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Abstract. Stochastic Resource Collection (SRC) describes tasks where
an agent tries to collect a maximal amount of dynamic resources while
navigating through a road network. An instance of SRC is the travel-
ing officer problem (TOP), where a parking officer tries to maximize
the number of fined parking violations. In contrast to vehicular routing
problems, in SRC tasks, resources might appear and disappear by an un-
known stochastic process, and thus, the task is inherently more dynamic.
In most applications of SRC, such as TOP, covering realistic scenarios
requires more than one agent. However, directly applying multi-agent ap-
proaches to SRC yields challenges considering temporal abstractions and
inter-agent coordination. In this paper, we propose a novel multi-agent
reinforcement learning method for the task of Multi-Agent Stochastic
Resource Collection (MASRC). To this end, we formalize MASRC as a
Semi-Markov Game which allows the use of temporal abstraction and
asynchronous actions by various agents. In addition, we propose a novel
architecture trained with independent learning, which integrates the in-
formation about collaborating agents and allows us to take advantage of
temporal abstractions. Our agents are evaluated on the multiple travel-
ing officer problem, an instance of MASRC where multiple officers try
to maximize the number of fined parking violations. Our simulation en-
vironment is based on real-world sensor data. Results demonstrate that
our proposed agent can beat various state-of-the-art approaches.
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1 Introduction

In many sequential planning tasks, agents travel on a transportation network, like
road or public transportation networks, to reach certain points of interest (POIs)
to earn rewards. One way to differentiate these tasks is according to the time
intervals for which POIs grant rewards and whether these intervals are known
to the agents. For example, for the traveling salesman and the basic vehicular
routing problem (VRP), reaching POIs grants rewards regardless of the time
they are visited. In more sophisticated tasks such as windowed VRPs [11], POIs
only grant rewards during given time windows that are known to the agent. In
contrast, in applications like taxi dispatching and ride-sharing, the agent does not
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know in advance at which time intervals rewards can be earned. Thus, policies
try to guide the agents into areas where collecting rewards is more likely, i.e.,
passengers might show up.

The task of Stochastic Resource Collection (SRC) [21] assumes that resources
have fixed locations and change their availability based on an unknown random
process. Thus, the agent observes currently collectible resources and can try to
reach these before the resources are not collectible anymore. An instance of the
SRC task is the TOP [22] in which a parking officer is guided to fine a maxi-
mal amount of parking offenders. The setting is based on the assumption that
information about parking sensors is available from sensors registering the du-
ration of parking events. As offenders might leave before the officer arrives, not
all resources remain collectible, and thus, agents have to consider the chance of
reaching resources in time. [21] model SRCs as Semi-Markov Decision Processes
(SMDP) and propose an action space that lets the agent travel to any resource
location on a pre-computed shortest path. To find effective policies maximiz-
ing the number of collected resources in a given time interval, a reinforcement
learning (RL) algorithm based on deep Q-Networks (DQN) is proposed. Though
the proposed method learns successful policies for single agents, it often requires
more than one agent to handle sufficiently large areas. Thus, [18] propose a
multi-agent heuristics for guiding multiple officers in a larger area. As RL meth-
ods already showed better performance than known heuristic methods in the
single-agent case, it makes sense to examine multi agent reinforcement learn-
ing (MARL) methods to improve policies. However, known MARL approaches
usually are not designed for Semi-Markov models where agents’ actions require
varying amounts of time. In addition, they often require mechanisms that counter
the problem of the size of the joint action space, which grows exponentially with
the number of agents, and the credit assignment problem when using joint re-
wards. Though there are several methods to counter each of these problems,
most of them do not consider the properties of the MASRC environments with
asynchronous agent actions in a Semi-Markov environment.

