Safe Exploration Method for Reinforcement
Learning under Existence of Disturbance

Yoshihiro Okawa, (B! [0000-0001=5095-4927] " Tomotake

Sasaki! [0000-0002—3376—2779] 'Hjtoshi Yanami', and Toru
Namerikawa2[0000—0001-9907—4234]

L Artificial Intelligence Laboratory, Fujitsu Limited, Kawasaki, Japan
{okawa.y,tomotake.sasaki,yanami}@fujitsu.com
2 Department of System Design Engineering, Keio University, Yokohama, Japan
namerikawa@keio. jp

Abstract. Recent rapid developments in reinforcement learning algo-
rithms have been giving us novel possibilities in many fields. However, due
to their exploring property, we have to take the risk into consideration
when we apply those algorithms to safety-critical problems especially in
real environments. In this study, we deal with a safe exploration problem
in reinforcement learning under the existence of disturbance. We define
the safety during learning as satisfaction of the constraint conditions
explicitly defined in terms of the state and propose a safe exploration
method that uses partial prior knowledge of a controlled object and
disturbance. The proposed method assures the satisfaction of the explicit
state constraints with a pre-specified probability even if the controlled
object is exposed to a stochastic disturbance following a normal dis-
tribution. As theoretical results, we introduce sufficient conditions to
construct conservative inputs not containing an exploring aspect used in
the proposed method and prove that the safety in the above explained
sense is guaranteed with the proposed method. Furthermore, we illustrate
the validity and effectiveness of the proposed method through numerical
simulations of an inverted pendulum and a four-bar parallel link robot
manipulator.

Keywords: Reinforcement learning - Safe exploration - Chance con-
straint.

1 Introduction

Guaranteeing safety and performance during learning is one of the critical issues
to implement reinforcement learning (RL) in real environments [12/14]. To ad-
dress this issue, RL algorithms and related methods dealing with safety have
been studied in recent years and some of them are called “safe reinforcement
learning” [10]. For example, Biyik et al. [4] proposed a safe exploration algorithm
for a deterministic Markov decision process (MDP) to be used in RL. They guar-
anteed to prevent states from being unrecoverable by leveraging the Lipschitz
continuity of its unknown transition dynamics. In addition, Ge et al. [I1] proposed
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a modified Q-learning method for a constrained MDP solved with the Lagrange
multiplier method so that their algorithm seeks for the optimal solution ensuring
that the safety premise is satisfied. Several methods use prior knowledge of the
controlled object (i.e., environment) for guaranteeing the safety [3I17]. However,
few studies evaluated their safety quantitatively from a viewpoint of satisfying
state constraints at each timestep that are defined explicitly in the problems.
Evaluating safety from this viewpoint is often useful when we have constraints
on a physical system and need to estimate the risk caused by violating those
constraints beforehand.

Recently, Okawa et al. [19] proposed a safe exploration method that is applica-
ble to existing RL algorithms. They quantitatively evaluated the above-mentioned
safety in accordance with probabilities of satisfying the explicit state constraints.
In particular, they theoretically showed that their proposed method assures the
satisfaction of the state constraints with a pre-specified probability by using
partial prior knowledge of the controlled object. However, they did not consider
the existence of external disturbance, which is an important factor when we
consider safety. Such disturbance sometimes makes the state violate the con-
straints even if the inputs (i.e., actions) used in exploration are designed to satisfy
those constraints. Furthermore, they made a strong assumption regarding the
controlled objects such that the state remains within the area satisfying the
constraints if the input is set to be zero as a conservative input, i.e., an input
that does not contain an exploring aspect.

In this study, we extend Okawa et al.’s work [19] and tackle the safe exploration
problem in RL under the existence of disturbanceﬂ Our main contributions are
the following.

— We propose a novel safe exploration method for RL that uses partial prior
knowledge of both the controlled object and disturbance.

— We introduce sufficient conditions to construct conservative inputs not con-
taining an exploring aspect used in the proposed method. Moreover, we
theoretically prove that our proposed method assures the satisfaction of
explicit state constraints with a pre-specified probability under the existence
of disturbance that follows a normal distribution.

