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Abstract. Pervasive rumors in social networks have significantly harmed
society due to their seditious and misleading effects. Existing rumor de-
tection studies only consider practical features from a propagation tree,
but ignore the important differences and potential relationships of sub-
trees under the same propagation tree. To address this limitation, we pro-
pose a novel heterogeneous propagation graph model to capture the rel-
evance among different propagation subtrees, named Multi-subtree Het-
erogeneous Propagation Graph Attention Network (MHGAT). Specifi-
cally, we implicitly fuse potential relationships among propagation sub-
trees using the following three methods: 1) We leverage the structural
logic of a tree to construct different types of propagation subtrees in or-
der to distinguish the differences among multiple propagation subtrees;
2) We construct a heterogeneous propagation graph based on such differ-
ences, and design edge weights of the graph according to the similarity
of propagation subtrees; 3) We design a propagation subtree interaction
scheme to enhance local and global information exchange, and finally, get
the high-level representation of rumors. Extensive experimental results
on three real-world datasets show that our model outperforms the most
advanced method.
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1 Introduction

Due to the popularity of Twitter, Facebook and other social media in recent
years, a growing number of rumor generating methods have emerged. Taking
the COVID-19 pandemic as an example, there were growing concerns about
the spread of misinformation about the pandemic, known as the “information
epidemic” [27]. Social media have been widely used to facilitate the spread of



misinformation. These issues are even more pressing in that atmosphere since
the information flowing through social media is directly related to human health
and safety. It is therefore of paramount importance to effectively identify rumors.

Most existing efforts mainly focus on using linguistic features from text to
detect rumors, ranging from deceptive clues to writing styles. For example, Li
et al. [I2] combined user information and text features to train an LSTM to
capture their potential associations. Other algorithms such as the Bayesian net-
work were applied to compute text-similarity of microblogs [II]. This kind of
rumor detection methods was mainly to capture text features of rumors, which
is vulnerable to the negative influence of forged text because the language used
in social media is highly informal, ungrammatical, and dynamic.

To address the above issue, studies of rumor propagation structures have
been carried out. For instance, Kumar et al. [I0] proposed a new way to repre-
sent social-media conversations as propagation trees and used Tree LSTM models
to capture conversation features. Ma et al. [I9] proposed recursive neural models
based on a bottom-up and a top-down tree-structured neural networks, to learn
discriminative features from tweet’s content by following their non-sequential
propagation structures. Since temporal structural characteristics only concern
the sequence of spreading rumors but ignore the consequence of rumor spread-
ing, these approaches have significant limitations in terms of effectiveness. The
structure of rumor dispersion also reflects important features of rumor spreading.

To consider such crucial features, researchers have started to apply graph
convolution methods to detect rumors. Yu et al. [25] used GCN to realize the fu-
sion of rumors in the propagation tree, the user information, and text features of
retweets. Choi et al. [3] proposed a dynamic GCN to construct a time graph and
utilized the characteristics of tweets published in adjacent times to strengthen
the structural features of rumor propagation.

While the above methods have shown effectiveness of introducing the graph
structure of data into a model, these approaches face two major shortcomings
which make the rumor representation vulnerable to the local structural relation-
ships and the characteristics of adjacent nodes. First, existing studies only
consider the aggregated information of each tweet and its neighbour,
but ignore the important correlation of all retweets in the same prop-
agation subtree. Second, the graphical structure of data ignores the
potential impact among different propagation subtrees.

