset.

4.3 Baseline Methods

For the lack of dialogue-level classification model, we compare our model with
several baseline methods for text classification, pre-trained models and some
modified models of utterance-level classification models.
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— TextCNN [7] This is a convolutional neural network based model for sen-
tence classification. To acquire the features for dialogue-level classification,
we add a max pooling layer to aggregate the utterances in the dialogue.

— TextRNN [§] In this method, a Bi-LSTM network is used to capture the
contextual information from surrounding tokens in a text. We concatenate
the utterances in a dialogue as an input of this model.

— TextRNN-Att [9] This model uses a Bi-LSTM with attention mechanism
to automatically focus on the most informative words in a text. Likewise, we
concatenate the utterances in a dialogue as an input of this model.

— BERT-baseEI, Roberta-baseEI, ERNIEﬁ We use each of these three pre-
trained models as an encoder for dialogues, following with a fully connected
layer to acquire the dialogue-level labels.

— Dialog-BERT [27] Dialog-BERT designs three pre-training strategies to
sufficiently capture dialogue exclusive features. We use the pre-trained modeﬂ
as an encoder for dialogues, following with a fully connected layer to acquire
the dialogue-level labels.

— DialogueGCN [3] DialogueGCN builds a graph for the dialogue where
nodes represent individual utterances and the edges represent both the speaker
and temporal dependency across the dialogue. DialogueGCN uses R-GCN as
its graph encoder and initializes utterance features by using a CNN following
a GRU. We modify DialogueGCN to a dialogue-level classification model by
adding a max pooling layer to the graph neural network for acquiring rep-
resentations of dialogues.

— RGAT [16] Based on the dialogue graph DialogueGCN builds, this module
introduces position encodings to the graph to retain the sequential informa-
tion contained in dialogues. RGAT uses the pre-trained BERT-base model
to acquire the initial representations of utterance nodes. The modified oper-
ation is same as above.

— DAG [22] This model builds a directed acyclic graph for the dialogue with
several carefully designed constraints on speaker dependency and positional
relations. DAG introduces a directed acyclic graph neural network for utterance-
level emotion recognition. Initial utterance embeddings in DAG is acquired
form the pre-trained Bert-base model. The modified operation is same as
above.

4.4 Other Settings

We choose cross entropy as the loss function for our model on two datasets. We
take advantage of a cosine annealing schedule to dynamically modify the learning

* https://huggingface.co/bert-base-cased

® https://github.com/pytorch/fairseq/tree/main/examples/roberta
5 https://github.com/nghuyong/ERNIE-Pytorch

" https://github.com/xyease/Dialog-PrL.M
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rate, and the initial learning rate is set to le-4. Adam optimizer is used in the
training process with a batch size of 32 on both of the two datasets. JD dataset
take the 300 dimensional Chinese Word Vectors [I7] and DailyDialog use 300
dimensional pretrained 840B Glove vectors [24] as word embeddings. Then we
set the CNN filter size to (3, 4, 5) with 50 out channels in each, following is a fully
connected layer to get a 100 dimensional feature for each utterance. The hidden
size of Bi-LSTM in the sequential encoding module is set to 100. We use 2-layer
R-GCN to perform message passing on the dialogue graph. The utterance-level
and local discourse-level window sizes are set to [5, 5] and [2,2], respectively.
And We choose dropout rate that achieved the best score on each dataset by
using validation data. Each training and testing process were conducted on a
single Tesla P40 GPU. Every training process contain 60 epochs. The presented
results are averages of 5 turns.

Besides, as for the knowledge graph resource that the two variant models
MFDG-EN and MFDG-EE demand, we use a well-designed KG built by experts
for JD Dialogue dataset. DailyDialog consists of daily communication dialogs
and it’s hard to design a KG for it, so we just extract general entities by spanﬁ
without pre-defined relations between entities and use the word embeddings of
entities as the initial features of entity nodes.

5 Results and Analysis

5.1 MFDG comparing with Baseline methods

Table 3. Comparison with baseline methods on the JD Dialogue dataset; Bold font
denotes the best performances.

Model Acc Top-3 Top-5 Macro-F1 Weighted-F1
TextRNN 49.10 74.90 84.00 38.62 46.52
TextRNN-Att  55.30 79.00 86.10 47.77 52.83
TextCNN 63.80 85.80 92.20 57.72 62.58
Bert-base 62.90 83.40 88.60 57.48 61.39
Robert-base 61.60 83.10 88.70 56.52 61.10
ERNIE 64.80 83.30 87.90 60.89 64.04
Dialog-BERT  63.70 87.70 93.40 55.09 61.21
DialogueGCN  61.30 83.90 90.80 52.48 58.70
RGAT 63.50 89.40 93.90 59.02 63.53
DAG 63.20 86.40 93.20 58.52 61.69
MFDG 66.50 89.30 94.40 60.64 65.30
MFDG-EN 65.00 88.60 94.00 60.71 64.00

MFDG-EE 67.70 90.40 95.20 61.06 66.48

We show the performance of MFDG and its variants with other baseline
methods in Table [3] and Table @] Our model outperforms text classification

8 https://spacy.io/
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baseline methods and other graph-based models. On the JD dataset, apart from
MFDG-EE, MFDG achieves best Macro-F1 of 60.64%, Top-3 of 89.3%, Top-5
of 94.4%, and accuracy of 66.5%, which is 4.2% better than RGAT, and 2.9%
better than the pre-trained model ERNIE. On the DailyDialog, MFDG achieves
best Macro-F1 of 61.41% and Weighted-F1 of 72.22%.

