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Abstract. Trustworthy Machine learning (ML) is driving a large num-
ber of ML community works in order to improve ML acceptance and
adoption. The main aspect of trustworthy ML are the followings: fair-
ness, uncertainty, robustness, explainability and formal guaranties. Each
of these individual domains gains the ML community interest, visible by
the number of related publications. However few works tackle the inter-
connection between these fields. In this paper we show a first link between
uncertainty and explainability, by studying the relation between calibra-
tion and interpretation. As the calibration of a given model changes the
way it scores samples, and interpretation approaches often rely on these
scores, it seems safe to assume that the confidence-calibration of a model
interacts with our ability to interpret such model. In this paper, we show,
in the context of networks trained on image classification tasks, to what
extent interpretations are sensitive to confidence-calibration. It leads us
to suggest a simple practice to improve the interpretation outcomes: Cal-
ibrate to Interpret.

Keywords: Interpretability · Calibration · Classification · Trustworthy
Machine Learning ·

1 Introduction

Despite being state of the art on many tasks, deep neural networks (DNNs) are
still considered as black boxes which is problematic in contexts where decision
making is critical. In order to ensure that a model can be safely used, one needs
to have access to the uncertainty over its predictions, and to understand what
drives those predictions. Both aspects, namely uncertainty and explainability,
are frequently tackled via the use of post-hoc calibration and local interpretation
respectively. The current work studies the interaction between these two central
aspects of trustworthy ML.

There are numerous ways to interpret a model’s behaviour, depending on
what one has access to (internal model structure, training phase, ...). This work
focuses on methods which interpret the decisions of already trained image clas-
sifiers, considering model-aware as well as model-agnostic local interpretation
methods, following the definitions given in [34], the former have access to the
internal structure of the model while the latter only relies on the predictions
scores. These methods provide a saliency map highlighting important pixels for
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Fig. 1. Visual comparison of saliency changes due to calibration

each prediction. Regarding predictions uncertainty, post-hoc calibration methods
adapt models so that their scores are consistent with conditional probabilities
related to the predicted class [21]. It is a convenient way to tackle the overcon-
fidence of modern neural networks [11, 25].

This focus was made to fit the flexible context in which calibration and inter-
pretation are handled after training the model. Since both post-hoc calibration
and local interpretation are linked to the scores associated with the predicted
class, we address their interdependence via the following questions: Does cali-
bration impact the saliency maps obtained as interpretations? Do modifications,
if any, improve the faithfulness of interpretation methods? Are saliency maps
with calibrated models more human-friendly?

Our empirical evaluations highlights that there is indeed a positive interaction
between the calibration of a model and its interpretability by enabling some
widely used interpretation methods to work more efficiently on it. This impact
is visible in terms of faithfulness, visual-coherence of the saliency maps, and
their robustness most notably for model-agnostic approaches like Meaningful
Perturbation (MP)[9]. Examples of saliency maps produced by various methods
before and after the calibrations are presented in Figure 1.

After positioning our work in Section 2, we introduce the problems of cali-
bration and local interpretation, as well as the methods used in the literature
to tackle them in Section 3. Section 4 then describes the conducted experiments
and reports their outcomes. Finally results are discussed and we mention some
future works before concluding in Section 53.

2 Related Works

Trustworthy ML has recently gained interest, with the development of modern
uncertainty quantification, explainability, robustness, fairness and formal guar-
anties. However few publications have investigated links between these aspects.
3 code available at https://github.com/euranova/calibrate_to_interpret
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Among these we can mention attempts to link: robustness and calibration [35,
33, 44] showing that models which are robust to adversarial attacks are more in-
terpretable; data augmentation, calibration and interpretation showing that the
MixUp data augmentation procedure greatly impacts the calibration of learnt
models [43] and existing saliency methods being used to improve the MixUp
procedure itself [16]; or calibration and fairness [30], showing the incompatibility
between most of fairness definitions and calibration. [15] showed that calibration
helps with attention based interpretation by helping stabilizing attention distri-
butions. Following these works, we study the interaction between two aspects of
trustworthy ML: uncertainty and explainability via the empirical analysis of the
interaction between post-hoc calibration and local interpretation.