To facilitate the understanding, Fig. [1| exemplifies the propagation structure
of a (rumor) tweet “Says Bill O’Reilly wrote a post claiming that the coronavirus
was created as a bioweapon by the Chinese government.” In the first case, tweets
x1 and x5 have the same characteristics [“article”, “criminal acts”]; they have a
certain correlation but no real connection. In fact, x2 negates the basis of x1. In
the second case, 1 and x1; incline that s is true and has a positive impact on the
s. Even though x5 deems s was wrong and had more common characteristics
with s, it can only affect s along the xy, while ;1 and x1; prefer s is false
and cannot well incorporate the features of the deeper retweets. The above two
situations are common in rumor detection, and their cumulative impact may



[s]:
Says Bill O'Reilly wrote a post claiming that the
EOronavirls was created as a bioweapon by the
Chinese government.(false)

[21]: Is it really true? This is horrible!
The author of the article clearly records
the criminal acts of the Chinese
government.(s is true)

[2]: The crimes acts in this
article have no clear evidence! I
can't believe!

(s is false)

I
[@21]: Agree, and the website of]
this post is false.

(s is false)

[

[@2111: This must be false.
This is not the author's writing
style at all!

(s is false)

land the author of this article is
very authoritative!
(s is true)

mention Goronavirus

and bioweapon!
(s is false)

[2171: It must true! The website

[#12]: No! The author didn't

Fig. 1. An example of a false rumor.

lead to unexpected errors. Therefore, in this paper we propose to enhance the
effect of rumor detection by constructing a local representation.

The starting point of our approach is an observation: tweets in a similar prop-
agation location show certain relevance (such as [z1, 211,212, [Z2, %21, Z211] in
Fig. 1). Thus, we propose a new way of message passing to obtain the high-level
representation of rumor propagation: (1) According to the structural logic of a
tree and the spatial relationship among nodes, we model the different propaga-
tion subtrees of the tree where the nodes are located. We construct a heteroge-
neous propagation graph model with the weights of edges designed according to
the propagation subtrees’ similarity. (2) We initialize each node to integrate the
relative temporal information carried by the parent tweet and the source post
information, and apply structure-aware self-attention to propagation subtrees.
(3) We design a two-layer attention mechanism to realize the interaction among
propagation subtrees.

The main contribution of this paper can be summarized as follows:

— We propose a novel MHGAT model, which applies the propagation subtree
as the computing unit to construct the heterogeneous propagation graph. It
improves the performance of rumor detection by distinguishing the differ-
ences of local structures on the propagation tree.

— The model utilizes the heterogeneous propagation graph to guide the direc-
tion of message transmission. Moreover, the interaction between local infor-
mation and global information is constructed to obtain the high-level rumor
representation.

— The model fuses the parent tweet text features with the corresponding time
information and the source text feature in appropriate places, to make the
representation of the local structure more accurate.

— We conduct extensive experiments using three public real-world datasets. Ex-
perimental results show that our model significantly outperforms the state-
of-the-art models in rumor classification and early detection tasks.



2 Related Work

Rumor detection aims to detect whether a tweet is a rumor according to the
relevant information of the tweet published on the social media platform, such
as text content and propagation mode.

Content-based Classification Methods : Content-based classification methods
[7124] generally detect rumors based on linguistic clues such as writing style
[20], bag-of-words [4], temporal characteristics [17], etc. However, these methods
relying only on the text content to detect rumors, ignore the correlation between
tweets, and its accumulative effect on a large number of tweets can affect the
performance of detection.

Propagation-based Classification Methods : Recent studies can be divided into
two groups: Attention-based and GCN-based models. Attention-based models
primarily utilize the attention mechanism to focus on pairs or sequences of posts
with some inherent order [S[IBITIT0]. Several recent works applied the trans-
former to enhance the representation learning for responsive tweets [SJ15]. The
difference lies in that Khoo et al. [§] defined time delay (the time interval be-
tween the tweet and retweet) as the intrinsic order, while Ma et al. [I5] applied
the topological order of the propagation tree as the inherent order. However,
these methods are susceptible to the negative impact of unrelated tweets and
require more time cost for detection. GCN-based models enhance the tweet rep-
resentation by aggregating the features of related retweets [125]. For example,
BiGCN [I] applied graph convolution to strengthen root features and learn lo-
cal structure information. To better weight different types of neighbor nodes,
in recent years several studies have applied heterogeneous graph model Graph
Attention Network (GAT) that combines attention mechanism and GCN for ru-
mour detection [26]13]. For example, Lin et al. [13] represented the propagation
tree as an undirected interaction graph and utilized GAT aggregating informa-
tion from parent and sibling nodes, taking the average representation as rumor
representation that makes it difficult to distinguish the global structure of the
rumor.

