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Abstract. Active learning aims to ease the burden of collecting large
amounts of annotated data by intelligently acquiring labels during the
learning process that will be most helpful to learner. Current active learn-
ing approaches focus on learning from a single dataset. However, a com-
mon setting in practice requires simultaneously learning models from
multiple datasets, where each dataset requires a separate learned model.
This paper tackles the less-explored multi-domain active learning set-
ting. We approach this from the perspective of multi-armed bandits and
propose the active learning bandits (ALBA) method, which uses bandit
methods to both explore and exploit the usefulness of querying a label
from different datasets in subsequent query rounds. We evaluate our ap-
proach on a benchmark of 7 datasets collected from a retail environment,
in the context of a real-world use case of detecting anomalous resource
usage. ALBA outperforms existing active learning strategies, providing
evidence that the standard active learning approaches are less suitable
for the multi-domain setting.

Keywords: Anomaly detection - active learning - semi-supervised learn-
ing - multi-armed bandits

1 Introduction

Active learning (AL) attempts to alleviate the time and monetary cost of ac-
quiring labeled data by intelligently deciding exactly which unlabeled instances
require a label [20]. One task where active learning can be particularly helpful is
in anomaly detection (AD), where the goal is to learn a model that can identify
anomalous instances in a dataset. While anomaly detection was typically treated
an unsupervised learning problem, there is growing evidence that in practice AD
algorithms benefit from small amounts of labeled data [25/15]. In particular, la-
bels can help overcome the assumptions encoded in unsupervised AD approaches
(e.g., all rare behavior is anomalous) by providing examples of infrequent normal
behavior such as maintenance. However, anomalies are rare by nature, making
it costly to find and label them. Thus, AL can help select those instances whose
label would be most informative to the underlying anomaly detector [24].

A drawback to classic AL approaches is that they focus on learning from a
single dataset. This contrasts with a scenario that often arises in practice, partic-
ularly in anomaly detection, where it is necessary to simultaneously model data
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from a fleet of similar yet slightly different entities. As an illustrative example,
consider trying to detect anomalous resource usage in a chain of retail stores.
Each store is different in terms of its location, size, opening hours, services of-
fered, etc. Thus, each store’s resource usage, and the resulting dataset, is charac-
terized by a different marginal distribution [16]. Consequently, what constitutes
anomalous behavior is store-dependent, which necessitates a separate detection
model per store. Or consider building classifiers to detect the occurrence of blade
icing in different wind turbines [27]. Each turbine generates its own data and is
different from the other turbines in terms of position, size, etc. Hence, training a
single model for use in all stores/turbines would not work. Unfortunately, classic
AL strategies are not optimized to deal with multiple datasets simultaneously.

In this paper, we focus on adapting active learning to the multi-domain set-
ting in the context of AD. Given multiple datasets and a global fixed budget for
the number of labels that can be acquired across all datasets, our objective is to
employ active learning to learn one model for each dataset. The key challenge
is to decide how to best divide this budget across the different datasets. Naively
spending an equal budget on each dataset is likely to be suboptimal as some
datasets will require fewer labeled instances to learn an accurate model than
others. Hence, one needs to estimate the marginal gain of acquiring another la-
bel in each dataset. This is challenging as the marginal gain is diminishing: as
more labels are actively acquired in a dataset, each one will have a smaller ef-
fect on the learned model’s performance. This can be viewed through the prism
of the exploration-exploitation trade-off. One needs to spend some labeling ef-
fort in each dataset to estimate this marginal gain while simultaneously trying
to mostly label the datasets with high gains. We address this challenge from
the perspective of multi-armed bandits (MAB) and propose the active learning
bandits (ALBA) method. ALBA maintains an estimate of the marginal gain of
querying a label from each dataset over the course of multiple query rounds and
queries those labels that optimize the exploration-exploitation trade-off. This
yields three differences with the classic AL techniques. First, ALBA can handle
multiple datasets. Second, ALBA tracks the marginal gain of acquiring a label
from groups of instances whereas classic AL tends to estimate the marginal gain
of a single instance. Third, ALBA computes the marginal gain of an instance’s
label after the oracle has been queried and has provided the instance’s true label.
To summarize, this paper makes the following contributionsﬂ

1. We identify and show how multi-domain active learning and multi-armed
bandits are related;

2. We propose an approach to multi-domain active learning that uses rotting
bandits to cope with the diminishing returns of acquiring labels;

3. We explore theoretically and experimentally how the integration of either a
heuristic or a random active learning strategy in ALBA impacts its perfor-
mance;

4. We empirically demonstrate that ALBA outperforms multiple baselines on 7
real-world datasets about water usage where the task is anomaly detection.