In this paper, we formalize MASRC as a selfish Semi-Markov Game (SMG).
We adapt the action space of [21] to let each agent target any resource in the
network. Thus, agents generally terminate their actions in varying time steps.
We propose a selfish formulation where each agent optimizes its own individ-
ual rewards. We argue that a group of independent agents still optimizes the
sum of collected resources sufficiently well as the agents learn that evading other
agents decreases the chances of another agent collecting close-by resources. We
empirically verify our reward design by comparing it to joint rewards. To ap-
proximate Q-values, we propose a neural network architecture that processes
information about resources, agents, actions, and the relation between them. To
combine these types of information, we employ attention and graph neural net-
work mechanisms. This way, our agent can estimate the likelihood of reaching a
collectible resource before it becomes uncollectible or another agent reaches the
resource first. Furthermore, our resource embedding considers the spatial close-
ness of additional collectible resources to make actions moving the agent into a
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region with multiple collectible resources more attractive. To evaluate our new
approach, we developed a multi-agent simulation based on real-world parking
data from the city of Melbourne. Our experiments demonstrate superior per-
formance compared to several baselines [18] and (adaptions of) state-of-the-art
approaches [21,1,9]. We compare our methods with heuristic methods proposed
in [18], an adaption of the single-agent SRC method from [21] and an architec-
ture proposed for dynamic multi-agent VRP [1] which is based on the well-known
single-agent architecture [9]. We evaluated the last benchmark to demonstrates
that state-of-the-art solutions for the dynamic VRP do not sufficiently cope with
the additional stochasticity of MASRC problems. To further justify the design
choices in our architecture, we provide ablations studies. To conclude, we sum-
marize the contributions of our paper as:

– A formulation of the MASRC as a Semi-Markov Game building a solid the-
oretical foundation for the development of MARL approaches

– A novel architecture for learning rich state representations for MARL
– A scalable simulation environment for the multi-agent traveling officer prob-

lem (MTOP) problem based on real-world data

2 Related Work

In this section, we review work on related tasks routing an agent through spatial
environments to collect rewards. In addition, we will discuss general multi agent
reinforcement learning approaches.

2.1 Stochastic Resource Collection

One of the most recognized routing tasks in the AI community is the vehicular
routing problem (VRP) where a group of agents needs to visit a set of customer
locations in an efficient way. There exist various variations of the VRP [4] and
some of them include the appearance of new customers during the day [1]. In
contrast to SRC, the setting does not include customers disappearing after an
unknown time interval. This is a decisive difference as it makes the reward of an
action uncertain. In recent years, several approaches have been developed to solve
the vehicular routing problem or some of its variations using DRL [1,9,16,17].
MARDAM [1] is an actor-critic RL-agent - based on [9] - designed to solve VRP
with multiple agents using attention mechanisms. While state and action spaces
of dynamic VRP and MASRC can be considered as very similar, the behavior
of the environment is not. To demonstrate these differences, we compare to an
agent using the architecture of [1] in our experiments.

There exist various papers on multi-agent taxi dispatching [8,12,13,28,32]
which can be formulated as a MASRC task. However, in most settings there
are significant differences to MASRC as the resources are usually not claimed
at arrival. Instead, customers are assigned to close-by taxis the moment the
guest publishes a request to the dispatcher. Thus, reaching the guest in time is



4 Strauß et al.

usually not considered. Furthermore, to the best of our knowledge, only a single
approach works directly on the road network [8]. All other approaches work on
grid abstractions which are too coarse for MASRC. Finally, taxi dispatching
tasks usually involve large and time variant sets of agents. To conclude, known
solutions to taxi dispatching are not applicable to solve MASRC.

The traveling officer problem (TOP), first described by [22] is an instance of
SRC. In [21], the authors propose an Semi-Markov RL-based agent to solve the
single-agent TOP task and name other tasks that can be formulated as SRC.
Later on, the authors of [18] study the MTOP. They propose a population-based
encoding, which can be solved using various heuristics for optimization problems
like cuckoo search or genetic algorithms. Additionally, they propose a simple
greedy baseline that assigns idling officers to the resource in violation using
"first-come-first-serve". Competition between officers is handled by assigning a
collectible resource to the officer with the highest probability that the resource
is still in violation when the officer arrives.

