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Abstract. Since the widespread adoption of deep learning solutions in
critical environments, the interpretation of artificial neural networks has
become a significant issue. To this end, numerous approaches currently
try to align human-level concepts with the activation patterns of artifi-
cial neurons. Nonetheless, they often understate two related aspects: the
distributed nature of neural representations and the semantic relations
between concepts. We explicitly tackled this interrelatedness by defin-
ing a novel semantic alignment framework to align distributed activation
patterns and structured knowledge. In particular, we detailed a solution
to assign to both neurons and their linear combinations one or more
concepts from the WordNet semantic network. Acknowledging semantic
links also enabled the clustering of neurons into semantically rich and
meaningful neural circuits. Our empirical analysis of popular convolu-
tional networks for image classification found evidence of the emergence
of such neural circuits. Finally, we discovered neurons in neural circuits
to be pivotal for the network to perform effectively on semantically re-
lated tasks. We also contribute by releasing the code that implements
our alignment framework.
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1 Introduction

Neural representations offer limited insights in terms of human-level interpre-
tation. Overcoming this limitation is one of the most compelling challenges in
deep learning research and is crucial when considering artificial neural networks
deployed for safety- and privacy-critical tasks. Because of the opacity of their in-
ternal behavior, the literature tends to define neural networks as black boxes [10].
Nonetheless, recent research highlights how, in particular domains, some com-
ponents of a neural network might instead be characterized by clear-cutting
intepretations [2008]. For this reason, both theoretical research and practical
interpretability approaches require sound methods to reliably and accurately
identify associations between high-level concepts and neural components.
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Fig. 1. Overview of the proposed methodology. A set of neural directions D is seman-
tically aligned with an ontology O through a pixel-level annotated dataset X, whose
labels are in a two-way relationship with the ontology concepts C. Semantic relations
S enable the retrieval of subgraphs composed of architecturally connected and seman-
tically related directions.

Early works tackled the alignment of human-level concepts with either dis-
tinct units [2] or directions within the output space of hidden layers [14]. Nonethe-
less, they considered concepts as independent entities, without adopting struc-
tured knowledge representation. In this context, we present a unified approach
for the semantic alignment of neural components and visual concepts, applied
to Convolutional Neural Networks (CNNs) and computer vision scenarios. Our
approach considers concepts as members of a computational ontology and ac-
tively exploits their semantic relations (Figure . Firstly, we improve the ex-
pressiveness of the alignment by acknowledging specialization between concepts.
For instance, if an artificial neuron responds to the human notion of “feline”,
the framework can propagate the partial alignment with the concepts of “cat”
or “tiger” without the need for explicit “feline” annotations. Consequently, we
tackle the identification of semantically aligned components in two complemen-
tary scenarios: by selecting concepts aligned to a given direction, and by retriev-
ing directions aligned to a given concept. Lastly, our main original contribution
leverages semantic alignment to identify meaningful subgraphs composed of ar-
chitecturally connected and semantically related components within the network.
We refer to these subgraphs as circuits, following the term “neural circuit” and
its widespread use in neuroscience. These circuits offer new insights into the
content of distributed neural representations and provide a novel instrument for
network inspection and interpretation.

We validate our approach by inspecting several renowned CNN architectures
for scene classification by exploiting the Broden segmented dataset [2]. As a side
contribution of our empirical validation, we extend the original Broden dataset
by associating its labels with WordNet synsets [17]. We consider WordNet as a
simple ontology that contains a taxonomy of concepts [I8]. Furthermore, we pub-
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licly release the extension of Broden within the supplementary materials. While
the main discussion focuses on the alignment with the Broden dataset, we also
experimented with ImageNet [3], whose results we report in the supplementary
materials. Empirical results highlight how our proposal yields to the emergence
of meaningful neural circuits that are pivotal for the correct classification of se-
mantically related visual categories and consitute an insightful visualization of
the inner workings of the network.