! Appendix & Code: https://github.com/Vincent-Vercruyssen/ALBA-paper
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2 Preliminaries

Multi-domain Dataset A domain consists of an input space X, a label space
Y, and a joint probability distribution over the input-label space pair. By sam-
pling observations from a domain’s distribution, we obtain a dataset D.

A multi-domain dataset M = {D¥}_ consists of K datasets, each sampled
from a different underlying domain’s distribution. A multi-domain instance is
denoted as ¥ and its label as y¥, i.e., instance i of the dataset D*. We assume
the input and label space are the same for each of the K domains.

Pool-based Active Learning Each dataset D* € M contains both labeled
and unlabeled instances. In pool-based active learning, one tries to construct a
classifier f* for a dataset DF. Initially, no labels are available. Over the course
of subsequent iterations, one unlabeled instance in D is chosen to be labeled
by the oracle, its label is added to D*, and the classifier is retrained [20].

Multi-armed Bandits The origin of the MAB problem stems from clinical
trials [23]. An MAB algorithm is typically given a fixed set of actions A =
{1,..., K} (the arms) and a fixed number of rounds to play 7' (the budget). In
each round ¢, the algorithm has to choose one action j € A and receives a single
random payoff r; from the corresponding unknown payoff distribution [2]. When
action j is taken for the n'" time, the mean of the payoff distribution is i(n).

In our active learning setting, the payoff distribution is non-stationary and
the expected payoff of an action decreases over time. Thus, for all actions, p;(n)
is assumed to be positive and non-increasing in n. This corresponds to the rot-
ting bandit setting [12]. Let N;(t) be the number of times action j is taken at
round ¢, let m be a policy (i.e., an infinite sequence of actions), and let 7(t)
denote the action chosen by policy 7 in round ¢. Then, the goal of the MAB al-
gorithm is to maximize the expected sum of payoffs after round 7" which equals
E [ZtT=1 Hor(t) (N,r(t)(t))] MAB algorithms embody the exploration-exploitation
trade-off, exploiting the best action while spending some time exploring the
payoff of each action [2]. In this paper, we use the recent sliding-window average
(Swa) algorithm as a solver for the non-parametric rotting bandit setting, which
comes with strong performance guarantees [12].

3 Multi-domain Active Learning

The multi-domain active learning (MDAL) problem for anomaly detection is:

Given: A multi-domain dataset M consisting of K unlabeled datasets, a fixed
label budget T', and an oracle O that can provide one label at a time;

Do: maximize the performance of each domain’s anomaly detector f* by query-
ing additional labels to the oracle.
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The two key challenges are (1) figuring out the marginal benefit of acquiring
labels in each dataset of M (= labeling payoff ), and (2) dealing with the dimin-
ishing returns of labeling additional instances. Some datasets in M will require
less labels to learn an accurate detector than other datasets, i.e., their labeling
payoff is higher, but we do not know beforehand which ones.

We propose the active learning bandits (ALBA) approach which leverages an
MAB algorithm to solve the trade-off between exploration (figuring out which
datasets have a high labeling payoff) and exploitation (focusing our labeling ef-
forts on the high-payoff datasets). First, ALBA defines several groups of instances
for which to track the labeling payoff (Section . Second, ALBA updates its
estimate of the average labeling payoff of each group using a reward function
that measures the impact of labeling an instance from that group on the corre-
sponding anomaly detector (Section. Third, in each query round ALBA picks
a group from which to query an instance using the SWA rotting bandit algorithm
which can handle non-stationary rewards (Section . Finally, after choosing
a group, ALBA still needs to decide which individual instance of that group to
query (Section . ALBA maintains one detector f* per dataset in M that is
retrained upon receiving a new label from oracle O. We assume that the cost of
querying and labeling is the same and constant for all instances in M, and that
the oracle is queried one instance at a time. See Section for the algorithm’s
pseudocode.

3.1 Choosing an Action Set

We define a group of instances G7 such that Vj there exists a k such that G ¢ D*
and Vi # j : GYNG* = @. Then, we define the action set A such that each action
j € A corresponds to choosing a particular group of instances G’ from which
one instance will be queried. The most straightforward idea is to let each of the
K datasets in M be its own group such that G/ = D¥. Thus, |A| = K.