2.2 Multi-Agent Reinforcement Learning

After reviewing solutions to similar tasks, we will now discuss general multi agent
reinforcement learning (MARL) approaches w.r.t. their suitability for training on
MASRC environments. In MARL, a group of agents shares the same environment
they interact with. There are various challenges in MARL: the non-stationarity
of the environment from the perspective of an individual agent, the exponen-
tially increasing joint action space, the coordination between agents, and the
credit assignment problem. A plethora of different approaches to tackle these
challenges exists [6] and we will give a brief overview of the most important
MARL approaches in the following.

Joint action learners reduce the multi-agent problem to a single-agent prob-
lem by utilizing a single centralized controller that directly selects a joint action.
While joint action learners can naturally handle coordination and avoid the
non-stationarity, in practice, these approaches are often infeasible because of the
exponential growth of the joint action space w.r.t. the number of agents [7].

On the opposite site, we can use multiple independent learners [26]. The
agents interact in parallel in a shared environment using a single-agent RL al-
gorithm. In many cases, it has been shown that independent learners can yield
strong performance while allowing for efficient training. However, in some set-
tings, independent learners can suffer from the non-stationarity of the environ-
ment induced by simultaneously learning and exploring agents.

In recent years, approaches have been developed that utilize centralized train-
ing and decentralized execution (CLDE). In [24], the authors presented VDN
that decomposes the joint action-value function as a sum of the individual agents’
Q-function values obtained solely from the agents’ local observation. The authors
of [19] propose QMIX, a method that extends VDN by learning a non-linear
monotonic combination of the individual Q-functions, which allows representing
a larger class of problems. The authors of [3] propose a counterfactual multi-
agent actor-critic method (COMA) that uses a centralized critic that allows
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estimating how the action of a single agent affects the global reward in order to
address the credit assignment problem.

Another way to tackle the problem of coordination between agents is to facili-
tate communication between the agents. CommNet [23] is a prominent approach
that learns a differentiable communication model between the agents. Both
CLDE and communication-based approaches suffer from the credit-assignment
problem, which we mitigate through our individual reward design.

A drawback of the named approaches when applied to MASRC is that these
algorithms do not consider temporal abstractions, i.e., actions with varying dura-
tion. The application of temporal abstraction to CLDE requires the modification
of the problem in a way that the decision epochs are synchronized or experience
needs to be trimmed [27]. This way of training is inefficient as it exponentially
increases the number of decision epochs with respect to the number of agents.
The authors of [2,14,5,20,27] investigate temporal abstraction in multi-agent
settings. The authors of [20] first introduce different termination schemes for
actions with different temporal abstractions that are executed in parallel. [14]
propose independent learners to efficiently handle the asynchronous termination
setting, [27] adapt CommNet and QMIX to a setting with temporal abstraction,
while [2] propose a version of COMA in decentralized settings with temporal
abstractions. Let us note that some of these approaches, like COMA, QMIX, or
CommNet, can be adapted to train our function approximation and thus, can
be applied to MASRC. We experimented with these approaches but could not
observe any convincing benefit for solving MASRC. In addition, the use of those
methods tries to learn complex coordination schemes between agents. However,
in MASRC agents basically cannot directly support each other as the only action
impacting other agents is collecting resources.

3 Problem Formulation

We consider the problem of MASRC, where n agents try to maximize the collec-
tion of resources in a road network G = (V,E,C), where V is a set of nodes, E
denotes a set of edges and C : E → R+ are the corresponding travel costs. Each
resource p ∈ P is located on an edge e ∈ E in the road network. Whether a re-
source p is collectible can be observed by the agents but might change over time.
The state changes of resources follow an unknown stochastic process. Whenever
an agent passes a collectible resource, the resource is collected by the agent.

Formally, we model the MASRC problem as a Semi-Markov Game (SMG)
〈I, S,A, P,R, γ〉, where I is a set of agents indexed by 1, . . . , n, S is the set of
states,A denotes the joint action space, P is the transition probability functions,
R denotes the reward functions of the individual agents, and γ is the discount
factor.

Agent: A set of n agents moving in road network and collecting resources.
State: st ∈ S denotes the global state of the environment at time t. The

exact information included in the state depends on the actual instantiation, e.g.,
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TOP. Nonetheless, all MASRC tasks share a common structure that can be
decomposed into resources, agents, and environment:

– Resources characterized by the current status, e.g., availability and position.
– Agents defined by their position and ID.
– Environment with features such as the time of the day or an indication of

holidays.