We also demonstrate the validity and effectiveness of the proposed method with
the simulated inverted pendulum provided in OpenAl Gym [6] and a four-bar
parallel link robot manipulator [I8] with additional disturbances.

The rest of this paper is organized as follows. In Section [2] we introduce the
problem formulation of this study. In Section [3} we describe our safe exploration
method. Subsequently, theoretical results about the proposed method are shown
in Section @l We illustrate the results of simulation evaluation in Section Bl We
discuss the limitations of the proposed method in Section [} and finally, we
conclude this paper in Section [7]

! Further comparison with other related works is given in Appendix (electronic
supplementary material).
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2 Problem formulation

We consider an input-affine discrete-time nonlinear dynamic system (environment)
expressed by the following state transition equation:

i1 = f(zr) + G(k)up + wy, (1)

where xp € R", u,, € R™, and wy, € R™ stand for the state, input (action) and
disturbance at timestep k, respectively, and f : R” — R" and G : R" — R"*™
are unknown nonlinear functions. We suppose that the state xj is directly
observable. An immediate cost c;+1 > 0 is given depending on the state, input
and disturbance at each timestep k:

1 = (T, ug, wy), (2)

where the immediate cost function ¢ : R™ x R™ x R™ — [0, 00) is unknown while
ci+1 is supposed to be directly observable. We consider the situation where the
constraints that the state is desired to satisfy from the viewpoint of safety are
explicitly given by the following linear inequalities:

Hz < d, (3)

where d = [dy,...,d,,|" € R, H = [hy,...,h, |" € R%*" n, is the number
of constraints and =< means that the standard inequality < on R holds for all
elements. In addition, we define Xs C R™ as the set of safe states, that is,

Xy :={x e R"|Hx < d}. (4)

Initial state xq is assumed to satisfy xq € X for simplicity.

The primal goal of reinforcement learning is to acquire a policy (control
law) that minimizes or maximizes an evaluation function with respect to the
immediate cost or reward, using them as cues in its trial-and-error process [20]. In
this study, we consider the standard discounted cumulative cost as the evaluation
function to be minimized:

T
J = Z’chk-u- (5)
k=0

Here, « is a discount factor (0 <y <1) and T is the terminal time.

Besides for the cost evaluation, we define the safety in this study as
satisfaction of the state constraints and evaluate its guarantee quantitatively. In
detail, we consider the following chance constraint with respect to the satisfaction
of the explicit state constraints at each timestep k:

Pr{Hz; < d} > n, (6)

where Pr{Hx; < d}(= Pr{x; € X;}) denotes the probability that x; satisfies
the constraints (3).
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The objective of the proposed safe exploration method is to make the chance
constraint @ satisfied at every timestep k = 1,2,...,T for a pre-specified 7,
where 0.5 < n < 1 in this study.

Figure [1| shows the overall picture of the reinforcement learning problem in
this study. The controller (agent) depicted as the largest red box generates an
input (action) u according to a base policy with the proposed safe exploration
method and apply it to the controlled object (environment) depicted as the green
box, which is a discrete-time nonlinear dynamic system exposed to a disturbance
wyg. According to an RL algorithm, the base policy is updated based on the state
k41 and immediate cost cp41 observed from the controlled object. In addition
to updating the base policy to minimize the evaluation function, the chance
constraint should be satisfied at every timestep k = 1,2,...,T. The proposed
method is described in detail in Sections [3] and [l

Prior
knowledge
State Exploratory input
Tht1 with e Input
> a deterministic base policy (Action)
Immediate and \C il
cost —d_ a Gaussian exploration term
Ck+1
Conservative input l—O
Controller (agent) based on RL
with safe exploration method
Controlled object (environment)
with a chance constraint:
Pr{Hz; <d} >1n eu)k
Disturbance

Fig. 1. Overview of controlled object (environment) under existence of disturbance and
controller (agent) based on an RL algorithm with the proposed safe exploration method.
The controller updates its base policy through an RL algorithm, while the proposed
safe exploration method makes the chance constraint of controlled object satisfied by
adjusting its exploration process online.