However, the distribution of informative instances likely varies substantially
within each dataset. Therefore, we propose to first divide each dataset into
smaller groups using a clustering algorithm, obtaining a set of C' clusters for
each dataset. Each action now corresponds to choosing a particular cluster and
|A| = K x C. Note that Vj : G C D*. This approach gives the MAB algorithm
(Section more fine-grained control in selecting different groups of instances
and learning their labeling payoff. However, it comes at the cost of increased
exploration because the algorithm now has to figure out the reward structure
for a larger set of actions.

3.2 MAB Reward Function

ALBA keeps track of the labeling payoff for each group of instances G7. After
choosing action j, and receiving the label for the single selected instance x] €
G (Section 7 the challenge is to design a reward function that reflects the
updated payoff of querying the label for one of the remaining unlabeled instances
from this group. We consider two possibilities.
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Entropy of the Predictions. One measure of the labeling payoff of instance z

is its ability to decrease the overall prediction uncertainty of anomaly detector
f¥ trained on the dataset to which z belongs. Thus, the payoff r; of action j
that results in querying z is computed as the decrease in prediction entropy of
the detector after retraining:

=Y [Hp @)~ Hp(@)] (1)

ze Dk

where f_]fr represents the detector after retraining with the label of J;f provided
by the oracle. Hy(z) is the Shannon entropy of the predicted label probability
(by detector f) that = belongs to one of the classes in V.

Cosine Similarity of the Predictions. A more direct measurement of the la-
beling payoff of 27 looks at how many instances the anomaly detector changes
its predicted label for after retraining. If this number is large, the model changed
a lot and we can say that labeling 7 had a large impact. The payoff 7; of action
J that results in querying xf is computed as the cosine similarity between the
predicted-label vectors:

Yfi “Yir

ST ITEv (2)
1Y g 1Y g

T‘j=1

where Y7 is the vector of predicted labels for a dataset by detector f and contains
all 0’s or 1’s (in our experiments, 0 signifies “normal” and 1 “anomalous”). f_’f_
and f* represent the anomaly detectors trained respectively with and without
the queried label.

3.3 MAB Algorithm

The MAB algorithm chooses an action j from A in each query round ¢. In our
setting, the number of query rounds is fixed and equal to the label budget T', the
set of possible actions is fixed, only the payoff of the chosen action is observed
at each round (r; = 0 if j is not chosen), and the observed payoffs are bounded
to the interval [0, 1]. The labeling payoff of a group decreases as more instances
from that group are queried and labeled. Intuitively, if most of the instances
in a group are labeled, acquiring yet another label will have little effect on the
anomaly detector, so the labeling payoff will be close to zero. In contrast, if few
or no instances are labeled, observing even one label might greatly improve the
detector. Hence, given the non-stationary rewards, ALBA uses the SWA rotting
bandit algorithm [I2] to choose between different actions in each query round ¢.
During the AL loop, SWA tracks the decreasing labeling payoff of each action by
estimating a sliding-window average of the obtained rewards with window size
W, ie., i;(N;(t) = Zgi%(t)_w rj(n) where r;(n) is the reward obtained
when action j is chosen for the n*® time. Initially, this estimate is 0 as ALBA
only obtains information about an action’s reward distribution after querying
instances.
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3.4 Query Selection Strategy

We can query one instance per query round to the oracle. Although the MAB
algorithm tells us from which group G7 we should query, it does not inform
us which particular instance 27 € G7 to query. The solution is to select query
instance xf either randomly from G7 (RAND) or heuristically, using uncertainty
sampling (UC) or another suitable AL method.