Action: at ∈ A = A1× . . .×An : is the joint action at time t. Following the
single-agent formulation of [21], we define the individual action space Ai of an
agent to correspond to the set of edges E, i.e., the agent will travel on the shortest
path to the corresponding edge. This allows to focus on the MASRC task itself
rather than solving the routing problem, where high-performance deterministic
algorithms are available. Therefore, the individual actions have varying duration,
depending on the agent’s position and target location. As a result, agents may
have to asynchronously select actions at different decision times. Between those
decision times, agents continue to their target. Formally, we can reduce this to
a synchronous setting, and thus the given joint action space, by introducing a
special "continue" action, as described in [14].

Reward: Each agent i has an independent reward function Ri ∈ R, where
R : (S×A)→ R. Each agent i independently tries to maximize its own expected
discounted return E

[∑∞
j=0 γ

jri,t+j

]
. Each agent’s individual reward function

corresponds to the resources collected by the agent itself. The reward is incre-
mented by 1 for each collected resource. A resource is collected when an agent
passes a collectible resource.

State Transition Probability: With

(st+1, τ | st,at) : (S × R+ ×A× S)→ [0, 1] ⊂ R (1)

we denote the probability of transitioning to the state st+1 from the current
state st by taking the joint action at. Although, some effects of an action are
deterministic (e.g., the positions of the agents), the state changes of resources are
uncertain and the exact dynamics are unknown. Unlike in a Markov Game, in a
SMG, we additionally sample the number of elapsed time-steps τ of the action
at. The smallest feasible temporal abstraction is the greatest common divisor of
all edge travel times. The duration is determined by the individual action ai ∈ a
with the shortest duration, which is a multiple of the smallest feasible duration.
As a result, an agent receives a time-discounted reward ζ =

∑τ−1
j=0 γ

jrt+j+1.

4 Method

In this section, we introduce our novel multi-agent RL agent. At first, we provide
some insight into our reward design. Secondly, we present our training procedure
that is based on independent DQN [25]. After that, we describe the inputs to our
architecture and name the particular features for our evaluation on the MTOP
task. Finally, we introduce our novel function approximator for the MASRC
problem that facilitates coordination between the agents.
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4.1 Individual Rewards

In general, the goal of MASRC is to maximize the expected joint reward
E
[∑|I|

i=0

∑∞
j=0 γ

jri,t+j
]
. However, we decided to use individual rewards to avert

the credit assignment problem, which leads to a Markov Game where agents act
selfishly. In literature, the impact of such selfish behavior is commonly denoted as
the "price of anarchy" [10]. In the context of MASRC, we argue that the price
of anarchy is likely to be very low and outweighed by the benefits of having
a reward function that allows the agents to assess the impact of their actions
more directly and thus mitigates the credit assignment problem. This is because
in MASRC helping other agents directly is not possible. Therefore, coordination
boils down to not getting in the way of other agents. There might be cases where
a joint reward might lead to policies where particular agents would target far-
off resources decreasing their own but increasing the sum of collected resources.
However, we observed in our experiments that these cases are rare. We provide
an empirical evaluation of our reward design choice compared to joint rewards
in Section 6.3.

4.2 Training

Independent DQN [25] combines independent learners [26] and DQN [15]. To
speed up learning, we share the network parameters between agents and dis-
tinguish them by their IDs [31]. Independent learning provides a natural way
to handle settings with asynchronous termination [14]. In independent learning,
each agent treats the other agents as part of the environment. However, this may
lead to sub-optimal coordination between the agents. To mitigate this problem,
we introduce an architecture that allows each agent to efficiently reason about
the intents of other agents. We utilize a DoubleDQN [29] adapted to the Semi-
Markov setting. We update the network parameters with respect to a batch of
transitions collected from all agents by minimizing the following loss function:

L(Θ) = Est,at,τ,rt:t+τ−1,st+τ [loss(yt, Q(st, at;Θ))] (2)

where yt =
∑τ−1
j=0 γ

jrt+j + γτQ(st+τ , a
′
t+τ ;Θ

′). The action a′t+τ is the optimal
action w.r.t to Θ, i.e., a′t+τ = argmaxat+τ∈A(st+τ )Q(st+τ , at+τ ;Θ). Θ denotes
the parameters of the behavior Q network and Θ′ denotes the parameters of
the frozen target Q network which are periodically copied from Θ. To improve
clarity, we omitted the indices indicating the individual agents. We use a smooth
L1 loss.1.