As the base policy, we consider a nonlinear deterministic feedback control law
pu(-;0):R" - R™
x> p(x; ), (7)

where 8 € R is an adjustable parameter to be updated by an RL algorithm.
When we allow exploration, we generate an input uy by the following equation:

wy = p(xy; Or) + €, (8)
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where g, € R™ is a stochastic exploration term that follows an m-dimensional
normal distribution (Gaussian probability density function) with mean 0 € R™
and variance-covariance matrix Xj € R™*™ denoted as €, ~ N(0,X}). In
this case, as a consequence of the definition, uy follows a normal distribution
N(p(zy; Or), ).

We make the following four assumptions about the controlled object and the
disturbance. The proposed method uses these prior knowledge to generate inputs,
and the theoretical guarantee of satisfying the chance constraint is proven by
using these assumptions.

Assumption 1 Matrices A € R™™™ and B € R™"*™ in the following linear
approximation model of the nonlinear dynamics are known:

Tpy1 Az, + Buy, + wy,. (9)
The next assumption is about the disturbance.

Assumption 2 The disturbance wy, stochastically occurs according to an n-
dimensional normal distribution N (py, 3y), where py, € R™ and X, € R™*"
are the mean and the variance-covariance matriz, respectively. The mean i,
and variance-covariance matriz X, are known, and the disturbance wy and
exploration term €y, are uncorrelated at each timestep k.

We define the difference e(x, u) € R™ between the nonlinear system and
the linear approximation model @ (i.e., approximation error) as below:

e(z,u) = f(x) + G(x)u — (Ax + Bu). (10)
We make the following assumption on this approximation error.

Assumption 3 Regarding the approrimation error e(x,wu) defined by @), §; <

00, Aj < o0, j=1,...,n. that satisfy the following inequalities are known:
§; > sup |the(ar:,u)|7 i=12,...,n (11)
xER™, weR™
Ajz sup |th (A771—|—A772—|—-~-+I)e(m,u)|, i=12,... n. (12)
xzER", ueR™

where T is a positive integer.

The following assumption about the linear approximation model and the
constraints is also made.

Assumption 4 The following condition holds for B and H = [hy,... h,.]":
T o
h; B#0, Vj=12,... n. (13)

Regarding the above-mentioned assumptions, Assumptions [I]and [4] are similar
to the ones used in [I9], while we make a relaxed assumption on the approximation
error in Assumption [3| and remove assumptions on the autonomous dynamics f
and conservative inputs used in [I9].
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3 Safe exploration method with conservative inputs

Now, we propose the safe exploration method to guarantee the safety in the sense
of satisfaction of the chance constraint @ As shown in Fig. |1} the basic idea is
to decide whether to explore or not by using the knowledge about the controlled
object and disturbance. The detailed way is given as Algorithm [I] below. Here A

Algorithm 1 Proposed safe exploration method

At every timestep k > 0, observe state xj and generate input uy as follows:

(i) if 5 € XA ( Hh}&% < M(djh}@kﬂéj),wj e{£5;},vj=1,..., n)
uy, = p(xk; Ox) + €, where g, ~ N(0, Xy),

(ii) elseif wkeXs/\< HhIEé , > qs—llw(dj — h;-rikﬂ —0;), for some 6; € {:I:gj})
up = u‘fcmy,

(iii) else (i.e., x ¢ Xs)
up, = ubook,

is the logical conjunction, @ is the normal cumulative distribution function,

1
=

N U
g1 (#)