However, the above methods treat a tree’s substructures as independent
units, ignoring their differences and potential global associations. Our model
will take advantage of the propagation tree structure and the heterogeneous
graph model to construct the interaction between local and global information
in order to enhance the representation of tweets in rumor detection.

3 Multi-subtree Heterogeneous propagation Graph
Attention Network Model

This section details the proposed MHGAT algorithm as shown in Fig. [2l Our
algorithm can be divided into four parts. First, we construct the heterogeneous
propagation graph to refine different subtrees (substructures) of the ordinary
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Fig. 2. Our proposed rumor detection model.
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[ra1J: Tdon't know yet.  Nopel The source website does not

[s]: ~ Tean'tgetinto > have the information of this post!
Says Mike Pence was Irol: [r3): As if it were a [ry): Really? this ZDIIEE websitel ( (sis false)
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Fig. 3. Propagation tree of a false rumor.

propagation tree (Section 3.1). Second, to obtain a direct local representation,
we utilize GCN to aggregate neighbor’s features of the ordinary propagation tree
(Section 3.2). Third, we get the initial representation of different subtrees in the
heterogeneous propagation graph (Section 3.3). Finally, we design a heteroge-
neous graph convolution algorithm to realize the interaction between local and
global information to enhance the rumor representation (Section 3.4).

Formally, let each node represent a tweet. The source node denotes the source
tweet, and the children nodes are retweets that have responded to it directly.
First, based on the retweet and the response relationships, we construct the
origin event tree for a rumor ¢;. In each training period, a propagation subtree
has the probability p, of being discarded to reduce overfitting [I]. The probability
of subtree pruning is positively correlated with the depth of the tree: Pg.op o<
dep(root_of _subtree). We denote the event tree after being discarded as <V, E>
(see Fig. [3)).

3.1 Construct Heterogeneous Propagation Graph

The heterogeneous propagation graph <V’, E'> is designed to distinguish the
differences of propagation subtrees better and address the two limitations men-
tioned above. This process is implemented with a general tree structure data pro-
cessing method Depth-First-Search [2I]. Our heterogeneous propagation graph
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Fig. 4. The heterogeneous propagation graph is constructed by classifying the nodes
of the original propagation tree in the first layer and building the nodes and edges of
propagation subtrees in the last two layers. In addition, each node has a self-connected
edge.

includes six types of structural nodes as shown in Fig. {4} (1) Root node (Nodeq)):
Source tweet. (2) Single-branch node (Nodey)): Leaf or the node with the single
child except for the root node. (3) Multi-branch node (Node s)): The node with
multiple branches except for the root node. (4) Single-thread node (Nodes)):
the node representing the single propagation thread without other branches. (5)
Multi-branch tree node (Node(y)): a propagation subtree with multiple branches.
(6) Tree node (Node(s)): a complete tree. Intuitively, we exemplify a false rumor
claim and illustrate its propagation on twitter in Fig.[3] We observe that a group
of tweets in the single-chain from ry, [ry1, 2, 73] tend to a point of view or a con-
tent, and construct their local representation Sy in Fig. [3] to enhance features
like [“composite”, “edited”, “modified”]. Moreover, we refer M; to the repre-
sentation of {ry,r41,7411,742} which contains a stronger collection of different
opinions about one content arising from the multi-branch node r4. Essentially,
multi-branch nodes have a broader direct impact influence than single-branch
nodes. Finally, we refer to the tree node as the global representation to enhance
rumor representation by realizing the interaction between the local information
in the first five structure nodes and the global information.