4.3 Input Views

In the following, we will briefly describe the inputs to our function approximation
and name the particular features for our evaluation on the MTOP task.
1 cf. https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html

https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html
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Resource Features We encode each resource from the perspective of each
individual agent separately. To this end, we add features describing the relation of
the agent to the resource, e.g., the distance or arrival time. This results in n times
different views of each resource. The resource view for the MTOP contains a one-
hot-encoding of the resource’s current status, i.e., free, occupied, in violation, or
fined. Additionally, we provide a flag that indicates whether a parked car would
be in violation if it remains parked and the officer would directly go there.
Finally, we add the current time of the day, walking time, agent arrival time,
and distance to the resource. All these features are normalized. We add a real-
valued number between -1 and 2, indicating how long a car is still allowed to
occupy the resource and how long it is in violation, respectively. A score greater
than zero indicates a violation. Finally, we add the normalized coordinates of
the resource’s position.

Agent Features For MTOP, it consists of a one-hot encoding of the agents’
ID, the normalized coordinates of its current position and target, as well as the
normalized walking time and distance to its target.

Spatial Relation To capture the spatial interaction between the resources,
we create a distance matrix for each agent. There is one row in the matrix
for each action consisting of the network distance of the action target to each
resource, the distance between the agent, and the action target to each row.

4.4 Architecture

An effective policy in MASRC requires an agent to consider the complex inter-
action between resources, actions, and other agents to estimate the likelihood of
reaching a collectible resource. To capture those dependencies, our novel architec-
ture first encodes the action-level intents of each agent using the resources and
their spatial relationship solely from the perspective of each individual agent,
i.e., ignoring the other agents. We call this module the Shared Action Encoder.
After that we continue by combining the perspective of the current agent with
the action-level intents of the other agents using multi-head attention in the
Intent Combination Module. This allows an agent to asses the likelihood that
another agent catches collectible resources first. While the inputs are different,
the parameters of all networks are shared between all agents.

Shared Action Encoder In the context of SRC, the value of an action, i.e., the
likelihood of reaching resources in time, depends largely on the state of resources
near the target [21]. We argue that in a multi-agent setting, the simple distance
weighting from [21] is not expressive enough to capture the complex dependency
of an action’s value on, e.g., the uncertainty of reaching the resource in time.
Thus, we propose an extended Shared Action Encoder to calculate agent-specific
action embeddings, based upon the agent’s features, and resources’ features, as
well as the distances. We provide the pseudo-code roughly following PyTorch
style in Fig. 2, and show an overview in Fig. 1.We begin by transforming the
agent’s features with an MLP (cf. line 3). Next, we calculate unnormalized agent-
specific resource to action relevance scores combining information from the agent



Reinforcement Learning for Multi-Agent Stochastic Resource Collection 9

Resource EmbeddingResource EmbeddingResource Embedding

Matrix Multiplication

Action Embedding Net Agent ID

Resource Embedding Net

Resource Features

Action Embedding

Resource FeaturesResource Features

Relevance Matrix

Distance To
ActionSoftmax

Relevance Matrix

Distance Matrix Agent Embedding

Relevance Net

Distance To Action

Agent Embedding Net

Agent Features Agent ID

Fig. 1: Conceptual overview of the Shared Action Encoder. This module creates
a rich representation for each action based on the resource states from the per-
spective of an individual agent. The module captures the spatial relationship of
resources around each action’s target using a graph neural network mechanism.
Networks and operations are colored yellow, the output of the module and cru-
cial intermediate representations are purple, while blue denotes input features.