Ty := Az + Bu(xy; Or) + pw, 1y = - ; (14)

and & is a positive real number that satisfies 77% < & < 1. The quantity @41 is a
one-step ahead predicted state based on the mean of the linear approximation

model @ with substitution of (8)f} In the case (i), the degree of exploration
is adjusted by choosing the variance-covariance matrix X', of the stochastic

exploration term ey, to satisfy the following inequality for all j =1,... ,n.:
Xk 2 1 R _
h;[y{ 2@} < gy @ B B =090, € (+5,), (19
2

where B’ = B, I].
Note that the case xy € X (i.e., the current state satisfies all constraints) is
divided to (i) and (ii) depending on the one-step ahead predicted state &1, and

h) X3 ,S =10y (dih Te1—0;), V0, €

{£6;} holds for all j. Rough and intuitive meaning of this condition is that we

we use an exploratory input only when ’

2 Note that the means of e and wy, are assumed to be 0 and 1., respectively.



Safe Exploration Method 7

allow exploration only when the next state probably stays in X even if we
generate the input with ey, given that Xy is a solution of .

The inputs u}*Y and u}** used in the cases (i) and (iii) are defined as
below. These inputs do not contain exploring aspects, and thus we call them

conservative inputs.

Definition 1. We call u}'™ a conservative input of the first kind with which
1

Pr{Hzy1 Xd} > (gk); holds if x, = x € X, occurs at timestep k > 0.
Definition 2. We call U,Z‘wk, uZ‘ff, ceey uZ‘fle a sequence of conservative
inputs of the second kind with which for some j < 7, Pr{zy4; € X} > & holds if
xp =x ¢ Xs occurs at timestep k > 1. That is, using these inputs in this order,
the state moves back to X within T steps with a probability of at least &.

We give sufficient conditions to construct these u;"* and u}** in Section
As shown in the examples in Section the controllability index of the linear
approximation model can be used as a clue to find the positive integer 7.
Figure [2] illustrates how the proposed method switches the inputs differently
in accordance with the three cases. In the case (i), the state constraints are
satisfied and the input contains exploring aspect, (ii) the state constraints are
satisfied but the input does not contain exploring aspect, and (iii) the state
constraints are not satisfied and the input does not contain exploring aspect.

(1) we = p(@r; Or) + e, (ii) wg = uj'™ (i) wp, = ubeck
N(0, % ) Use conservative
e ( ’ k) input
—_
Use exploratory Use conservative °
input input / x
- — o
T T Ty . \O
ha @ =dy e o h-lrm =d, hy @ = dy j h;ra: =d, hyx=ds h,_m —d
A4
- J
Y L1 Lh+1 -’Ii
k+7
Xs Xs
hyx =dy hyx=ds hyx=ds

Fig. 2. [lustration of the proposed method for a case of n = 2 and n. = 3. The proposed
method switches two types of inputs in accordance with the current and one-step ahead
predicted state information: exploratory inputs generated by a deterministic base policy
and a Gaussian exploration term are used in the case (i), while the conservative ones
that do not contain exploring aspect are used in the cases (ii) and (iii).

The proposed method, Algorithm [T} switches the exploratory inputs and the
conservative ones in accordance with the current and one-step ahead predicted
state information by using prior knowledge of both the controlled object and
disturbance, while the previous work [19] only used that of the controlled object.
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In addition, this method adjusts the degree of exploration to an appropriate level
by restricting X of the exploration term e to a solution of , which also
contains prior knowledge of both the controlled object and disturbance.

4 Theoretical guarantee for chance constraint satisfaction

In this section, we provide theoretical results regarding the safe exploration
method we introduced in the previous section. In particular, we theoretically
prove that the proposed method makes the state constraints satisfied with a
pre-specified probability, i.e., makes the chance constraint @ hold, at every
timestep.

We consider the case (i) in Algorithm 1] in Subsection [4.1] and the case (iii) in
Subsection [£:2] respectively. We provide Theorem [I] regarding the construction
of conservative inputs used in the cases (ii) and (iii) in Subsection Then, in
Subsection [£:4] we provide Theorem [2] which shows that the proposed method
makes the chance constraint @ satisfied at every timestep k under Assumptions
[ Proofs of the lemmas and theorems described in this section are given in

Appendix

4.1 Theoretical result on the exploratory inputs generated with a
deterministic base policy and a Gaussian exploration term

First, we consider the case (i) in Algorithm [I| in which we generate an input
containing exploring aspect according to with a deterministic base policy and
a Gaussian exploration term. The following lemma holds.