Using a random selection strategy results in a better regret bound than using
a heuristic strategy, because random payoffs produce a less biased estimate of
the average payoff 1;(N;(t)) for any action j € A at any round ¢ < T'. Let us
first assume that the rate of change of the true labeling payoff of an action is not
affected by which instance from the corresponding group is queried and labeled
in any given round tE| Then, in a theoretical scenario with infinite instances and
infinite budget, randomly collecting labels from each group, computing the re-
wards, and estimating the average labeling payoff with a sliding window average
will result in gradually more accurate estimates of each group’s true average
labeling payoff: |f;(N;(t)) — p;(IV;(t))] = 0 fort = 00, j=1,...,K x C. This
means that, for a given tolerance error €; > 0, there exists a certain necessary
cost ¢; € N such that it is guaranteed that the estimate error is smaller than
the tolerance: |fi;(N;(t)) — p;(N;(t))| < €, for all t > ¢;. By taking the total
cost ¢ = Zj(lec ¢;, and the minimum tolerance ¢ = min{e;: j < K x C}, we
can claim that all estimates of the average payoffs are accurate enough, indepen-
dently of which group is considered: |f;(N;(t)) — p;(N;(t))| < € for all t > ¢ and
j=1,..., K x C. After paying cost ¢ (i.e., some number of query rounds), the
MAB algorithm begins to pick the optimal actions (exploitation). In contrast, as
long as t < ¢, it will sometimes pick sub-optimal actions (exploration). Hence,
the lower ¢ (i.e., the faster the estimate of all actions’ payoff converges), the
lower the expected average regret.

The previous statement is true when any unbiased estimator of the average
payoff is used. We now show that estimating the average payoff by heuristically
selecting the instances, e.g., using the UC selection strategy, results in a biased
estimate of the average payoff. Intuitively, this is because in each round ¢ the
heuristic strategy picks the instance that yields the largest (potential) reward,
resulting in an overly optimistic estimate of the true labeling payoff of each
group, forcing the MAB algorithm to spend more time exploring (c is larger).

In the following paragraphs, we fix the index j that refers to a specific action
and denote with W the maximum budget that can be spent on the group G7,
corresponding to the number of available payoffs. Additionally, n denotes the
number of rounds spent on the given group G7, i.e., for any n there exists a
round ¢ such that n = N;(t). For example, p;(N;(t)) would become p(n).

Proposition 1. Let RY,..., Ry,_,, be i.i.d. random variables that take the pay-
offs as values, such that E[R}] = u(n), forq=1,.... W—n,ne W +1,.... W.

2 Because AL typically operates with a small budget and large datasets, this assump-
tion is reasonable as the marginal benefit of labeling each additional instance is
small.
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Assume that p(n) is a positive non-decreasing function and that pu(n) — p(n+1)
does not depend on which instance is queried at round n. Then,

/J/(n) < E[ﬂrund] < E[/jheur]-

Proof. Without loss of generality, let us assume that the random selection strat-
egy picks the random variable with index p. For any n > W,

A

an

w2 M) = pn),

i=n—W

]E[/ff'r‘and

where the last inequality is due to u(n) being non-decreasing. This proves the
first inequality.
The heuristic selection strategy always queries the instance that yields the

maximum of the available payoffs. Now, R} = max(RY,...,R}),_,) is the ran-
dom variable getting the maximum payoff at each roundn € W + 1, ..., W. Such
a random variable has a different distribution with respect to RY,..., R},_,.

With F' being the cumulative density function of the payoff random variables,
for any value z € [0, 1],

w-—
P (R <z:H (B} < 2) = Fry(2) = (F(2))" ",

which means that the cdf of the maximum payoff is not the same as the cdf
of any payoff. Given that F(z) < 1, with F non-constantly equal to 1, and
that it is a non-decreasing function, there exists a minimum value £ € [0, 1] for
which the value of the cdf F' equals 1. At the same time, for all 0 < z < 2
F(z) < 1. Because the power of positive values lower than 1 returns smaller
values, Fpn(2) = F(2)"W™™ < F(z) for all z < 2, ie. 1 — Fro(z) > 1 — F(2).
Finally we can apply Cavalieri’s principle to derive the expected value from the
cdf,

1

]E[,aheur] :/O (1 - FR?) dz >/O(1 - F) dr = E[ﬂ?“and]

which proves the second inequality.

The previous proposition states that taking the maximum rewards in a de-
creasing fashion results in a biased estimate of the average payoff that is strictly
greater than the random selection estimate. Therefore, given ¢ and ¢ such that
|frana(t) — p(t)] < € for all ¢ > ¢, the estimate obtained by fipew- has not
accurately estimated () yetE|

3 Section [5| provides empirical evidence that the random selection strategy indeed
leads to better results than the heuristic strategy. Note that the proof relies on
the heuristic strategy being able to rank the instances correctly according to their
informativeness. In reality, this ranking is approximate.
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Algorithm 1 ALBA: Active Learning Bandits