2 Related Works

Zhou et al. [25] are among the first to highlight the emergence of object detec-
tors within hidden units of CNNs trained to perform scene classification on the
Places dataset [27]. Their work manually annotated such detectors by visual-
izing manipulated examples that maximized units activations. Olah et al. [20]
approached the problem similarly by employing feature visualization techniques
[21] to manually assign specific roles to individual neurons. Their contribution
also highlights the role of neural units to fulfill complex tasks throughout the
network. Bau et al. [2] introduced Network Dissection to automatically ana-
lyze neural activations and identify meaningful neurons in CNNs trained on the
Places-365 dataset [26]. Their work introduced a pixel-level annotated image
dataset called Broden, which marks portrayed objects and patterns. Zhou et al.
[29] studied the role of semantically aligned units by measuring the accuracy
drop when removing units aligned to a given concept. On top of Network Dis-
section, Mu et al. [I9] discussed the consequences of analyzing compositions of
visual concepts by applying logical operations to the annotations. Despite the
different methodological approaches, the works discussed above analyze neural
models by considering single units as meaningful artifacts as in localist networks
[23]. Instead, our proposal acknowledges and investigates single units, their linear
combinations, and knowledge-driven generated clusters.

More generally, other techniques aim to fulfill concept-based analysis of neu-
ral activations without restraining meaningful information to single neurons.
Firstly, Fong et al. [6] expanded Network Dissection with linear combinations of
hidden neurons in CNNs to identify distributed concept detectors. Similarly, Kim
et al. [I4] defined concept activation vectors (CAVs) as linear classifiers of visual
concepts over the activations of an hidden layer. Furthermore, they proposed a
measure, called TCAV, of the influence of these classifiers on specific outcomes
of the network. Always using linear classifiers, Zhou et al. [28] proposed an inter-
pretative framework based on the decomposition of hidden representations into
a meaningful basis composed by such classifiers. While exploiting the expres-
siveness of hidden layers, these techniques considered concepts as independent
entities, missing to acknowledge their semantic relations. On the contrary, we
explicitly use ontological information to obtain interpretative results.

Finally, our approach might be understood in terms of ontology matching, i.e.
the task of meaningfully aligning different ontologies to reduce the gap between
overlapping representations [22]. Our work can be associated with extensional
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based techniques, where the semantic distance between concepts from two dif-
ferent ontologies is estimated according to a measure of the overlapping of their
extensions [4]. In comparison, our approach exploits the portrayal of visual con-
cepts to mediate their extension and estimates the difference between an explicit
ontology and concepts implicitly expressed by neural representations.

3 Ontology-Driven Semantic Alignment

Given a pre-trained CNN for computer vision, our framework estimates semantic
alignment between a set of visual concepts C' and a set of neural directions
D. We consider directions within the output space of neural layers as a useful
instrument to inquire which concepts the network is able to effectively represent
and discriminate. Formally, we define a neural direction d € D as a pair

d=(l,v), (1)

where v € RM is a vector weighting the N; units at the I-th layer of the network.
Given an input image x, the output of a convolutional layer [ is a tensor f!(z) €
RN >HXW - where each unit corresponds to a channel. Furthermore, we treat
fully connected layers as a specialization where H; = 1, W; = 1. For an input
image z, the output of a neural direction d is the activation map

Ag(x) = fl(2) v, (2)

where A4(x) € IR>Wi Notably, when v corresponds to a vector e() from the
canonical basis of R™, the activation map coincides with the output of the i-th
neuron at layer [, i.e., the i-th channel. Furthermore, to simplify the notation,
we always include a bias term [ within v.

Given a segmented dataset X, for each example image = € X, we require the
existence of a binary mask L.(z), known as the concept mask, that marks the
locations portraying the visual concept c. This requirement can be fulfilled by
any dataset for object detection or semantic segmentation that provides semantic
labeling of pixels. Furthermore, we require an ontology O = (C,S) formalized
as an extensional relational structure, where C' is a set of concepts and S is a
set of truth valued binary relations [9].