Lemma 1. Let g € (0.5, 1). Suppose Assumptions @ and@ hold. Generate
input uy, according to (@ when the state of the nonlinear system at timestep
k is xy. Then, the following inequality is a sufficient condition for Pr{h;rwkH <
di} >q, Vj=1,...,nc:

) 2 1
h; B’ [ ' Zw] =319 {dj = hj (Azy + Bua(@y; 0x) + p) + 05},
2
Vj: 1, 2, coey N, V(Sj S {Sj, *gj},
(16)

where B = B, I| and @ is the normal cumulative distribution function.

Proof is given in Appendix This lemma is proved with the equivalent trans-
formation of a chance constraint into its deterministic counterpart [5 §4.4.2] and
holds since the disturbance wy, follows a normal distribution and is uncorrelated
to the input w; according to Assumption [2[ and . Furthermore, this lemma
shows that, in the case (i), the state satisfies the constraints with an arbitrary
probability ¢ € (0.5,1) by adjusting the variance-covariance matrix X} used to
generate the Gaussian exploration term g, so that the inequality would be
satisfied.
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4.2 Theoretical result on the conservative inputs of the second kind

Next, we consider the case (iii) in Algorithm [I in which the state constraints
are not satisfied. In this case, we use the conservative inputs of the second kind
defined in Definition [2] Regarding this situation, the following lemma holds.

Lemma 2. Suppose we use input sequence uZ‘wk, ui‘jff, R ui‘f}il (G <7)

given in Deﬁmtion@ when xi_1 € Xs and x, = © ¢ Xy occur. Also suppose
xp € Xy = Pr{zp 1 € X} > p holds with p € (0,1). Then Pr{xy € X} > *p™
holds for all k =1,2,...,T if xg € Xs.

Proof is given in Appendix [B.2] This lemma gives us a theoretical guarantee to
make a state violating the constraints satisfy them with a desired probability after
a certain number of timesteps if we use conservative inputs (or input sequence)
defined in Definition 2

4.3 Theoretical result on how to generate conservative inputs

As shown in Algorithm [1} our proposed method uses conservative inputs uzmy

and u}®* given in Definitions [1| and [2] respectively. Therefore, when we try
to apply this method to real problems, we need to construct such conservative
inputs. To address this issue, in this subsection, we introduce sufficient conditions
to construct those conservative inputs, which are given by using prior knowledge
of the controlled object and disturbance. Namely, regarding w} *¥ and u}*°* used

in Algorithm [1} we have the following theorem.

Theorem 1. Let ¢ € (0.5,1). Suppose Assumptions @ and @ hold. Then,
if input uy satisfies the following inequality for all j = 1,2,...,n. and §; €
{5]', —5]‘}, PI‘{.’I}k_H S Xs} > q holds:

dj —hj (Az, + Buy + py) — 3, > 7' (q)

1
] =i

oo

where ¢ =1 — 1n;cq.
In addition, if input sequence Uy, = [u) ,w., 1,...,u,, ] satisfies the
following inequality for all j = 1,2,...,n. and A; € {A;,—A;}, Pr{zy,, €

X} > q holds:
d; —h} (ATa:k +BU, + C’ﬂw) —A; >0 ||R) € . (18)

where fi, = [NL...,/J,I]T €eR", B=[A"'B A 2B,...,B] and C =
A=Y A2 ).

Sketch of Proof. First, from Bonferroni’s inequality, the following relation holds
for ¢ =1— % and Vo;, Vj=1,...,n.