3 Problem Statement and other Related Works

Let x∈RH×W×3 be an input image (of dimension H×W ) and xi be its features.
A model F is trained to classify sample images among C classes . It maps each
input x to a logit vector L which is then converted, generally through a softmax
function, into an output vector F (x) ∈ [0, 1]C so that

∑C
c=1 F (x)c = 1. The

decision associated with such prediction is y = argmaxc F (x)c.

3.1 Calibration

Fig. 2. Confidence reliability plots and curves for VGG16 trained on CIFAR100, when
uncalibrated (left, ECEconf = 0.2), calibrated using Temperature Scaling (center,
ECEconf = 0.04) and calibrated with Dirichlet calibration (right, ECEconf = 0.05)

Many critical applications motivate the evaluation of confidence-calibration,
which indicates how confident a model is in the class it predicts. It is well-known
that modern neural networks tend to be miscalibrated, generally overconfident
on their predictions [11, 25]. Thus, some works have been done on the evaluation
of calibration [27] and the improvement of such calibration for a given classifier,
would it be during training [22] or as a post-processing step [20, 21, 29].
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As local interpretation allows to interpret each specific predictions, we fo-
cused our work on its interaction with confidence-calibration, i.e. the calibration
of scores for the predicted class argmax(F (x)).

A model is said to be well confidence-calibrated if:

∀s ∈ [0, 1], P (y = z | F (x)z = s) = s (1)

with z = argmax(F (x))
This notion can be quantified with estimates of the Expected Calibration

Error (ECE), defined in the confidence-calibration setting as:

ECEconf = Emax(F (X)) [|P(y = z | F (x)z = s)− s|] (2)

In order to calibrate our models, we focus on post-hoc calibration, which can
be applied to already trained models and relies exclusively on the scores given
by the model. These very nice properties make these approaches plug-and-play,
which justifies their popularity. We use in this paper the following techniques,
which impact is illustrated in Figure 2.

Temperature scaling If L is the logits vector output of the classifier before soft-
max activation σ, calibrated scores are given by F (x)calc = σ(LT−1)c [29]. The
temperature scaler T is fit to maximize the likelihood on a holdout set. Its role
is to smooth or sharpen predicted scores. It allows DNNs to output more con-
servative scores, which are generally are over-confident.

Dirichlet calibration Dirichlet calibration [21] considers that score vectors follow
a Dirichlet distribution. It transforms log(F (x)) instead of impacting the logits,
considering that scores result from a softmax: F (x)calc = σ

(
W ln

(
F (x)

)
+ b
)
c
,

W ∈ Rc×c and b ∈ Rc being fit on a holdout set.

3.2 Interpretation Methods

We use various methods in our experiments to interpret model’s predictions.
They cover a large range of approaches used for interpretation, from model-
aware to model-agnostic ones.

Model-aware interpretation While some approaches only use gradient informa-
tion like the Sensitivity method (S) [38] and Guided Backpropagation [40], others
combine such information with a latent representation to understand which in-
put features led to each decision, like Grad-Cam [36] and FullGrad [41]. These
gradient-based methods suffer from a few short-comings, such as neurons satu-
ration [37], which have been overcome by methods averaging the gradients over
a linear interpolation between the input image and a reference, like Integrated
Gradient [42]. Some other methods avoid using gradient and directly use the pre-
dicted scores given by the model, to backpropagate it to the input of the model
like DeepLIFT [37], a fast algorithm approximating Shapley values. Finally, other
methods rank the importance of each latent representation like Score-Cam [46],
which relies on a model-aware occlusion based approach.
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Model-agnostic interpretation We also use methods that consider interpreted
models as black-boxes, such as occlusion-based approaches which degrade the
input and analyse predicted score variations to define the importance of each
part of the input, like Deletion [5, 18], MP [9] or RISE [28]. Other methods use
surrogate models in order to locally emulate the complex model behaviour in an
interpretable fashion, such as LIME [34] and SHAP [23].