The presence of the specialization relation in the ontology enables the re-
trieval of masks for concepts which were not directly annotated in the dataset
(Section . Consequently, by relating activations and concept masks, our ap-
proach computes an estimate of the alignment for direction-concept pairs (Sec-
tion [3.2)) and enables the retrieval of directions aligned to a given concept (Sec-
tion . Finally, we exploit semantic relations between aligned concepts to
cluster consecutive directions into meaningful neural circuits (Section .

3.1 High-level Concept Masks

We consider each concept as an ideal function whose argument is an object of the
world and whose value is a truth-value [7]. Thus, the extension E. of a concept c,
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Fig. 2. Example of mask generation for the higher-level concept of “animal” using
taxonomical information. The induced taxonomy, built over the WordNet hypernymy
(is-a) relation, enables the retrieval of the mask by exploiting masks annotated for
“dog” and “cat” concepts from the Broden dataset, without having access to explicit
annotations of the concept “animal”.

is the set of all the objects of the world satisfying it. The specialization relation,
also known as “is-a”, is the semantic relation that expresses the inclusion between
the extensions of concepts in an ontology [5]. The concept ¢ is a specialization of
¢’ if and only if the extension E. contains E,.. Formally, cC ¢/ < FE.C E..

Given a pixel position p in an image x, we define Q(z,) as the set of objects
portrayed by that location. Consequently, a boolean concept mask L.(z) anno-
tates for each possible pixel position p whether one of the portrayed objects by
x, pertains to the extension E.. Consequently, if a concept ¢ specializes ¢/, then
each location in the concept mask L.(z) implies the same location in the concept
mask L. (x). Formally,

Lc(fﬂ)p <~ (Q(xp) n Ec) # 0
= (Q(xp)NEs)#0 {cCd < E.CE.} (3)
<~ LC/(ZE P

Specialization induces a hierarchical taxonomy represented by a Directed Acyclic
Graph (DAG). In the DAG, the node corresponding to the concept ¢ is a child
of the one corresponding to ¢’ if and only if ¢ C ¢’. Hence, for each image, the
mask of a concept at a certain level of the taxonomy can be obtained indirectly
as the union of the masks of its children. The proposed approach is thus able to
align higher-level concepts without explicit annotations by analyzing the concept
masks of its descendants in the DAG (Figure [2)).

3.2 Alignment Measure

Firstly, we address how to estimate semantic alignment for a given neural direc-
tion d € D and a concept ¢ € C. For this purpose, we define a binary classifier
over the activations of the neural direction to discriminate a visual concept.
Therefore, for each example = in the segmented dataset X, we threshold an
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activation map Ag4(x) into a boolean activation mask
Md(SL’) = Ad(fL') > 0. (4)

Typically, the activation mask M (z) has a different shape than the input  and
the concept mask L.(z). To be comparable, either the concept mask or the acti-
vation mask should be scaled to respectively match their shapes. This operation
approximates the relation between a neural direction and its receptive field. For
any pixel location p, the outcome of the binary classifier My(z) in p should de-
pend solely on z,, and ideally on each L.(z),. This approximation discards the
effects of striding and padding over the receptive field of convolutional units [I],
which will be subject of future research. To ease the notation, in the following we
assume that either L.(x) or My(x) have been adequately scaled to an arbitrary
shape (H, W). Furthermore, we define the operator | K| to count the number of
true values in an arbitrary boolean mask K.

Given this formulation, semantic alignment can be estimated by adopting
an arbitrary classification performance metric. Therefore, the Jaccard similarity,
also known as Intersection over Union (IoU),

2rex [Ma(z) A Le(@)]
2wex | Ma(x) V Le(w)|’

or the Sgrensen—Dice coefficient, also known as F1 score,

2wex 2IMu(z) A Le(2)|
Drex IMu(@)] + [Le(@)]”

consitute insightful measures of semantic alignment.