Pr{Hxy1 Xd} >q<Pr {h;r (Axy + Buy + wy) + 9, < dj} >q. (19)
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Next, as input uj and disturbance wj follow normal distributions and are
uncorrelated (Assumption [2]and (8)), the following relation holds [5] §4.4.2]:

Pl‘{h;r (Axy, + Buy + wk) + 5]‘ < dj} > q/

& dj—h] (Azy + Buy) — 6, — h] py, > &7'(¢) (20)

T ok
) =i

2
Therefore, the first part of the theorem is proved. The second part of the theorem

is proved in the same way. Full proof is given in Appendix O
1

1—(a)"

This theorem means that, if we find solutions of (17]) with ¢’ =1 — #
and lj with ¢ =1 — 171;57 they can be used as the conservative inputs u} *Y
and u“dC in Definitions (1| and [2, respectively. Since li and li are linear
w.r.t. wx and Uy, we can use linear programming solvers to find the solutions.

Concrete examples of the conditions given in this theorem are shown in simulation
evaluations in Section [l

4.4 Main theoretical result: Theoretical guarantee for chance
constraint satisfaction

Using the complementary theoretical results described so far, we show our main
theorem that guarantees the satisfaction of the safety when we use our proposed
safe exploration method, Algorithm [1} even with the existence of disturbance.

Theorem 2. Let n € (0.5,1). Suppose Assumptions thmugh hold. Then, by
generating input uy according to Algorithm chance constraint (@) are satisfied
at every timestep k =1,2,...,T.

Sketch of Proof. First, consider the case of (i) in Algorithm |1} From Lemma
Assumptions [3] and [d] and Bonferroni’s inequality,

Pr{Hay, < d) > (g) ' (21)

holds if the input u, is generated by with X satisfying 7 and thus, chance
constraint @ is satisfied for k =1,2,...,T.
Next, in the case of (ii) in Algorithm [1} by generatinglan input as uy, = u}Y
that is defined in Deﬁnition Pr{Hxp, <d} > (E%) " holds when zj, € X.
Finally, by generating input as u, = ul** in case (iii) of Algorithm
Pr{Hx; =< d} > n holds for any &, € R", k=1,2,...,T from Lemma Hence,
1

noting (%) " >, Pr{Hz), < d} > 7 is satisfied for k = 1,2,...,T. Full proof
is given in Appendix [B:4] a
The theoretical guarantee of safety proved in Theorem [2]is obtained with the
equivalent transformation of a chance constraint into its deterministic counterpart
under the assumption on disturbances (Assumption . That is, this theoretical
result holds since the disturbance follows a normal distribution and is uncorrelated
to the input. The proposed method, however, can be applicable to deal with other
types of disturbance if the sufficient part holds with a certain transformation.
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5 Simulation evaluation

5.1 Simulation conditions

We evaluated the validity of the proposed method with the inverted-pendulum
provided as “Pendulum-v0” in OpenAl Gym [6] and the four-bar parallel link
robot manipulator with two degrees of freedom dealt in [I8]. Configuration
figures of both problems are provided in Fig. in Appendix. We added external
disturbances to these problems.

Inverted-pendulum: The discrete-time dynamics of this problem is given by

Prt1 | _ i + Tl 0
[Ckiﬂ B [Ck 7Ts% Sin(¢k+7r)} + |:Tsm3£2:| Up + Wy,

=: f(zx) + Gui + wy, (22)

where ¢ € R and (i € R are the angle and rotating speed of the pendulum and
xy = ok, Ck]T. Further, ux € R is an input torque, Ty is a sampling period, and
wy, € R? is the disturbance where wy, ~ N (fyw, X)), Bw = [fw,és Hw,c] T € R?
and ¥, = diag(o}, 4,05, ;) € R**?. Concrete values of these and the other
variables used in this evaluation are listed in Table in Appendix. We use the
following linear approximation model of the above nonlinear system:

1T, 0
Tyl 01 T + 7.3 Up + wy,

S me2

=: Axy, + Buy + wy. (23)
The approximation errors e in is given by

0

e(x,u) = f(x) + Gu— (Az + Bu) = {—ngz sin(¢ + )

(24)

We set constraints on (i as —6 < (x < 6, Vk=1,...,T. This condition becomes
hix, <dy, hjxp <dy, YVk=1,...,T, (25)

where h{ =[0,1], hg = [0,—1], d; = ds = 6, and n. = 2. Therefore, Assump-
tion (4] holds since thB #0, j € {1,2}. Furthermore, the approximation model
given by is controllable because of its coefficient matrices A and B, and its
controllability index is 2. According to this result, we set 7 = 2 and we have