We selected a subset of these interpretation methods. To represent model-
agnostic methods, we used RISE and MP, which do not rely on any other infor-
mation than the output scores of the model for any given input, and Sensitivity,
Integrated Gradient for model-aware methods. Although these approaches are
very popular, we did not evaluate LIME and SHAP methods as they are not
totally suited for images and are computationally expensive.

Evaluating the validity and limitations of these methods has been the aim
of several works [17, 2], for example by measuring their sensitivity to adversarial
effects [10], their alignment with human perception [24], their faithfulness to the
model being explained [13], or their stability [3]. We can rely on these works to
build our experimental assessment of the calibration’s impact on interpretations.

4 Evaluation of Calibration’s Impact on Interpretation

4.1 Objectives

Although local interpretation approaches differ, they all rely on the output score
vector F (x), which is modified by the calibration process. Our aim is to assess
whether or not these modifications have an impact on interpretations, and if this
potential impact is rather positive or negative.

Assessing the quality of feature importance - here provided by saliency maps -
is challenging, yet we argue that a good interpretation should at least: it should
be faithful to the model it explains, meaning that removing pixels defined as
salient should have an impact on the model outputs [14], interpretations should
be robust [3], so that similar inputs should lead to similar interpretations, and
it should be composed of structured and smoothly-varying components [39], in
order to respect human expectations in terms of visual coherence.

To evaluate the impact of calibration on interpretations, we first assess if the
calibration process actually impacts the resulting saliency maps by making pair-
wise comparisons between them. We then quantify the impact of these changes
by evaluating how the classifier’s confidence drops when progressively removing
important features. Third we assess the visual coherence of the produced saliency,
by qualifying their structure and smoothly-varying properties, and we finally
evaluate the gain in stability of interpretations when calibrating a model.

4.2 Experimental Setup

We designed cautiously an experimental setup to ensure the comparison of di-
verse models, image classification datasets and methods. Our goal was to isolate
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Fig. 3. Protocols to evaluate calibration’s impact on interpretation methods:
1 - Comparison of interpretations using SSIM, and 2 - Progressive deletion impact

carefully the impact of the calibration on the interpretation procedures. Post-hoc
calibration does not impact the models deeply, hence the observable modifica-
tions in interpretations is caused by the calibration step, as we compare the
interpretation outcomes on uncalibrated models and their calibrated counter-
parts, all other things being equal.

Models : The following experiments were conducted with VGG, RESNET and
EfficientNet models, classical and diverse architectures for image classification.
As DNNs are known to be overconfident [11, 25], in practice most pre-trained
models available in model zoos are not calibrated, and when applying standard
learning algorithm we directly obtain uncalibrated models. Yet, to be able to
observe the effect of calibration, the tasks or datasets, should be sufficiently
complex for the model, so that the accuracy of the model is not perfect, so that
there is no room for calibration improvements.

Datasets : We chose three datasets (of various resolutions) to run our exper-
iments: CIFAR-100[19], Food101[4] and Birds (CUB-200)[45]. These datasets
allow a proper use of calibration in its rigorous context, since each image con-
tains exactly one instance of known classes, and they present different visual
properties and classification complexities. To ensure reproducible research, we
used pretrained models on CIFAR-100 (VGG16 and RESNET504) and Food-101
(ResNet505). As no pre-trained EfficientNet on Birds dataset were available , we
fine-tuned (100 epochs with a learning rate of 1e-4 using Adam optimizer) an
EfficientNet pretrained on ImageNet (from torchvision) onto the Birds dataset.

Calibration : The calibration step has been performed using the calibration
methods described previously (Temperature Scaling and Dirichlet calibration).

4 https://github.com/chenyaofo/pytorch-cifar-models
5 https://github.com/Herick-Asmani/Food-101-classification-using-ResNet-50
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Table 1. Accuracy and confidence-calibration of used models

Model Dataset Accuracy Confidence calibration (ECEconf )
Base Temperature Dirichlet

VGG16 Food101 0.4470 0.1997 0.0300 0.063
Cifar100 0.6811 0.2003 0.0442 0.0477

RESNET32 Cifar100 0.6371 0.1484 0.0463 0.0323
RESNET50 Food101 0.8173 0.0803 0.0323 0.0463