Furthermore, we provide an original probabilistic model of the influence of
visual concepts on the output of hidden directions. We model each visual con-
cept ¢ € C and each direction d € D as a pair of Bernoulli random variables
Y., Z;. We assume that directions are conditionally independent given the con-
cepts. Consequently, we propose a measure in terms of the maximum likelihood

estimate

5, L) A Ma(a) -
2o Le(x)] 7
of a concept being in the receptive field of a direction. This measure corresponds
to the recall of the classifier, and offers different interpretative insights than other
more restraining measures adopted in earlier works such as o1,y or equivalently
or1. In particular, o is of use when the vector v of a direction d = (I, v) pertains
to the canonical basis of IR™, thus it represents the output of a specific unit.
Ideally, in a localist scenario, each unit of the network would activate only when
stimulated by a specific visual concept. In practice, for a human observer, most
units are polysemantic, i.e. they respond to multiple and possibly unrelated
visual concepts. By trading off precision and recall, measures such as o,y and
or1 would ignore such concepts. On the contrary, o, can effectively highlight
the partial alignment of concepts in polysemantic neurons.

(5)

010U (da C) =

(6)

UFl(d, C) =

oc(dye) =LY, =1|Zg=1)=
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3.3 Direction Learning

Other than aligning existing directions, we also address the issue of learning a
vector v to determine a direction d = (I, v) semantically aligned to a given con-
cept ¢ within the I-th layer of the network. Firstly, we consider two independents
splits Xtrain, Xval Of a segmented dataset X. By solving a minimization problem,
we determine the vector direction as

v:arglr)nin Z Zf(Ad(x)paLc(x)p)

TE€Xtrain P (8)
= argmin Z Zf((fl(f) “0)p, Le(@)p)
v € Xtrain P

where p iterates over the locations of the activation map and of the concept mask,
while ¢ is an arbitrary loss function for binary classification. Consequently, we
estimate semantic alignment o(d, ¢) by computing one of the previously detailed
measures on the X, split of the dataset.

3.4 Neural Circuits
Given a threshold 7 on the estimate o(d, c), we retrieve a set
¥ ={(dc)|o(dc)>1 S DxC, (9)

containing sufficiently aligned direction-concept pairs. The set ¥ offers a useful
interpretative instrument by collecting the human-concepts that the network is
able to sufficiently discriminate within the analyzed layers. Since we are also
interested in the relation between aligned concepts, we connect alignment pairs
within a directed graph G = (¥, E) such that

((d,c),(d',d)) e B < s(c,d)Na(d,d), (10)

where s is a binary predicate stating the similarity of ontological concepts and a
is a truth-valued function ensuring that d precedes d’ in the network architecture.
We detail the definition of the predicate s in the experimental setup.

Furthermore, we propose to weight the edges of the graph by estimating the
influence between concept-aligned directions. The TCAV measure estimates the
influence of a direction in an hidden layer towards a logit within the last layer
of a classifier [I4]. To compute the weight w,. of an edge e = ((d,¢), (d’,)),
we generalize the TCAV measure to estimate the influence between two hidden
directions. Firstly, we consider a function

h(f(x)) = Aw(a) = f'(z) o' (11)

that given the output of the I-th layer produces the activation map of the direc-
tion d’. Then, we are able to redefine the “conceptual sensitivity” as the direc-
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tional derivative

h(f'(z) + v) — h(f'(x))

ga,q (x) = ll_rg(l) . (12)
= V,h(f'(z)) (13)
= - Vh(fl(z)), (14)

where v € RM*H*Wi s 4 tensor obtained by repeating the vector v for each
possible location of the activation map f!(z). We are interested in measuring
if the direction aligned with the concept ¢ positively influences the direction
aligned with ¢/ when a portrayal of ¢’ is in the receptive field. To do so, we
measure the fraction of inputs portraying ¢’ that were positively influenced by
the direction aligned to c. Formally,

e L) A gaaw (@) > 0)]
we = > ox Lo (@)] 05, (15)

where the estimate is adjusted to be either positive or negative whether the count
is above or below half the inputs. Consequently, a positive value of w, signifies a
positive contribution of direction d towards d’, while a negative value represents
a negative contribution. As in the semantic alignment, either the concept or
the sensitivity masks are scaled to match the same shape and approximate the
receptive field.