1: Input: Multi-domain dataset M, label budget T, oracle O, number of clus-
ters C'
Output: Set of trained anomaly detectors F
A=a, F=a,t=0
for D¥ ¢ M do
A=A U CLustErRDATA(D¥, C)
F = F UTRAINDETECTOR(D¥)
end for
7 = [0/€A > initialize the payoff vector
while t < T do
J = SWA(A, 7t > choose an action
z = RAND(GY) > choose instance to be queried
yg = QUERY(O, zf ) > query the label to the oracle
F* = TRAINDETECTOR(D* U 97)
79 = ESTIMATEPAYOFF(FF |, FF)
t=t+1
: end while

e e e o
S TR wy 22

3.5 ALBA Algorithm

Algorithm [I] details the full ALBA algorithm. On lines 4-7 the action set is
instantiated by first clustering each dataset in M into C clusters, and an initial
anomaly detector is trained for each dataset. On line 9 the payoff vector that
stores the obtained rewards, is initialized to zero. Lines 10-17 contain ALBA’s
active learning loop. ALBA proceeds in five steps: (i) it selects the group of
instances from which to query a label according to the current MAB reward
estimate (line 11), (ii) it selects an instance from that group to query (line 12),
(iii) it queries the instance’s label to the oracle (line 13), (iv) it retrains the
model (line 14), and (v) it computes the actual labeling payoff using Eq. |1] or
to update the MAB reward estimate for the selected group in step (i) (line 15).

ALBA is computationally more time-efficient in the multi-domain setting than
some AL strategies, such as uncertainty sampling. The cost of retraining the
detector after an instance has been labeled is identical for both ALBA and every
AL technique. However, while most AL techniques, such as uncertainty sampling,
use heuristics to estimate the potential labeling payoff of each instance upfront
(resulting in Zszl | D¥| computations each query round), ALBA only has to keep
track of the labeling payoff of the different groups. This results in only K x C
computations in total per query round.

4 Related Work
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Table 1: Classification of the problem dimensions tackled in AL related work.
A check mark (v') and dash (-) signify what was part of the original problem
description.

No. tasks No. datasets No. classes No. views

Reference 1 >2 1 >2 2 >3 1 >2 Paradigm
[20124] v - v - v - v - Classic AL
[T7TI28] - v v - v - v - Multi-task AL
[2922/199] v - v - - v v - Multi-class AL
[26] v - v - v - - v' Multi-view AL
[T43T] v - - v v - v - MDAL
ALBA v - - v v - v - MDAL

4.1 Active Learning

This work only considers sequential, pool-based active learning, where labels are
queried one-by-one until the budget is spent. To see how our work fits within the
vast body of research on AL, we roughly divide the spectrum of AL techniques
along four axis: the number of tasks solved, the number of datasets considered,
the number of classes to predict in each dataset, and whether multiple classi-
fiers are learned on different views (i.e., feature subsets) of the data. Table
summarizes how the related works discussed below, fit these four axis. The clas-
sic AL techniques, such as uncertainty sampling [13], query-by-committee [21],
expected-error reduction [I8|, density-based approaches [20], were originally de-
signed for single-task, single-dataset scenario’s with the features treated as a
single set (view). In-depth surveys on these AL techniques are [20124].

A1LBA differs from these classic AL techniques in two important ways. First,
ALBA is explicitly designed for multiple datasets, each of which requires the
training of a separate classifier (or anomaly detector). Second, ALBA’s use of an
MAB strategy fundamentally changes how an acquired label informs subsequent
query rounds, because it tracks the marginal gain of acquiring a label of groups
of instances and not of single instances. An instance’s “true labeling payoff”
can only be measured by comparing classifier performances before and after
retraining with said labeled instance. ALBA can measure this payoff exactly while
the classic AL techniques have to resort to heuristics to estimate it upfront. To
see why, consider the order of operations. In classic AL we (1) estimate the payoff
of getting each instance’s label, (2) get the label, and (3) retrain the model. In
contrast, ALBA (1) selects a group of instances from a dataset according to the
current reward estimate, (2) selects an unlabeled instance from the chosen group,
(3) gets the instance’s label, (4) retrains the model, and then (5) computes the
actual payoff to update the reward estimate for the selected group in step (1).