In addition to the connection of nodes within the propagation subtree, we
have added two effective connecting edges between Node(s) and Nodey):

(1) Considering that the nodes of a thread in the propagation tree have the
corresponding time relationship (like s — r1 in Fig. , we now extend this
feature to propagation subtrees in the heterogeneous propagation graph (such
as s — 51 in Fig. . We define: when u and v are propagation subtrees of the
type Nodes)y or Node), r; and 1; are retweet nodes in the propagation subtrees
u and v respectively, where i # j, v # v. If 7; connects to r;, v has a directed
edge to v.

(2) Considering that two retweets forwarding the same tweet (the parent of
r; and r; is the same node) may have similar characteristics (for example ryo
and {ry1,7411} have common features [“source”, “author”] in Fig. [3)), and the
propagation subtrees (u,v) are also related (S; and S5 in Fig. [4), we define:
when u and v are propagation subtrees of the type Nodes) or Nodey), r; and



r; are retweet nodes in propagation subtrees u and v respectively, where i # j.
If Father(r;) = Father(r;), v has a undirected edge to v.

Normalization: Considering the large difference in the number of nodes of the
same type connecting different nodes, it may have an adverse impact on model
learning. We normalize the weights of the edges of the starting nodes of the same
type. Among the neighbors pointing to node u, the node set of type 7 is marked as
N(iu)7 and the set size is marked as Num(N(iu)). The edge regularization weight

from any v € N(iu) to u is normalized to: (Num(N(iu)))*l. Thus, we get the

normalized adjacency matrix A of heterogeneous propagation graph <V’ E'>.

3.2 Aggregate neighbour information and simple fusion of root
features

This module aims to strengthen the representation of nodes in the propagation
tree <V, E> by aggregating adjacent nodes and the source tweet. Graph convo-
lution is an essential operation for aggregating neighbor information to extract
local features. In addition, the source tweet can enhance the effect of rumor
texts on retweets. As for nodes, let A € R"*™ denote the normalized adjacency
matrix, and X € R™*? represent the input signals of nodes of the propagation
tree <V, E>. First, we aggregate neighbour’s features from node embedding X:

H = ReLU(AXW)). (1)
Second, the aggregated features are fused with the root,
H' = concat(H,Hyoot)- (2)

Last, we perform another layer of graph convolution to get a high-level repre-
sentation of the node:

X = ReLU(AH'W)), (3)

where H, X € R™ 4 are the hidden feature matrices computed by the Graph
Conventional Layer (GCL), Wy € R¥*¢, W, € Re+Ixd W, W, are the filter
parameter matrices of graph convolution layer, and Hoot represents the root
representation after first-layer graph convolution. X is the node representation
after two layers of graph convolutional layers.

3.3 Calculate the Initial Representation

We apply the attention mechanism to fuse parent node and source text feature
(root node) to enhance the representation of propagation subtrees in hetero-
geneous propagation graph <V’, E'>, which can fuse the corresponding time
and the source text information. For the root node (Node () and the tree node



(Node(s)): the node is initialized to the representation of the processed root em-
bedding: H(Node(o)) = H(Node(5)) = X, 0t- For single-branch nodes and multi-
branch nodes, we fuse the source text feature and the parent tweet text feature,
and these embeddings are calculated as:
H(Node(l)N(g)) = ATTN(X(NOde(l)N(‘Z)) ) HPT)? (4)
where
H,, = concat(Hparent; Hroot)- (5)

where ATTN is a function f : Xjey X ¢ = Xyq, which maps the feature vector
Xikey and candidate feature vector set ¢ to the weighted sum of elements in
Xovat[22].