EFFICIENTNETB0 Birds 0.7984 0.0706 0.0234 0.0093

These methods have been chosen as they are, respectively, baseline and state
of the art post-hoc calibration techniques. For both methods and every model,
we used a calibration set composed of 3000, 2500 and 2500 samples taken from
the test set for CIFAR-100, Food-101 and Birds respectively. We evaluated the
ECE before and after the calibration using the continuous estimator ECEconf

density

introduced in [31] using the bandwidth automatically set with Silverman’s rule,
on 2500 samples. ECEs and accuracies of the different models, given in Table 1,
confirm the initial mis-calibration of the raw models, and the effectiveness of the
calibration step.

Interpretation : For Integrated Gradients (IG), black and white references com-
bined are used with 30 equidistant points on the convex path from the reference
to the input. For RISE, we randomly sample 4000 8x8 binary masks (higher
dimensions would require more sampling), upscale them using bicubic interpo-
lation, and values of the mask are drawn from a 0.6 Bernoulli law. For MP, opti-
mization problems are solved using the Adam optimizer (α = 0.1, β = 0.4, lr =
0.1) for 600 steps (these optimization parameters have not been fine-tuned).

All computed saliency maps are min-max-normalized. Some of these, result-
ing from each of the method applied on calibrated and uncalibrated model, can
be observed in Figure 1. The saliency maps analyzed in the following experi-
ments were obtained from 2500 images randomly sampled from the remaining
test set of each of the datasets (which have not been used for calibration).

4.3 Does Calibration Impact Interpretations ?

We start by comparing each pair of interpretations coming from uncalibrated
and calibrated models using SSIM [47], the structural similarity index, which is
based on human perception and thus more relevant than MAE (mean absolute
error) or MSE (mean squared error). This is synthesised in Figure 3 part 1.

The results of this experiment, presented in Figure 4, show that for all studied
interpretation methods, there is a significant difference between saliency maps
produced from the calibrated and uncalibrated models. This impact is particu-
larly important on model-agnostic interpretation methods like MP and RISE.
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Fig. 4. Distribution of the SSIM between interpretations from calibrated and uncali-
brated models. A score close to 1 means no change while a score at -1 means totally
opposite images.(Note, Deeplift is not impacted using temperature: distribution at 1)

4.4 Does Calibration Improve the Faithfulness of Interpretation
Methods ?

We further investigate this impact to determine if detected visual changes in
saliency maps improve their quality in terms of faithfulness [14]. For each pair
of interpretations built by the previous experiment, we apply a deletion proce-
dure [28]: input features are ranked according to their importance given by the
interpretation, and are progressively neutralized while we observe the impact on
the score of the predicted class from the degraded input image. We compute the
deletion area – area under the score curve wrt to the percentage of neutralized
pixels taking a hundred steps, from 1 to 100. In practice, to preserve the in-
put’s distribution, neutralized pixels are replaced by an 11x11 gaussian blurred
patch, with σ = 10, centered on this pixel. The whole procedure is summed up
in Figure 3 part 2 and deletion curves are shown in Figure 6.

Additionally to the four interpretation methods we use a random interpre-
tation baseline as reference for the comparison. We remove a given percentage
of 100 randomly sorted superpixels computed with the SLIC algorithm [1]. We
averaged the deletion curve obtained with five different random orders.

We compute the deletion area on the random baseline, uncalibrated models
and calibrated ones. Uncalibrated models are more confident, hence to ensure a
fair comparison, we normalize the deletion curves in order to set the score of the
predicted class from the initial clean image to one. The normalized curve then
shows how much the confidence of the model drops, with respect to its initial
confidence, when we neutralize pixels in decreasing importance.