3

sup  |h] e(m,u)| = T,22, je{1,2}, (26)
:Z:ERQ,UE]R 2€
3

sup  |h] (A+ De(m,u)| =T.22, je{1,2}, (27)

xcR2, uekR 14

since |sin(¢ + m)| < 1, V¢ € R. Therefore we used in this evaluation 7,3 and
Ts379 as Sj and A_j, respectively, and they satisfy Assumption
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Regarding immediate cost, we let
2
Cht1 = ({(gf)k + 7) mod 27} — 71') +0.1¢¢ + 0.001u3. (28)

The first term corresponds to swinging up the pendulum and keeping it inverted.
Furthermore, in our method, we used the following conservative inputs:

sta me2 yback _ me2 + 20y
ukt Y= 3T (Ck + :uw,¢>7 [u’i(f{@ = 3T, (Cko fu 7¢) : (29>

Both of these inputs satisfy the inequalities in Theorem [I] with the parameters in
Table and can be used as conservative inputs defined in Definitions [I] and [2}

Four-bar parallel link robot manipulator: We let x = [q1, q2, @1, ws]' € R* and
u = [vg, ’UQ]T € R? where q1, g2 are angles of links of a robot, w1, ws are their ro-
tating speed and vy, vo are armature voltages from an actuator. The discrete-time
dynamics of a robot manipulator with an actuator including external disturbance
wy € R* where Wy, ~ N(Hwa 2111)7 Hw = [,Uw,ql y Mw, g s Pw, w1 5 Hw,wQ]T € R* and

Xy =diag(02, 41,00 40s O ys Ooay) € RPY s given by
a1, + T, 0 0
G2, + Ts w2, 0 0
Tpt1 = w1, — Ty %llllw LT, %/111 cosqu, + T o up + wg
@y, — T2y, — Top2 cos g, 0 e
=: f(zx) + Guy, + wy, (30)

where My = n?Jmi + M, dyi = n? (Dmi + K‘RK*’) i€ {1,2},a = MRK‘. The
definitions of symbols in and their specific values except the sampling period
T, are given in [I§]. Derivation of is detailed in Appendix Similarly, we
obtain the following linear approximation model of by ignoring gravity term:

10 T, 0 @, 0 0
01 0 T, 0 0
Lp4+1 = 00 (1 _T 0211 0 2 + Ts e} 0 U + W
s ) ) @iy, O
00 0 (1— T,z | | @2, U

In the same way as the setting of the inverted pendulum problem described
above, we set constraints on the upper and lower bounds regarding rotating
speed @, and wy with hy = [0,0,1,0]", hy = [0,0,—1,0]T, hsz = [0,0,0,1]T,
hy =[0,0,0,—1]T. Since |cosq;| < 1, i € {1,2}, we have the following relations:

T,-4-, je{1,2
sup |the(a:,u)|: A j { }, (32)
R4, ucR? T8m227 S {374}
9T, Vi e (12
sup BT (A+ De(w,w)| = { P~ TomiToqn €120 gy
zER4 ucR?2 |2 _Ts Tios |TS Tz’ VS {3,4}
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We use them as &; and A;, and therefore Assumption [3{ holds. Assumption {4 also
holds with hq, ho, h3, hy and B. In this setting, we used immediate cost
2 2
Chp1 = 2({(q1k +7) mod 27} — 7r> + 2({((% + 1) — 57/6) mod 21} — 77)
+0.1(w?, + @3, ) + 0.001u, uy. (34)