For the single-thread node (Node s)) and the multi-branch tree node (Node(y)),
these two types of nodes represent point sets, and we utilize attention mechanism
to fuse the point sets into one representation:

H(nOdE(s)N(4)) = Self_ATT(X(NOde(g)N(4)))? (6)

where Self-ATT(.) includes the fusion process of self-attention and attention
fusion[22]. Moreover, the gated mechanism is applied to strengthen the root
features to get a high-level representation:

Q= U(WT’H(nOdE(s)N(4)) =+ Wrootx'r'oot + b)7 (7)
H(N0d6(3)~(4)) =aX H(nodE(g)N(4)) + (1 - a)XTootv (8)
where U(.):Heiip(') is sigmoid activation function, and W,., Wypor € R¥1 b e R

are parameters of the fusion gate.

Weight introduction: In addition to the regularized weights that eliminate quan-
titative differences, since these new potential links may introduce noise where not
all neighbors are equal in contributing important information for the aggregation
when modelling the propagation subtrees, we shall calculate the weight of links
between propagation subtrees in heterogeneous propagation graph <V’ E'>. To
this end, we first use the cosine similarity s(u,v) = hy, -hL/(|hy|-|hy|) between
nodes u and v to measure their similarity, where h is the embedding of the node.
To properly define node’s similarity, we introduce an asymmetric regularization
term to balance the difference of the sum of similarity on every neighbor node:

n

R, (s(u,v)) = s(u, v)/z s(u, t), (9)

t

where n is the set of u neighbor nodes. Combining the topology and attribute
information, the similarity between u and v is

w(u,v) = We,r, (b(u,v) + B Ru(hu - by / (|hal - [hol)), (10)



where [ is a parameter to make a tradeoff between network topology and at-
tributes, and W, ., represents the trainable similarity relationship between prop-
agation subtree type 7, and 7,. b(u,v) is a network topology term: (1) If 7,
T, € [Node~2)], b(u,v) = 0, which regards the points are the same in the
topology. (2) If 7, € [Node~z)], 7o € [Nodezs)], b(u,v) = (1)o@l
0(u,v) =1 where ~ is a trainable parameter, if u is a point in propagation sub-
tree v, d(u,v) = 0. (3) If 7, 7, € [Node(za)], b(u,v) = nyn,/2e, n, represents
the number of points in propagation subtree u.

Therefore, for propagation subtrees, let A’ represent the matrix A with
weights introduced, and A’S € Rl xInsl denote the submatrix of A/, whose
rows represent all the nodes and columns denote their neighboring nodes with
the type s.

3.4 Propagation Subtree Interaction Module

This module is designed to realize the interaction between local and global struc-
tral features in the heterogeneous propagation graph. In other words, tree nodes
aggregate local structural information in each iteration while other structural
nodes aggregate local and global structural information. It consists of two at-
tention layers to aggregate various types of subtrees. First, we calculate the
structure-level attention scores based on the node embedding h,, and the prop-
agation subtree type embedding hg:

o, = softmaz(LeakyRelu(w! [h,||hs)), (11)
s= > Al hy, (12)
v’ €Ny

where hg is the sum of neighbouring node features, and h, refers to the embed-
ding of nodes v’ € N, with the same propagation subtree type s.

Then, as for the node-level attention part, given a specific node v with the
structure type s and its neighboring node v’ € N,, with the structure type s’, we
compute the node-level attention scores based on the node embeddings h, and
h.s with the structure-level attention weight a, for the node wu:

Vg = so0ftmaz(LeakyRelu(wl ;. - as[ha|lhu]), (13)
where wl . is the attention vector. Then, we merge structure-level and node-

level attention into heterogeneous propagation graph convolution.

H* =o( > 1,-HY . W), (14)
s€Node ()

Here, I, represents the attention matrix, whose element in the u!* row w/*"

column is vy, -
Finally, after going through an L times propagation subtree interaction pro-
cess, the label of the event S is calculated as:



§ = so ftmax(FC’(HZLVOde<5))), (15)

where § € R is a vector of probabilities for all the classes used to predict
the label of the rumor.