Most related to our work, are [I4] and [31]. [14] proposes a method for MDAL
for classification. Their work properly conforms with the MDAL setting. How-
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ever, their AL method is fully integrated with the underlying SvMm classifier and
geared towards text classification. This makes it difficult to use for our exper-
iments without significant alterations to the proposed method. [31I] designed a
strategy for active learning for multi-domain recommendation. Recommendation
is quite different from classification as the optimization target is distinct, ren-
dering the proposed approach unsuitable for our task. The online Appendix 7.1
to this paper provides further details on how our work relates and differs from
multi-task, multi-view, and multi-class active learning.

4.2 MAB Strategies and Active Learning

Since there is no single best AL algorithm [5], some researchers look at learning
active learning [I0I1]. The idea is to learn how to select the best AL strategy
from a pool of strategies, potentially using an MAB approach [I0l5], or learning
which instances in a dataset are likely to improve the classifier [IT]. ALBA differs
from all these approaches as it is not concerned with finding the best AL strategy
among K strategies for 1 dataset, but rather with identifying the labeling payoff
of K different datasets using 1 strategy.

The work of [8] proposes the use of MAB strategies to sequentially select
instances presented to the oracle. The main difference with ALBA is that they
conceptually view each learned hypothesis as an action, while ALBA equates each
action with a group of instances. Moreover, ALBA works for multiple datasets
that require potentially different classifiers (hypotheses). Finally, Fang et al. also
use an MAB approach to decide which instance to query [6]. There are two key
differences with our work. First, ALBA equates actions with groups of instances
and not with different learned tasks. Second, ALBA explicitly accounts for the
diminishing payoffs of labeling additional instances.

5 Experiments

We evaluate multi-domain active learning in the context of anomaly detection
where we have access to real-world multi-domain data consisting of nearly four
years of water consumption data from 7 different retail stores. Anomaly detec-
tion naturally fits this paper’s problem setting for two reasons. First, many real-
world anomaly detection problems consist of multiple distinct datasets where
an anomaly detector has to be learned for each dataset. Second, while anomaly
detection problems typically were posed as unsupervised problems due to dif-
ficulties of obtaining labeled data, there is growing evidence that in practice
achieving good performance requires labeling some data data [25].
We try to answer following questions empirically:

Q1. Does ALBA outperform the classic AL baselines when dealing with multi-
domain datasets where K > 1?7

Q2. How does the choice of the action set A impact ALBA’s performance?

Q3. How do the choice of the MAB reward function and the query selection
strategy impact ALBA’s performance?
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5.1 Experimental Setupﬁ

Compared Methods For all approaches, we use the same semi-supervised
anomaly detector: SSDO with the Isolation Forest algorithm as prior to generate
the unsupervised anomaly scores [25]. One could use other detectors in theory.
The unsupervised prior of SSDO allows us to exploit information in the unlabeled
data. For active learning, we compare to uncertainty and random sampling as
they (1) can be used with any underlying detector, and (2) have been shown to
consistently perform well against more complicated AL strategies [9/24].

We compare ALBA to seven baselines, divided into two categories. Category
1 baselines combine all the datasets into one big dataset and learn a
single anomaly detector using the random (C-RAND) or uncertainty sampling
(C-uc) active learning strategy. Though necessary baselines [9], learning a sin-
gle detector for the combined datasets is likely suboptimal as each dataset has
distinct marginal and conditional distributions. This would result in difficult-to-
learn regions in the combined instance space for the detector.

Category 2 baselines treat each domain independently and learn a
separate model for each one. I-U learns a completely unsupervised anomaly
detector for each dataset. I-RAND or I-UC use the random and uncertainty sam-
pling strategies in the following way in each query round. First, they apply their
AL strategy to each dataset to select the most informative instance within each
dataset. Given this set of identified instances, they again apply their respective
AL strategy to select the single most informative instance to be labeled. I-RAND
and I-UucC do not attempt to ensure any balance in terms of how many instances
are queried from a given a dataset. Finally, I-R-RAND or I-R-UC impose an ad-
ditional restriction on I-RAND or I-ucC. Given a fixed total query budget T and
K datasets, at most |T/K | instances can be sampled from a given dataset.

FEvaluation Metrics The performance of the anomaly detector on a single
dataset is evaluated using the area under the receiver operating characteristic
(AUROQC) as is standard in anomaly detection [3]. The performance on a multi-
domain dataset is obtained by averaging the AUROC scores on the K individual
datasets (AUROC ). The performance of an active learning strategy is revealed
by the progress curve which captures how the AUROC evolves as a function of
the number of labeled instances (i.e., the spent label budget) [24]. As the number
of experiments increases, these curves are summarized using the area under the
active learning curve (AULC) [24]. AULC scores are € [0, 1] and higher scores
are better.