The different interpretation methods show consistent results over the various
datasets. Before any calibration considerations, they show very different level of
faithfulness, MP being the most faithful with a predicted score quickly drop-
ping as the percentage of neutralized pixels grows, followed by RISE, the other
model-agnostic method. MP and RISE are also the most positively impacted
by the calibration of the model. These two observations are confirmed by the
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Fig. 5. Saliency maps, Otsu-binarized masks and deletion curves, for the calibrated
model and the uncalibrated one, using MP, on a given sample. Map explaining the
calibrated model is consistent with human expectation and more faithful to the model.

measurement of the deletion areas shown in the second line of the Figure 7. For
the other interpretation methods, the calibration procedure shows little impact,
as expected from the SSIM experiment. One can also confirm a posteriori that
the normalization of the deletion curves does not introduce any bias, since the
same random saliency maps applied to the calibrated and uncalibrated models
produce similar curves. We conduct another analysis to assess the gain that cal-
ibration brings in an element-wise comparison of the deletion area. We compare
each interpretation with the random baseline and consider that a prediction is
well explained if the deletion area is lower for the method than the one obtained
with the random saliency. The proportion of well explained images are reported
in Figure 7 (third line) as Better Than Random ratio (BTR). This BTR is al-
ways improved, except for one model/method case. The improvement varies from
limited to important depending on the approach and the dataset. We read the
greater impact of the Dirichlet calibration wrt the Temperature scaling, on both
the BTR and deletion area, besides that their respective ECE values are cases
comparable in most cases, by the fact that Dirichlet calibration can change the
predicted class while temperature scaling does not.

The great improvement brought by calibration to MP is promising for model-
agnostic interpretation. Notably, it is known that without computationally ex-
pensive hyperparameters tuning, MP is sensitive to visual artifacts [8]. As Fig-
ure 5 suggests, calibration seems to help dealing with those.

To sum up, we measure a positive impact on the faithfulness as measured by
the deletion area and the BTR ratio presented in Section 4.4 for model-agnostic
methods, in worst case the interpretability is not impacted by the calibration.
The most faithful method without calibration, namely MP, is also the most
improved method. This suggests that the interpretability of the model in itself
could depend on its calibration.
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Fig. 6. Deletion curves before (plain line) and after calibration (dashed line) for three
different models using Temperature Scaling (upper) and Dirichlet calibration (lower)

4.5 Are Saliency Maps with Calibration more Human-Friendly ?

Another important aspect of interpretation is the readability for users, smoothly
varying saliency maps are easier to comprehend, as they tend to highlight struc-
tures that we, as humans, recognize. Therefore, to quantify the complexity of
a produced saliency map, we first distinguish activated pixels (foreground of
saliency maps) from non-activated ones (background) using Otsu binarization
[26], and compute the total variation (TV) of obtained binary images. A higher
total variation suggests a more noisy interpretation.

Figure 7 shows that Otsu-TV is always improved (lowered) by calibration for
model-agnostic methods, or at worst unaffected for other methods, which means
that interpretations exhibit smoother variations and fewer highlighted regions,
while the mean deletion area is constant or improved. Hence the interpretations
of the calibrated models are more human readable while being equally or more
faithful to the model.

4.6 In Depth Analysis of Meaningful Perturbation

To better understand our findings, we focus now on MP, the most faithful
method, which appears to be the most impacted by the calibration.

Effect of the mis-calibration In order to evaluate if, for MP, the faithfulness
improvement correlates with the mis-calibration level, we apply the deletion ex-
periment using Temperature Scaling for different fixed temperatures. Figure 8
highlights that the minimum of the deletion area is obtained when the model
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Fig. 7. Ratio of well explained images (BTR), Otsu TV and Deletion Area of various
interpretation methods on multiple models and datasets before and after calibration.

is calibrated, showing a clear non linear correlation between the scaler’s tem-
perature value and the deletion area. Interestingly the second plot highlights a
positive correlation between the mean deletion area and the ECE. The correla-
tion differs whether the mis-calibration is due to an overconfident model or an
underconfident model for the same range of ECE. The overconfident models are
those with a temperature smaller than the best obtained.

Fig. 8. Mean deletion area on CIFAR-100 for VGG16 and RESNET32 conditioned on
the temperature. Marked points indicate calibrated models.