4 Experiments

4.1 Datasets

Almost all prevalent datasets for experimental evaluation in the field of ru-
mor detection come from two source platforms: Twitter and Sina Weibo. We
evaluate the proposed model on three real-world datasets: Twitter5[18], Twit-
ter16[18] and Weibo[14]. In all the three datasets, nodes refer to source tweets
and retweets, edges represent response relationships, and features are the ex-
tracted top-5000 words in terms of the TF-IDF values. The Twitterl5 and
Twitterl6 datasets contain four different labels, namely “false rumor” (FR),
“non-rumor” (NR), “unverified” (UR), and “true rumor” (TR). Moreover, the
Weibo dataset only contains binary labels, i.e., “true rumor” and “false rumor”.
Details of the three datasets are shown in Table 1.

4.2 Baselines and Evaluations Metrics

We compare our proposed model with the following baseline and state-of-the-art
models. ClaHi-GAT[13]: An undirected interaction graph model utilizes GAT
to capture interactions between posts with responsive parent-child or sibling
relationships. BIGCN[I]: A bottom-up and a top-down tree-structured fusion
model based on GCN for rumor detection. PLANIS]: A transformer-based ru-
mour detection model that can capture the interaction between any pair of
tweets, even irrelevant ones. RVINN[IJ]: A bottom-up and a top-down tree-
structured model based on recursive neural networks for rumor detection on
Twitter. SVM-TK]JIg|: A SVM model uses Tree kernel to capture the propaga-
tion structure. SVM-TS[I7]: A linear SVM classifier that uses content features
to build a time-series model. DTC|2]: A decision tree-based model that utilizes
a combination of news characteristics.

Table 1. Details of the datasets

Statistic Twitterl5 Twitterl6 Weibo
# of source tweets 1490 818 4664
# of posts 331,612 204,820 3,805,656
# of users 276,663 173,487 2,746,818
# True rumors 374 205 2351
# False rumors 370 205 2313
# Unverified rumors 374 203 0

# Non-rumors 372 205 0




Table 2. Experimental results on Weibo dataset.

Metric|Class| DTC|SVM-TS|SVM-TK|RvNN|PLAN|BiGCN|ClaHi-GAT|MHGAT
Acc. | - [0.767| 0.756 | 0.786 |0.794|0.831| 0.863 | 0.852 | 0.914

Prec F (0.735] 0.732 0.916 |0.833|0.823 | 0.971 0.953 0.978
‘| T |0.685| 0.714 0.613 |0.727|0.885 | 0.775 0.754 0.841

R F 10.763| 0.804 0.819 |0.783|0.841 | 0.717 0.739 0.853
1T o.7se| 0.821 0.753 |0.833|0.766 | 0.971 0.952 0.985
a F 10.749] 0.774 0.864 |0.812]0.832 | 0.824 0.861 0.868
! T 10.732) 0.717 0.773 |0.808 | 0.821 | 0.862 0.842 0.897

Table 3. Experimental results on Twitter!5 and Twitter16.

Twitter15 Twitter16
Method‘Acc.‘N‘F‘T‘U‘Acc.‘N‘F‘T‘U
0 .0 5. .00 0 .90
DTC 10.625]0.716 |0.519 | 0.642| 0.523 | 0.607 | 0.652 | 0.432 | 0.573 | 0.739

SVM-TS  |0.581]0.394|0.520 | 0.463 | 0.549 | 0.645 | 0.546 | 0.638 | 0.654 | 0.668
SVM-TK |0.705|0.6190.756 | 0.485| 0.835 | 0.732| 0.814 | 0.713 | 0.745 | 0.801
RvNN  |0.759]0.714|0.765 | 0.814|0.714 ] 0.722 | 0.628 | 0.712 | 0.833 | 0.714
PLAN  |0.795]0.784|0.810]0.793|0.802 | 0.825 | 0.846 | 0.803 | 0.774 | 0.832
BiGCN  |0.8140.772|0.827 | 0.830|0.786 | 0.816 | 0.751 | 0.839 | 0.904 | 0.781
ClaHi-GAT|0.823 | 0.805 | 0.843 | 0.894 | 0.807 | 0.838 | 0.763 | 0.864 | 0.892 | 0.816
MHGAT |0.862|0.836|0.872|0.925|0.823|0.874/0.836/0.896|0.912(0.852