Benchmark Data We use 7 real-world datasets that each track the water con-
sumption of a different retail store, measured every 5 minutes, over the course of
4 years. Each of the 7 datasets is further divided into 24 datasets by grouping the

4 Online Appendix 7.2 has detailed information on the (choice of) evaluation metrics,
benchmark data, and hyperparameters. It also has additional results on the impact
of the dataset characteristics on ALBA’s performance.
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data per hour-of-the-day, yielding 7 (stores) x 24 (hours) = 168 fully labeled wa-
ter datasets. This division is necessary as the hour-of-the-day strongly influences
the observed water consumption. The binary labels are “normal” or “anomalous”
usage (e.g., water leaks). Then, we transform each hour-long segment into a
feature—vectorﬂ and train a separate anomaly detector per dataset.

We now construct an appropriate multi-domain AL benchmark as follows.
First, we compute for each of the 168 datasets a labeling payoff score which is
simply the difference in AUROC obtained by (1) SSDO trained with 20% of the
data labeled and (2) SspoO trained without labels. Then, we construct a multi-
domain dataset by selecting K datasets from the set of 168 water datasets. A
fraction 1 of these K datasets are selected to have a high labeling payoff score,
while the remaining datasets (1 — ¢ K) have a low labeling payoff scores. By
varying K in [2,10] and ¢ in [0.1, 1], we obtain the full benchmark of 54 unique
multi-domain datasets.

Setup Given a multi-domain dataset M from the benchmark, the anomaly
detector, and an AL method, each experiment proceeds in four steps. First,
each of the K datasets in M is randomly divided into 2/3 train and 1/3 test
set. Second, we simulate an oracle iteratively labeling one training instance at
a time selected by the AL method across the K datasets, until the label budget
T = 500 is spent. Third, each iteration, the appropriate anomaly detector is
retrained and we recompute the AUROCk on the test data. Each experiment
is repeated 5 times to average out any random effects, resulting in a total of
7 (methods) x 5 x 54 = 1890 experiments where each experiment has T + K
training and T x K evaluation runs. The baselines have no hyperparameters,
ALBA has three. These are C' = 5 using KMEANS, the SwA bandit algorithm
with the cosine reward function, and a RAND query selection strategy.

5.2 Experimental Results

Q1: ALBA versus the baselines Figure [l| plots the progress curves for 5
multi-domain datasets randomly selected from the benchmark of 54 datasets.
The plotﬁ reveals four insights. One, all approaches (except C-uC) outperform
the unsupervised baseline after about 100 query rounds. Two, learning a separate
anomaly detector per dataset clearly outperforms combining all datasets and
learning a single detector, as evidenced by the lagging performances of C-RAND
and C-uc versus the other baselines. Three, a completely random AL strategy
surprisingly outperforms the heuristic strategy in the multi-domain setting, as
evidenced by C-RAND, I-RAND, and I-R-RAND outperforming respectively C-uc,
C-RAND, and C-R-RAND on all but one benchmark dataset. Four, I-RAND and
I-R-RAND perform similarly.

® We use 8 statistical (average, standard deviation, max, min, median, sum, entropy,
skewness, and Kurtosis) and 2 binary features (whether its a Friday or a Sunday),
10 in total.

6 See online Appendix 7.3 for the plots for all 54 benchmark datasets.
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Fig.1: The figure shows the progress curves of ALBA and the baselines for 5
multi-domain datasets randomly selected from the full benchmark. Each progress
curve shows how the AUROCk evolves as a function of the total number of
instances labeled by the oracle. The characteristics of each selected multi-domain
dataset (K and ) are shown on the corresponding plot.

After enough query rounds, all approaches (except the unsupervised baseline)
will converge to the performance of a fully supervised classifier. Better AL strate-
gies, however, converge faster. To investigate each method’s convergence, we look
at their performance after both 100 query rounds and 500 query rounds. Ta-
ble 2] shows for the 54 benchmark multi-domain datasets how many times ALBA
wins/draws/loses in terms of AULC versus each baselineﬂ as well as the average
AULC rank for each method [4]. Table shows the results after 100 queries,
while Table [2b] shows the results after 500 queries. After 100 query rounds, the
Friedman test rejects the null-hypothesis that all methods perform similarly (p-
value < 1le-8). The post-hoc Bonferroni-Dunn test [4] with o = 0.05 finds that
ALBA is significantly better than every baseline. After 500 query rounds, ALBA
is still significantly better than most baselines, except I-RAND and I-R-RAND.
This illustrates that the methods start converging. However, ALBA converges
faster (this is also illustrated by the progress curves), which is especially useful
in scenario’s where labeling is costly, such as anomaly detection.