1def sea(feat_ag , feat_res , i_ag , dist , dist_ag2ac):
2""" Shared action encoder for a single agent."""
3x_ag = mlp1(feat_ag)
4# shape: (dim_ag ,)
5rel_act_res = mlp2(cat(broadcast([
6x_ag[None],
7dist_ag2ac[None],
8dist ,
9]), dim=-1))
10# shape: (n_action , n_res)
11rel_act_res = softmax(rel_act_res , dim=-1)
12# shape: (n_action , n_res)
13x_res = mlp3(feat_res)
14# shape: (n_res , dim_res)
15x_act = rel_act_res @ x_res
16# shape: (n_act , dim_res)
17return mlp4(cat(x_act , i_ag , dist_ag2ac))

Fig. 2: Pseudocode for the Shared Action Encoder following PyTorch style.
feat_ag denotes the agent’s features, feat_res the (agent-specific) resource
features, i_ag the agent’s ID, and dist the action-resource distance matrix, and
dist_ag2ac the distance from the current agent to all actions (which are target
edges). mlp1 to mlp4 are separate MLPs.
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Action Embedding Current Agent Action Embedding Other Agent

Sum

Multi-Head-Attention

KeyQuery Value

Action Embedding Other AgentAction Embedding Other Agent

Q-Network Agent ID

Q-Values

Fig. 3: In the Intent Combination Module, we enrich the action embedding of
a single agent with information about the other agents’ actions using multi-
head attention. Afterwards, we reduce the enriched action representations to
a Q-value for every action with an MLP. Networks and operations are colored
yellow, inputs coming from the Shared Action Encoder are purple, and blue
denotes input features.

representation, the distance from the agent to the action (i.e., edge), and the
action-to-resource distance matrix using another MLP (cf. lines 5-9). These rel-
evance scores are subsequently normalized using the softmax operator (cf. line
11). The resource features are first transformed by an MLP, before we use the
previously computed relevance scores for aggregating them per action (cf. line
13-15). A final MLP combines this information with distance to the agent as
well as the agent ID (cf. line 17). In the following, we denote the result of this
component as E.

Intent Combination Module Information about the other agents’ intents
is crucial in multi-agent settings - thus, we propose an attention-based mech-
anism to update an agent’s action representations by considering the ones of
other agents. Let Ei denote the output of the shared action encoder for agent
i. For scalability, we first aggregate the latent actions of all other agents Ei :=∑
j∈I\{i}Ej . Next, apply a multi-head attention mechanism [30] with Ei as

query and value and Ei as key. Finally, we reduce every row of the result, corre-
sponding to the co-agents-aware action representation, to a single Q-value using
an MLP. This MLP also receives the agent ID as an additional input to allow
diversification of the agents.



Reinforcement Learning for Multi-Agent Stochastic Resource Collection 11

Area Nodes Edges Resources Edges with Resources
Docklands 1,435 4,307 487 166
Queensberry 1,711 5,356 639 177
Downtown 6,806 21,369 1,481 493

Fig. 4: Description and illustration of the different areas used in our evaluation:
Docklands (blue), Downtown (red), and Queensberry (green). Notice that typ-
ically only a small fraction of edges contains resources and there can be more
than one resource per edge.

5 Simulator Design

To the best of our knowledge, there is no publicly available simulation for MTOP.
To enable effective training of reinforcement learning agents, we implement a
simulator that can replay real-world sensor data and parking restrictions, which
allows us to simulate as close as possible to the real world. The walking graph,
i.e., road network, is extracted from OpenStreetMap2. We assign parking spots
to the closest edge in the graph. When an agent passes a resource in violation, it
will be fined. The time for fining a violation is set to zero in our simulation. The
agent collects a reward of +1 for every fined resource. All agents start at the
same place every day. They work for 12 hours from 7 am to 7 pm. Each agent
has a walking speed of 5km/h.