For a fair comparison, we adopt the same evaluation metrics that have already
been widely used in existing work [5lJ6]. Thus, for the Weibo dataset, we evaluate
the Accuracy (Acc.), Precision (Prec.), Recall (Rec.) and F; measure (Fy) on
each class. For the two Twitter datasets, we evaluate the Accuracy (Acc.) and
F; on each class.

4.3 Data Processing and Experiments Setup

To be more realistic, we randomly select 15% of the instances as the development
dataset that the model has not seen at all, and split the remaining instances
into training and test datasets at a ratio of 4:1 in all datasets; this similar to
the settings in existing studies [16J26]. In order to reduce the randomness, we
repeat the experiments fifty times and take the average value as the result. We
optimize the model using the Adam algorithm [9]. The dimension of each node’s
hidden feature vector is 128. The number of head K of self-attention is set to
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Fig. 5. Comparison of the number of correctly detected rumor data (the vertical axis),
where each rumor data is a propagation tree consisting of one source tweet and a
number of retweets. The horizontal axis represents the proposed model and the various
baselines.

8. The dropping rate in Subtree Drop is 0.1 for all three datasets. The training
process is iterated upon 150 epochs and early stopping [23] is applied when the
validation loss stops decreasing by 10 epochs.

4.4 Results and Analysis

Tables 2 and 3 show the performance of the proposed method and all compari-
son methods on Weibo and Twitter datasets. Compared with the content-based
methods like DTC, SVM-TS, the propagation-based methods considering the
propagation structure’s characteristics, are generally more effective. The success
rate of PLAN is higher than that of SVM-TK and RVNN that focus on propa-
gation characteristics, because the potential relevance of all posts is considered
in PLAN, but it tends to cause noises weakening the topological structure of the
propagation tree. BIGCN and ClaHi-GAT pay more attention to the topology of
propagation trees and aggregate the local characteristics of the propagation tree.
The former demonstrates the effectiveness of incorporating the structure of dis-
persion and the source text features enhancement into rumor detection, while the
latter shows the effectiveness of considering potentially associated tweets based
on topological structures. However, these two methods can only take the aver-



age of all local representations as rumor representation, ignoring the differences
among local representations and the impact of the global structure.

MHGAT considers the influence of the dispersion and the sequence structure
of rumor propagation, the difference among local structures, and the interaction
between local and global information. In addition, it strengthens the rumor rep-
resentation by incorporating the source text feature and the parent text feature
where appropriate. Thus, MHGAT outperforms all the baselines and state-of-
the-art methods on all three datasets, especially in the large-scale Weibo dataset.

In order to further illustrate the detection performance of the model, we com-
pare the number of correctly detected rumor data by different methods as shown
in Fig. ol By comparing box sizes and the upper and lower bounds, we found
that methods (PLAN, BiGCN, ClaHi-GAT, MHGAT) that consider the local
propagation structure and the potential correlation of posts tend to work better
with most data than the other methods. Clearly, MHGAT has a wider upper
and lower limit and can cover a broader range of data than the other methods.
It proves that our method does not need a large amount of complex data to
learn and can cope with the high-flow hot spot rumor, showing its outstanding
performance in a more complex real-world scenario.