Typically, because of the constraint enforced by the semantic relation s, the
graph G will not be a connected graph. By extracting each non-trivial connected
component, we obtain a set

T={t|t Wt >1,G[t] is connected}, (16)

where each t € T is a semantically related and architecturally connected neural
circuit. Since weight estimation is a costly operation, we propose to limit the
analysis to edges within neural circuits.

4 Results

We introduce an alpha version of Bisturﬂ a free and open source PyTorch-based
library for the semantic alignment of CNNs for computer vision. Bisturi imple-
ments our unified framework and some of its specializations such as Network
Dissection [2] and TCAV [I4]. The experimental analysis focuses on the seman-
tic alignment of neural directions with visual concepts representing concrete
objects. To obtain an ontologically annotated segmented dataset, we associated
each object label of the Broden dataset [2] to a member of the WordNet seman-
tic network [I7]. Since WordNet contains a taxonomy of concepts and various
semantic relations, we considered it as a simple ontology [I8]. As speculated,

! https://github.com /rmassidda /bisturi
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the specialization relation automatically increased the number of alignable con-
cepts, from the original 672 object Broden labels to 1177 distinct visual concepts.
We also extensively studied semantic alignment exploiting the ILSVRC11 Ima-
geNet dataset [3I24], by generating approximated concept masks from existing
bounding-box annotations. Nonetheless, while reporting results on ImageNet in
the supplementary materials, the current section focuses on Broden to directly
compare with previous literature.

Overall, we report an analysis of the last layers of three popular CNN archi-
tectures trained to classify the 365 different scenes and views from the Places-365
dataset [26]. In detail, we considered:

— The last three fully connected layers and the last two convolutional layers of
AlexNet [15].

— The last fully connected layer and the last two residual blocks of ResNet
[L1]. In each residual block, we independently analyzed the two convolutional
operations and the sum after the residual connection.

— The last fully connected layer and the output of the last three dense blocks
in DenseNet [12].

For replicability purposes, we adopted publicly available pre-trained models from
the Places-365 projectﬂ We report selected significant results, but further results
and discussions are in the supplementary materials.

4.1 Unit semantic alignment

Firstly, we are interested in the semantic alignment of the directions correspond-
ing to distinct neurons in each layer. In doing this, we wish to show how we can
replicate Network Dissection [2] within our framework. Furthermore, we illus-
trate how, in comparison, our proposal increases the number of aligned concepts
and enables semantic clustering of units. To recreate the setting introduced by
Network Dissection, we consider for each layer [ a set of directions

Dy =A{(L[e";8]) | i €{0,...,Ni = 1}}, (17)

where the bias terms f3; are concatenated to each vector e(¥) of the canonical
basis. For each direction d = [e(?); f;], we fix the bias term §; such that

P(f!(x); > Bi) = P(f'(x) - e > ;)

P(f!(x) - e + Bi = B; > B;) (18)
P(Aq(z) = Bi > Bi)
0.005.