For our evaluation, we use openly available on-street parking sensor data and
parking restrictions from the city of Melbourne in 2019 3. We divide Melbourne
into three areas to study different graph structures and hyperparameter transfer-
ability. Details regarding the areas can be found in Fig. 4. Each run was trained
using a single GPU on a cluster consisting of RTX A6000 (48GB) and A100
(40GB) GPUs. The code of our simulation and agents is publicly available.4

6 Experimental Evaluation

We split the parking event dataset into a training, validation, and test set. Park-
ing follows weekly patterns. To avoid biases introduced through weekdays, we
split the dataset as follows: If the remainder of the day in the year divided by 13
is 0, we add the day to the test set. In case the remainder is 1, we add the day
to the validation set. The remaining 308 days are added to the training set. An
episode is equivalent to a working day. The order of the training days is shuffled.
To speed up training, the agent interacts with eight environments in parallel.

The transferability of the hyperparameters across different regions and num-
bers of agents is important. We tuned the hyperparameters in a single area
2 https://www.openstreetmap.org
3 https://data.melbourne.vic.gov.au/browse?tags=parking
4 https://github.com/niklasdbs/masrc

https://www.openstreetmap.org
https://data.melbourne.vic.gov.au/browse?tags=parking
https://github.com/niklasdbs/masrc
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(Docklands) with two agents. Agents were trained using early stopping. The
test results reported are with respect to the best validation results. The full
hyperparameter setting can be found in the supplement.

6.1 Baselines

Greedy Wemodify the greedy baseline from [18] for better performance: Instead
of assigning agents to the resource with the earliest violation time, we directly
use the catching probability from the the tie-breaking mechanism.

LERK The authors of [18] propose to solve the MTOP by representing it using
leader-based-random-key encoding (LERK) and then solve it using various clas-
sical heuristic solvers developed for combinatorial issues. One of these heuristics
that yielded the best performance was the genetic algorithm, which we have
implemented.

MARDAM [1] is an actor-critic RL-agent - based on [9] - designed to solve
dynamic-VRP with multiple agents using attention mechanisms. While they
propose a method to transform the underlying Markov game into a sequential
MDP, this transformation is not possible for MASRC tasks. Therefor, we train
their architecture using independent actor-critic. Due to the dynamic state of
resources in MASRC tasks, we need to calculate the customer-embeddings (i.e.,
resource), in every step using a Transformer which is computationally expensive
and memory intense. As a result, we are not able to train the agent on full
episodes and need to rely on bootstrapping.

SASRC We train the architecture of [21] that has been proposed for the SASRC
using independent learning with shared independent learners. We add the agent-
id to the final network so that agents can differentiate their behavior. Addition-
ally, we add information about the targets of all agents to the resources, which
allows the agent to incorporate information about other agents and thus benefits
learning [31].

6.2 Results

As the evaluation metric, we use the average number of violations fined per day.
We evaluate in three different areas using two, four, and eight agents. The results
in Table 1 show that our proposed approach can surpass the other approaches
and baselines in various regions and across different numbers of agents. We can
beat MARDAM, a state-of-the-art algorithm designed for multi-agent dynamic-
VRP, by a large margin. This underlines that approaches for SRC tasks need
to be able to handle the increased stochasticity. Moreover, MARDAM requires
a massive amount of GPU memory due to the use of the transformer encoder in
large settings like Downtown with eight agents. For this setting, our approach
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Table 1: Average number of violations fined per day in Docklands, Queensberry,
and Downtown for 2, 4, and 8 agents on the validation and test set.

2 Agents 4 Agents 8 Agents
Area Algorithm Validation Test Validation Test Validation Test

Docklands

Greedy 186.93 192.67 304.32 300.22 442.57 439.33
LERK 244.78 245.11 328.61 330.56 424.32 418.19

MARDAM 339.79 336.37 418.96 416.44 482.57 479.78
SASRC 343.82 304.19 476.07 465.52 551.86 544.63
OURS 388.32 379.59 527.21 518.52 588.04 580.00

Queensberry

Greedy 180.46 189.15 240.5 250.07 277.54 286.56
LERK 192.18 198.78 233.86 245.07 260.79 271.67

MARDAM 225.18 229.85 247.29 255.41 257.04 267.81
SASRC 222.61 231.41 257.11 266.00 263.79 273.15
OURS 244.43 255.41 271.39 281.59 284.75 294.37