4.5 Ablation Study

To analyze the effect of each module of MHGAT, we conduct a series of ablation
studies on different parts of the model. The ablation study is conducted in the
following order: w/o SBIN: Removing single-branch subtree nodes (SBN) and
the related edges, and utilizing the remaining information on the graph for rumor
detection. w/o MBN: Removing multi-branch subtree nodes (MBN) and the
related edges, and utilizing the remaining information on the graph for rumor
detection. w/o STN: Removing single-thread subtree nodes (STN) and the
related edges, and utilizing the remaining information on the graph for rumor
detection. w/o MBTN: Removing multi-branch subtree nodes (MBTN) and the
related edges, and utilizing the remaining information on the graph for rumor
detection. w/o TN: Removing the tree node (TN) and the related edges, and
taking the mean representation of all nodes in the heterogeneous propagation
graph as the final representation of the rumour for rumor detection.

We can observe the effect of removing all kinds of propagation subtrees cov-
ering local information in Table 4, which proves the universality of propaga-
tion subtrees and the necessity of classifying differences among local structures.
Specifically, removing STN has the most significant impact on the results, and
the accuracy on the Weibo, Twitterl5 and Twitterl6 datasets has dropped by
7.2%, 4.7% and 4.7%, respectively. This result is predictable. The information
carried by the SBN is fragmented, whereas the information carried by the STN
is able to cover the local relevance better and still has a better effect without
SBN. Furthermore, there is a decrease in the accuracy rate without TN, but it
is still higher than the baselines and the other variants of the ablation study due
to the interaction among local subtrees in the interaction process, confirming
the importance of local information interaction and the effect of the interaction



Table 4. The ablation study results on the Weibo, Twitter15 and Twitter16 datasets.

Weibo |Twitter15| Twitter16
Accuracy| Accuracy | Accuracy

MHGAT 0.914 0.862 0.874
w/o SBN 0.853 0.829 0.813
w/o MBN 0.871 0.837 0.849
w/o STN 0.842 0.815 0.827
w/o MBTN| 0.883 0.841 0.845
w/o TN 0.889 0.847 0.853

Models

between local and global information. Since the proposed method is integrated
with the source text feature and the parent text feature, it is necessary to ana-
lyze the effects of each component. As shown in Fig. [6] we compare the results of
the complete model and its variants and find that the complete model is better
than the ones without the fusion of source text feature or parent text feature.
This shows incorporating the source text feature and the corresponding time in-
formation of the parent node in appropriate places can improve the performance
of our model.

Moreover, when the model introduces implicit links between subtrees, not
all neighbors can contribute important information to the aggregation. Thus we
introduce weights for subtree aggregation. As shown in Fig. [f] the model with
added weight is better than the model without weight, which proves that the
weight we designed reasonably solves the noise problem introduced by implicit
links and further enhances the effect of our rumor detection model.

4.6 Early Detection

One of the most crucial tasks in rumor detection is the early detection of ru-
mors. In the early rumor detection task, we compare different detection methods
at elapsed time checkpoints. As shown in Fig. [7] from the performance of our
method and the baseline method on different time delays in the Twitter and
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0.900 EEE complete
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8 0.875
= 0.850
0.825
0.800
0.775
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Fig. 6. Comparison of MHGAT and its variants.



Weibo datasets, it can be seen that our method achieves higher accuracy very
quick as soon as the initial broadcast of the source and can still maintain higher
accuracy as the time delay goes up. It is worth noting that some baselines de-
crease slightly when the time delay increases. This is because as the rumor is
propagated, more similar structural and semantic information shows, and more
noises are introduced simultaneously. The results show that our model is more
suitable for a complex real-world case and has a better stability.

5 Conclusions

This paper proposed a novel Multi-subtree Heterogeneous Propagation Graph
Attention Network, which is used for social media rumor detection. This method
refined propagation subtrees of the rumor propagation tree, strengthened the
interaction between local and global structure information, and improved the
ability to learn high-level rumor representation, hence achieving the best perfor-
mance. Extensive experiments proved the superiority of the proposed method.
However, one of the existing obstacles of rumor detection is the performance
degradation caused by data uncertainty. To address this issue, in future we will
study how to use uncertainty estimation to explain the model’s performance in
rumor propagation.
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