Q2: Impact of the Choice of Action Set We explore the effect of the
granularity of the action set considered by ALBA on its performance. We do so
by varying the number of clusters C per dataset. When C' = 1, the action set is
coarse-grained as each action corresponds to a full dataset. As C increases, the
action set becomes more fine-grained as each dataset is further partitioned into
groups using KMEANS. Figure [2| points to a correlation between C' and ALBA’s
performance. As C increases, the MAB method can make a more fine-grained
estimate of the usefulness of different groups of instancesﬁ

Q3: Impact of the MAB Algorithm, Reward Function, and Query Se-
lection Strategy We explore the effect of the choice of MAB algorithm, reward

7 All the experimental evaluations maintain a precision of le-4 and a threshold of
0.001 (e.g., to determine the similarity of two AULC scores).
8 See online Appendix 7.3 for a more detailed discussion.
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Table 2: The table shows the number of AULC wins/draws/losses of ALBA
versus each baseline, and the average AULC rank (+ Standard Deviation) of
each method on the full benchmark, both after 100 and 500 query rounds.

Nr. of times ALBA: Ranking

Method wins draws loses Avg. + SD

ALBA - - - 1.315 4+ 0.894
I-RAND 48 2 4 2.639 + 0.573
I-R-RAND 48 2 4 2.639 £+ 0.573
I-u 48 2 4 4.333 £ 1.656
I-uc 53 0 1 5.157 £+ 0.551
I-r-uc 53 0 1 5.231 + 0.497
C-RAND 54 0 0 6.741 £ 0.865
C-uc 54 0 0 7.944 + 0.404

(a) Results @ 100 query rounds

Nr. of times ALBA: Ranking

Method wins draws loses Avg. £ SD

ALBA - - - 1.306 + 0.710
I-rRAND 45 2 7 2.417 £ 0.507
I-R-RAND 46 1 7 2.417 £ 0.507
I-r-uc 54 0 0 4.537 £ 0.686
I-uc 53 1 0 4.546 £ 0.512
I-u 54 0 0 6.370 £+ 0.818
C-RAND 54 0 0 6.491 £+ 0.717
C-uc 54 0 0 7.917 £+ 0.382

(b) Results @ 500 query rounds

function, and query selection strategy on ALBA’s performance. Table[3]shows the
resulting average AULC ranks (C' = 5). The best-performing version of ALBA
uses a cosine reward function and random instance selection strategy. Generally,
the RAND versions of ALBA outperform their Uc counterparts ~ 63% of time on
the full benchmark, and they draw ~ 18% of the time. Repeating the analysis
with C = 1, the RAND versions outperform their UC counterparts ~ 88% of
time and they draw ~ 5.5% of the time. This aligns with the theoretical results.
When fixing the query strategy, our proposed cosine reward function outper-
forms the entropy reward function. See online Appendix 7.3 for linear regression
analyses on these results, as well as further analyses on the impact of the dataset
characteristics, K and v, on the performance of ALBA.
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Fig. 2: Box plot overlaying a scatter plot of the AULCs obtained by ALBA with
different values for C' on the 54 benchmark datasets. Results are shown for two
versions of ALBA (with different instance selection strategies).

Table 3: Average AULC rank (+ Standard Deviation) of versions of ALBA with
different settings for the query selection strategy and reward function (C' = 5).

Reward Query sel. Ranking
function strategy Avg. + SD

cosine rand 1.806 + 0.813
cosine uc 2.944 + 0.926
entropy rand 2.241 £ 0.843
entropy uc 3.009 £ 0.825

6 Conclusion

This paper tackled the multi-domain active learning problem for anomaly de-
tection, which often arises in practice. The key challenge was to determine from
which dataset an instance should be queried as labels are not equally benefi-
cial in all domains. To cope with this problem, we proposed a method (ALBA)
that exploits multi-armed bandit strategies to track the label-informativeness of
groups of instances over time and decides which instances are optimal to query
to an oracle. Empirically, ALBA outperformed existing active learning strategies
on a benchmark of 7 real-world water consumption datasets.
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