Downtown

Greedy 138.79 144.63 256.14 257.33 429.93 435.22
LERK 213.57 219.19 298.32 305.40 430.18 428.19

MARDAM 340.54 342.37 469.18 471.26 255.82 260.93
SASRC 425.68 418.48 657.61 658.04 815.68 815.41
OURS 495.07 494.70 710.75 713.3 866.04 867.93

uses approximately 16 times less GPU memory during training. As a result,
the batch size needs to be reduced for those settings, which may impact perfor-
mance. Additionally, the episode length in MASRC tasks is much longer than
in a typical VRP, which makes learning on whole episodes impossible. Further-
more, the experiments show that our approach yields considerably better results
than existing heuristic solvers designed for the MTOP, such as LERK, which
require intensive computational resources at inference time. While our approach
requires several days of training it only needs a few milliseconds at inference
time.The authors of LERK [18] state a runtime of 4.67 minutes for making a
single decision with seven officers using their fastest approach. This makes the
application of their algorithm in real-world settings infeasible.

6.3 Ablation Studies

To assess the individual components’ impact on the final performance, we pro-
vide several ablation studies. We conduct the ablations with two agents on the
validation set in the Docklands area and report the average number of violations
fined per day. The results of the ablations can be found in Table 2, where they
are sorted decreasingly by performance, i.e., the highest impact is on the right.

We observe that not using an action embedding network has the strongest
impact on the performance resulting in an 8.3% reduction in performance. Since
the reduction is less severe when removing inputs of this network, the effect
can be primarily attributed to the additional non-linear transformation after re-
source aggregation. Switching from individual to joint rewards is next in terms
of relevance. We observe that using joint rewards performs considerably worse,
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Table 2: Ablations performed in the area of Docklands with two agents. We
report the average number of caught violations per day. The second row shows
the relative performance compared to the base configuration. The values are
sorted decreasingly, i.e., the highest impact is on the right.
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absolute 388.32 378.54 375.39 370.36 365.25 360.96 359.71 356.18
relative 100.0% 97.5% 96.7% 95.4% 94.1% 93.0% 92.6% 91.7%

leading to a 7.4% reduction in performance,5 which we attribute to the credit
assignment problem. Ignoring the distance to the action leads to a reduction of
7.0%. Without this information the agent lacks input to assess the inherent re-
ward uncertainty in far actions. The agent embedding network is the next crucial
component, with a reduction of 5.9%. Without it, the model cannot utilize the
agent features, such as its position. Not having access to the agent ID aggravates
diversification of agent policies and leads to a performance decrease of 3.3%. Fi-
nally, adding other agents’ target information to the agent-specific views of the
resources leads to slightly worse performance of around 2.5%, despite yielding
improvements in the SASRC baseline. This indicates that our architecture can
already sufficiently incorporate the intents of other agents for effective coordi-
nation.

7 Conclusion

In this work, we have formalized Multi-Agent Stochastic Resource Collection
(MASRC) as a Semi-Markov Game, providing a solid theoretical framework for
the development of new approaches. We further proposed a novel architecture to
solve MASRC tasks featuring an innovative intent combination model which per-
mits re-assessment of action representations based on the other agents’ action
representations. To enable evaluation, we introduced an efficient agent-based
simulation for the MTOP task, for which we publish the source code to sup-
port the community in future research. Using the simulation, we could demon-
strate that our approach is able to beat existing heuristic baselines, adaptions of
state-of-the-art single-agent SRC solutions, and approaches for the multi-agent
dynamic-VRP in terms of fined violations. On a more fundamental level, our
results indicate that existing approaches for multi-agent dynamic-VRP struggle
to handle the increased dynamics in MASRC tasks, and thus MASRC requires
specialized solutions. In future work, we want to include dynamic travel times.

5 Notice though that even with joint rewards, our approach is able to beat baselines
trained with individual rewards.
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Furthermore, we want to investigate the transfer of trained policies between dif-
ferent areas and numbers of agents. Finally, we will research further scaling our
approach to very large graphs.
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