It shows that graph-based models outperform most of the text classification
models, as they adopt speaker-specific and contextual modeling for dialogue un-
derstanding, whereas text classification models treat the dialogue as an ordinary
text without consider the characteristics of the dialogue. Besides, we notice that
DialogueGCN perform worse than TextCNN, It demonstrates that DialogueGCN
can obtain a good understanding of utterances, however mere modeling inter-
actions between surrounding utterances leads to obvious losses of dialogue-level
contextual information.

Besides, we notice MFDG underperforms Dialog-BERT on DailyDialog, oth-
erwise outperforms Dialog-BERT on JD dataset. As the dialogues in JD dataset
contain more utterances and speakers of dialogues in it talk in a random or-
der, which is differ from dialogues in DailyDialog as the speakers talk one by
one, we consider our MFDG shows its superiority in the real human-to-human
multi-turn conversation scenarios.

With regard to the gap in performance between MFDG and other three
graph-based models, it is important to understand the nature of these mod-
els. All of them build a dialogue graph and apply a GNN to train the model,
whereas, other graph-based models only capture contextual information among
utterances. MFDG adds other factors, speaker and local discourse, to the dia-
logue graph, modeling the contextual information of the dialogue form different
levels, acquiring a more comprehensive understanding of the dialogue.

In addition, we notice that MFDG performs much better than other graph-
based models on the real-world e-commerce dialogue dataset. As the dialogue in
JD dataset contains more turns and is more complicated than that of DailyDi-
alog, we believe our model MFDG contributes to enhancing the understanding
of complex multi-turn dialogues in a real world scenario.

5.2 Ablation Study

We conduct ablation studies to evaluate the effectiveness of speaker nodes and
local discourse nodes we add to the dialogue graph. The results are shown in
Table B

Firstly, we remove speaker nodes and local discourse nodes from the dialogue
graph in MFDG, leaving only the utterance-order edges accordingly. Without
the two types of nodes, the performance of MFDG drops by 5.3% accuracy score
on JD dataset and 3.44% accuracy score on DailyDialog. Besides, it should be
mentioned that we find MFDG without considering speaker and local discourse
nodes shares a close accuracy score with DialogueGCN, which can be rationally
explained, as both of them model interactions between surrounding utterances.

Secondly, we remove the speaker nodes from the dialogue graph in MFDG,
thus removing speaker edges accordingly. Without speaker nodes, the perfor-
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Table 4. Comparison with baseline methods on DailyDialog.

Model Acc Top-3 Macro-F1 Weighted-F1
TextRNN 53.12 84.38 42.62 47.20
TextRNN-Att  68.20 93.40 50.17 66.36
TextCNN 71.60 93.30 55.29 69.39
Bert-base 70.20 93.00 59.00 69.01
Robert-base 72.90 95.20 60.67 71.54
ERNIE 71.90 93.30 53.12 70.55
Dialog-BERT  74.00 94.90 59.09 72.13
DialogueGCN  70.30 93.70 52.64 68.30
RGAT 72.30 93.40 55.32 70.31
DAG 72.30 92.90 56.18 70.58
MFDG 73.70 94.20 61.41 72.22
MFDG-EN 70.90 93.50 47.09 69.51
MFDG-EE 71.00 94.10 55.47 68.90

Table 5. Nodes ablation on two datasets. X and v'denotes nodes removed and added
respectively.

speaker node  local discourse node Acc(JD) Acc(DailyDialog)

61.20(-5.3%)

70.26(-3.44%)

65.60(-0.9%)

71.60(-2.1%)

61.40(-5.1%)

73.60(-0.1%)

NN X%

AR IANE-Y

66.50

73.70

mance of MFDG drops by 0.9% accuracy score on JD dataset and 2.1% ac-
curacy score on DailyDialog. This shows that speaker nodes help aggregating
speaker-specific information in message passing of dialogues.

Lastly, we remove the local discourse nodes from the dialogue graph in
MFDG, thus leaving only the utterance-order edges. In order to keep speaker
nodes function in MFDG, we add utterance-speaker edges, which connect each
speaker node with its corresponding spoken utterance nodes. Without local dis-
course nodes, the performance of MFDG drops by 5.1% accuracy score on the
JD dataset and 0.1% accuracy score on the DailyDialog. The tiny drop on Dia-
lyDialog is because that speakers of the dialogue in DailyDialog talk one by one,
forcing each local discourse node connect to only one utterance node, which can
not show its superiority. And the drop on JD dataset shows that local discourse
nodes are effective at aggregating multiple consecutive utterances spoken by the
same speaker.

5.3 Variants of MFDG

As shown in Table [3] and Table @] MFDG-EN obtains the accuracy score of
65.00% on JD dataset and 70.09% on DailyDialog, underperforming MFDG on
the two datasets. It indicates that the addition of entity nodes leads to informa-
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tion loss of the dialogue graph, as the features of entity nodes generated from
KG are not in the same semantic space with other nodes in the graph.

For JD dataset, MFDG-EE outperforms MFDG on all the metrics, with a
1.2% promotion of accuracy score and 1.18% improvement of weighted-F1. The
results prove the effectiveness of commonsense sense integration on dialogue
classification. And it also shows the knowledge-aware representation method we
design in MFDG-EE is an appropriate way to integrate entity information. How-
ever, MFDG-EN underperforms MFDG on DailyDialog. This is a predictable
result as we use general entities for DailyDialog because of the lack of a well-
designed KG.

6 Conclusion

In summary, we propose MFDG for dialogue core intent classification. MFDG
is designed to obtain a full understanding of the dialogue by building a multi
factor graph. Experimental results on two datasets demonstrate that MFDG
outperforms other baseline methods. Furthermore, we propose MFDG-EE and
MFDG-EN to fuse domain knowledge into the dialogue graph, the experiment
results show that MFDG-EE can promote dialogue comprehension with a well-
designed knowledge graph.
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