The quantity of alignable concepts is fundamental to producing numerous
neural-concept associations. We found that the threshold 7 highly affects the
number of aligned concepts, which rapidly decays for o,y. On the other hand,

2 https://github.com/CSAILVision /places365
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Fig. 3. Semantic alignment in AlexNet. For both o1,y and o, subfigure (a) plots the
number of distinct concepts aligned as the threshold 7 varies. Our proposal of adopting
oc results in an higher number of aligned concepts. For o1,y against increasing T,
Subfigure (b) reports the fraction of aligned concepts obtained by mask propagation
over the number of unique concepts. Our propagation strategy produced more than
half of the concepts aligned by o1,u even for small values of 7.

since our proposal of adopting o, is less restrictive, we found an higher number
of aligned concepts (Figure ) Furthermore, we gained empirical confirmation
of the advantage in increasing the number of concepts via mask propagation.
In all three target networks, we verified how a larger pool of alignable concepts
effectively results in a higher number of associations. Remarkably, higher-level
concepts account for a significant fraction of the concepts aligned by the IoU
measure (Figure [3B). Therefore, our mask propagation strategy effectively im-
proves the outcome of the Network Dissection approach, by providing concepts
that could not have been aligned otherwise.

As expected, we consistently verified how o1,y and o target different aspects
of semantic alignment (Figure . The former highlights concepts that activate
a unit in an exclusive way, while the latter identifies concepts producing higher
than usual activations. Thus, we gained empirical confirmation that the measure
o, is more apt to estimate semantic alignment when a unit responds to multiple
visual concepts.

Given the aligned directions, we retrieve neural circuits by linking two con-
cepts if their Jiang-Conrath similarity [I3] overcomes a given threshold ts. The
threshold ts5 also influences the quantity of circuits retrieved: lower values of t;
cluster ¥ into a fully connected graph, while larger values minimize the number
of connections. Furthermore, by aligning more concepts, measure o, is more apt
for the retrieval of neural circuits (Figure [5)).

Zhou et al. [29] tested the importance of hidden neurons in a classifier by ab-
lating them and measuring the most affected classes. We replicate their analysis
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Fig. 4. Semantic alignment of unit 196 in the last residual block (layer4.1) of ResNet-
18. We report the ten images from Broden maximally activating the unit and the top-5
aligned concepts according to respectively oiou and oz. While both measures identify
visual concepts that can be found in these images, o2 produces a list of more specialized
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Fig. 5. Number of circuits retrieved in ResNet-18 as ¢5 varies. Alignment pairs filtered
according to 7oy = 0.04 and 7, = 0.2, resulting in a comparable number of aligned
concepts. Our proposed measure o, produces an higher number of meaningful circuits.
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by considering hidden units clustered by our circuit retrieval strategy. We mea-
sure the drop on the Top-5 classification accuracy of the 365 distinct classes from
the Places-365 dataset. In general, we found that the ablation of a circuit sig-
nificantly drops the accuracy of a small number of classes that are, furthermore,
related to the aligned concepts (Figure @ Targeted accuracy drop highlights
how circuits cluster important units for specific tasks, resulting in a valuable
instrument to understand which concepts positively affect given outcomes. As
control, ablating only the units aligned to the most popular concept in a circuit
results in less damaging accuracy drop.

200
clothing.n.01 "
‘ S 150
8
garment.n.01 ﬁ 100
trouser.n.01  sweater.n.01  shirt.n.01 50
| :
jerseyn3 "0 o oo
(a) Aligned concepts (b) Circuit Accuracy Drop
Class Drop Class Drop
/c/clothing store -0.08 /c/clothing store -0.05
/g/gift _shop -0.06 /g/gift shop -0.05

/d/dressing _room -0.05 /f/fabric_store -0.04
/f/fabric_store  -0.03 /h/hardware store -0.03
/c/closet -0.03 /c/castle -0.02

(c) Circuit Ablation  (d) jersey.n.01 Ablation

Fig. 6. Importance analysis of a circuit found in the hidden layers of AlexNet using our
proposed measure o, against 7. = 0.3. Similarity between concepts constrained to be
over t5 = 0.2. The circuit contains 27 distinct units aligned to 6 clothing-related visual
concepts, reported according to the WordNet taxonomy in Subfigure (a). When ablating
the circuit, accuracy drop significantly affects only a small number of semantically
related classes, as visualized in Subfigure (b). As control, we also ablate the most
popular concept in the circuit and verify how the accuracy drop is more sparse and less
damaging, as in Subfigure (c). Finally, Subfigure (d) depicts the histogram of categories
of the Places-365 dataset as a function of the accuracy drop (on the x-axis).
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4.2 Direction learning