Interpretation stability As shown previously, calibration improves the deletion
area and the total variation of saliency maps from MP, the best method in
terms of deletion area, meaning that produced interpretations are both more
faithful (according to [14] definition) and more spatially coherent. One possible



12 G. Scafarto et al.

explanation for this improvement is that calibration improves the stability of the
method. It is known that MP is sensitive to visual artifacts [8] without proper
hyperparameters tuning. Calibration seems to be a really adequate solution to
prevent the apparition of such artifacts in such artifacts, especially when param-
eter tuning is not feasible. Indeed, as underlined in [3], interpretation methods
tend to be unstable when the input is slightly modified. As calibration is related
to the model’s robustness [33] it is natural to wonder whether or not the cal-
ibration of a given model improves the robustness of the interpretations made
on its predictions. To that end, we compute an approximation of the Lipschitz
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Fig. 9. K-lipschitz distribution obtained with calibrated and uncalibrated model using
Temperature Scaling (left) and Dirichlet calibration (right).

constant of the saliency function, following the experiment introduced in [3], by
adding small amount of gaussian noise to the input, so that the behaviour of
the model does not change, and compute the normalized l2-norm of the inter-
pretations obtained with and without calibration. This experiment was applied
on 150 randomly sampled points from CIFAR-100. For each point, we sample 40
neighbour points (inside the ball of radius 0.05 and with the point of interest as
center). We only apply this experiment on 150 points in order to keep it feasible
in a reasonable amount of time (for MP and Rise processing each point takes
around an hour with an NVIDIA 1650).

Figure 9 reveals that calibration, while having no robustness impact on most
methods, considerably improves the stability of MP. This is consistent with the
10× decrease of TV for MP revealed in the previous section. Also, RISE, which
is the least stable even after calibration, could be improved by increasing the
number of sampled masks at the expense to an higher computational cost.

4.7 Discussions

While these results shed light on non-trivial interaction between interpretation
methods and calibration, it is hard to express from the gain in term of deletion
area a definitive statement about interpretation methods validity. This come
from the difficulty of evaluating explanation, therefore to the best of our knowl-
edge no consensus has been attained in terms of the best method to validate
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interpretation methods. The deletion experiments, while truly evaluating inter-
pretations quality, seems to favor methods which highlight regions over methods
which highlight high frequency details, which would account for the poor faithful-
ness performance as measured by the deletion area. Moreover, we are convinced
that a good interpretation method should be able to reflect the uncertainty of
the model and therefore should be impacted by the calibration. We argue that
this could be a clue to setup a new sanity check for interpretation methods.

5 Conclusions and Future works

This paper studies the relationship between uncertainty and explainability, two
important aspects of trustworthy ML. More specifically we evaluate the impact
of post-hoc calibration of a given image classification model over the quality of
the saliency maps produced by several widely used local interpretation meth-
ods applied on the model for different datasets and models. The experimental
benchmark, built to evaluate this impact all other things being equal, shows a
positive impact of calibration on produced interpretations, in terms of faith-
fulness, stability and visual coherence. The impact, particularly beneficial on
model-agnostic interpretation methods such as Meaning Perturbation (MP) [9],
is in the worst case neutral. For these reasons, we suggest a simple practice to
improve interpretation outcomes: Calibrate to Interpret.

A side benefit of the study is to rank the competing interpretation ap-
proaches, which shows that model-agnostic ones perform better with regard to
faithfulness, measured by the deletion area, and visual coherence, measured by
the Otsu-TV. Interestingly the stronger impact of calibration appears on the
best interpretation method namely MP, and resolves one of its main drawbacks:
its sensitivity to artifacts. We highlight for this method that there is a clear
correlation between the calibration level of a model and the faithfulness of the
MP method applied to its predictions.

This work opens the road to deeper analyses. A direct extension would be
to analyse if in-training solutions to enforce calibration would impact similarly
the interpretations. This would require a different benchmark setup, where mod-
ifications induced to the model by in-training calibration are properly framed.
Additionally, although computational cost considerations prevented us from re-
alizing experiments with the ROAR procedure [12] to measure the faithfulness
of interpretation methods, we think the theoretical properties of this approach
make it a great option to deepen our experimental evaluation. Furthermore, con-
clusions obtained through the analysis of the TV could be strengthen using a
human evaluation. Finally, we wonder if other kinds of explanation paradigm,
e.g. concept based [6], sample based [32] or even attention based [7] can also
benefit from calibration.
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