The first two terms corresponds to changing the pose of manipulator to the one
depicted on the right in Fig. in Appendix and keeping that pose. Furthermore,
in our method, we used the following conservative inputs:

stay _ | A1 = an)wi, + (1= a1) w0, }
ui = F{(1— a)mn, + (1 B B
_%{(1 — ) w1, + (2 al)ﬂw W1} 0
back __ (1—a1)by ’ back _
Uy, - 7m{(1 — ) wa, + (2 QQ)HUJ,wz}] Mt = |:0] , (36)

where ay, az, by and by are derived from elements of A and B and they are
ayp = T dll/mll, a9 = T d22/m22, bl =T a/mll, and b2 =T Oé/ng Both of
these inputs satisfy the inequalities in Theorem[I]with the parameters in Table[C.2]
and thus, they can be used as conservative inputs defined in Definitions [T] and [2}

Reinforcement learning algorithm and reference method: We have combined our
proposed safe exploration method (Algorithm (1)) with the Deep Deterministic
Policy Gradient (DDPG) algorithm [I6], a representative RL algorithm applicable
o) and , in each experimental setting with the immediate costs and
conservative inputs described above. We also combined the safe exploration
method given in the previous work [I9] that does not take disturbance into
account with the DDPG algorithm for the reference where we set u; ™ = 0
as in the original paper. The network structure and hyperparameters we used
throughout this evaluation are listed in Tables and in Appendix.

Parameters for safe exploration: We set the pre-specified probabilities in both
problems to be n = 0.95. Other parameters for safe exploration are listed in

Tables and [C:2]in Appendix.

5.2 Simulation results

We evaluated our method and the previous one with 100 episodes x 10 runs of the
simulation (each episode consists of 100 timesteps). The source code is publicly
available as described in Code Availability Statement. The computational resource
and running time information for this evaluation is given in Appendix [C-4]
Figure [ shows the results of the cumulative costs at each episode and the
relative frequencies of constraint satisfaction at each timestep. The lines shown
in the left figures are the mean values of the cumulative cost at each episode
calculated over the 10 runs, while the shaded areas show their 95% confidence
intervals. We can see that both methods enabled to reduce their cumulative costs
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Fig. 3. Simulation results with (Top) an inverted-pendulum and (Bottom) a four-bar
parallel link robot manipulator: (Left) Cumulative costs at each episode, (Right)
Relative frequencies of constraint satisfaction at each timestep. Both the proposed
method (red) and the previous one (blue) [I9] enabled to reduce their cumulative
costs; however, only the proposed method made the relative frequencies of constraint
satisfaction greater than or equal to n for all timesteps in both experimental settings.

as the number of episode increases. However, as shown in the right figures, the
previous method [19] (blue triangles) could not meet the chance constraint @
(went below the green dashed lines that show the pre-specified probability 7) at
several timesteps. In contrast, our proposed method (red crosses) could make
the relative frequencies of constraint satisfaction greater than or equal to 7 for
all timesteps. Both simulations support our theoretical results and show the
effectiveness of the proposed method.

6 Limitations

There are two main things we need to care about to use the proposed method.
First, although it is relaxed compared to the previous work [19], the controlled
object and disturbance should satisfy several conditions and we need partial prior
knowledge about them as described in Assumptions [I] through [d] In addition,
the proposed method requires calculations including matrices, vectors, nonlinear
functions and probabilities. This additional computational cost may become a
problem if the controller should be implemented as an embedded system.
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7 Conclusion

In this study, we proposed a safe exploration method for RL to guarantee the
safety during learning under the existence of disturbance. The proposed method
uses partial prior knowledge of both the controlled object and disturbances. We
theoretically proved that the proposed method achieves the satisfaction of explicit
state constraints with a pre-specified probability at every timestep even when the
controlled object is exposed to the disturbance following a normal distribution.
Sufficient conditions to construct conservative inputs used in the proposed method
are also provided for its implementation. We also experimentally showed the
validity and effectiveness of the proposed method through simulation evaluation
using an inverted pendulum and a four-bar parallel link robot manipulator. Our
future work includes the application of the proposed method to real environments.

Code Availability Statement The source code to reproduce the results of this
study is available at [https://github.com/FujitsuResearch /SafeExploration
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sions on theoretical results about the proposed method. The authors also thank
anonymous reviewers for their valuable feedback. This work has been partially
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