Unlike the TCAV [I4] approach, we want to cluster hidden representations of
concepts and test their reciprocal influence. To obtain aligned directions, we in-
dependently fit a neural direction d = (v,l) for each concept ¢ in each layer [
of the network on a sample of the Broden dataset. As discussed in Section [3.3]
a classifier on the visual concept ¢ should be able to recreate the concept mask
L.(z). We addressed the natural unbalancing of visually segmented datasets by
weighting images according to the probability of extracting an example contain-
ing the concept. Consequently, we independently split the samples into a training
and a validation set, with proportion 4 : 1. For each example x in the training set,
we applied nearest-neighbor interpolation to each concept mask L.(z) to match
the shape of the activation map A4(x) and obtain the ground-truth mask. We
trained the classifiers by minimizing the Focal Loss [16] between the concept
mask and the activation map. Finally, we estimated their semantic alignment on
the validation set using op;.

As in the distinct-unit scenario, mask propagation significantly increased the
number of aligned concepts. Furthermore, for increasing values of the threshold
7 we observed that the ratio of propagated concepts over the total number of
concepts increases (Figure . Given the higher alignment measured between
concepts and directions, we consistently tested the weights of the edges within
various neural circuits. We found these edges to be consistently positive, meaning
that representations of similar concepts positively influence each other through
the network (Table. As control, we also verified how randomizing the concepts
of a circuit, instead, results in an average weight value of zero i.e. neither positive
nor negative average influence.

Table 1. Excerpt of weighted edges between layer4.1.convl and layer4.1.conv2 in
ResNet-18. Positive weight between two concepts in different layers indicate that the
former positively influences the representation of the latter. Such influence is modelled
after TCAV [14] and formally defined in Section Circuit retrieved using or1 against
7r1 = 0.5 and semantic similarity over ts; = 0.7. Overall, the circuit consists of 16
distinct learned neural directions aligned to 6 animal-related visual concepts.

layer4.2.conv2
animal.n.01 placental.n.01

animal.n.01 0.114 0.210
layer4.1.convl vertebrate.n.01 0.358 0.368
placental.n.01 0.061 0.259

5 Conclusion

We introduced a novel framework for the semantic alignment of CNNs with a
complete visual ontology. Overall, we bring three key innovative contributions.
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Fig. 7. For different values of the threshold 7, we measure how many of the learned
directions are sufficiently semantically aligned according to the measure o1 on the
validation set. In the plot, we also highlight the number of concepts obtained by concept
mask propagation (in green) and the overall number of concepts (in red).

Firstly, we defined a propagation strategy to align concepts that lack an explicit
annotation in the alignment dataset. Secondly, we generalized previous work on
the alignment of single units and neural directions into a unified framework.
Finally, we introduced an algorithm to identify connected neural circuits com-
posed of meaningful directions. We experimentally validated our approach by
aligning the WordNet ontology with three popular convolutional architectures
for image classification. To this end, we considered two datasets: an original ex-
tension of the Broden dataset with ontological annotations and a bounding-box
annotated subset of ImageNet. We publicly release the extended Broden dataset,
the library implementing our approach, and the code used to reproduce our ex-
periments. The experiments highlighted how our methodology can effectively
capture semantic alignment. Furthermore, we assessed the emergence of seman-
tically related neural circuits and studied their role in the overall network. This
last aspect constitutes the most valuable contribution of our semantic alignment
methodology: an innovative instrument to inquire about the nature of neural
representations, highlighting semantically related human-interpretable features
across the network and their influence towards both network outcomes and other
conceptual representations.
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