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Abstract. Most physical processes possess structural properties such as
constant energies, volumes, and other invariants over time. When learning
models of such dynamical systems, it is critical to respect these invari-
ants to ensure accurate predictions and physically meaningful behavior.
Strikingly, state-of-the-art methods in Gaussian process (GP) dynamics
model learning are not addressing this issue. On the other hand, classical
numerical integrators are specifically designed to preserve these crucial
properties through time. We propose to combine the advantages of GPs as
function approximators with structure-preserving numerical integrators
for dynamical systems, such as Runge-Kutta methods. These integrators
assume access to the ground truth dynamics and require evaluations of
intermediate and future time steps that are unknown in a learning-based
scenario. This makes direct inference of the GP dynamics, with embedded
numerical scheme, intractable. As our key technical contribution, we
enable inference through the implicitly defined Runge-Kutta transition
probability. In a nutshell, we introduce an implicit layer for GP regression,
which is embedded into a variational inference model learning scheme.
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1 Introduction

Many physical processes can be described by an autonomous continuous-time
dynamical system

ẋ(t) = f(x(t)) with f : Rd → Rd. (1)

Dynamics model learning deals with the problem of estimating the function f
from sampled data. In practice, it is not possible to observe state trajectories in
continuous time since data is typically collected on digital sensors and hardware.
Thus, we obtain noisy discrete-time observations

{x̂n}1:N = {x1 + ν1, . . . , xN + νN}, νn ∼ N (0,diag(σ2
n,1, . . . , σ

2
n,d)). (2)

Accordingly, models of dynamical systems are typically learned as of one-step
ahead-predictions

xn+1 = g(xn). (3)
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Especially, Gaussian processes (GPs) have been popular for model learning and
are predominantly applied to one step ahead predictions (3) [5, 7, 8]. However,
there is a discrepancy between the continuous (1) and discrete-time (3) systems.
Importantly, (1) often possesses invariants that represent physical properties.
Thus, naively chosen discretizations (such as Eq. (3)) might lead to poor models.

Numerical integrators provide sophisticated tools to efficiently discretize
continuous-time dynamics (1). Strikingly, one step ahead predictions (3) cor-
respond to the explicit Euler integrator xn+1 = xn + hf(xn) with step size h.
This follows immediately by identifying g(xn) with xn + hf(xn). It is well-known
that the explicit Euler method might lead to problematic behavior and subopti-
mal performance [13]. Clearly, this raises the immediate question: can superior
numerical integrators be leveraged for dynamics model learning?

For the numerical integration of dynamical systems, the function f is assumed
to be known. The explicit Euler is a popular and straightforward method, which
thrives due to its simplicity. No intermediate evaluations of the dynamics are
necessary, which makes the integrator also attractive for model learning. While
this behavior is tempting when implementing the algorithm, there are theoretical
issues [13]. In particular, important physical and geometrical structure is not
preserved. In contrast to the explicit Euler, there are also implicit and higher-order
methods. However, these generalizations require the evaluation at intermediate
and future time steps, which leads to a nonlinear system of equations that needs
to be solved. While these schemes become more involved, they yield advantageous
theoretical guarantees. In particular, Runge-Kutta (RK) schemes define a rich
class of powerful integrators. Despite assuming the dynamics function f to be
unknown, we can still benefit from the discretization properties of numerical
integrators for model learning. To this end, we propose to combine GP dynamics
learning with arbitrary RK integrators, in particular, implicit RK integrators.

Depending on the problem that is addressed, the specific RK method has
to be tailored to the system. As an example, we consider structure-preserving
integrators, i.e., geometric and symplectic ones. We develop our arguments based
on Hamiltonian systems [28, 29]. These are an important class of problems
that preserve a generalized notion of energy and volume. Symplectic integrators
are designed to cope with this type of problems, providing volume-preserving
trajectories and accurate approximation of the total energy [12]. In order to
demonstrate the flexibility of our method, we also introduce a geometric integrator
that is consistent with a mass moving on a surface. For both examples, we show
in the experiments section that the predictions with our tailored GP model are
indeed preserving the desired structure.

By generalizing to more sophisticated integrators, we have to address the issue
of propagating implicitly defined distributions through the dynamics. This is due
to the fact that evaluations of the GP at the next time step induce additional
implicit evaluations of the dynamics. Depending on the integrator, these might
be future or intermediate time steps that are also unknown. On a technical level,
sparse GPs provide the necessary flexibility. A decoupled sampling approach
allows consistent sampling of functions from the GP posterior [34]. In contrast to
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previous GP dynamics modeling schemes [7], this yields consistency throughout
the entire simulation pipeline. By leveraging these ideas, we derive a recurrent
variational inference (VI) model learning scheme.

By addressing integrator-induced implicit transition probabilities, we are
essentially proposing implicit layers for probabilistic models. Implicit layers in
neural networks (NNs) are becoming increasingly popular and address outputs
that can not be calculated explicitly [3, 10, 23]. Typically, implicit layers in NNs
are defined in terms of an optimization problem. However, the idea of implicitly
defined layers has (to the best of our knowledge) not yet been generalized to
probabilistic models like GPs, introducing the technical challenge of dealing with
implicitly defined probability distributions.

In summary, the main contributions of this paper are:

– a general and flexible probabilistic learning framework that combines arbitrary
RK integrators with GP dynamics model learning;

– an inference scheme that is able to cope with implicitly defined distributions,
thus extending the idea of implicit layers from NNs to GPs; and

– embedding geometrical and symplectic integrators, yielding GP dynamics
models that are structure-preserving.

2 Related work

Dynamics model learning is a very broad field and has been addressed by various
communities for decades, e.g., [9, 22]. Learning GP dynamics models can be
addressed with a parameteric or non-parametric continuous-time GP model.
Nonparametric continuous-time GP models were learned by applying sparse GPs
[15, 16]. A common approach for learning discrete-time models are GP state-space
models [32, 33]. In this work, we consider fully observable systems in contrast to
common state-space models. However, we apply the tools of state-space model
literature. In particular, we develop our ideas exemplary for the inference scheme
proposed in [7]. At the same time, our contribution is not restricted to that choice
of inference scheme and can be combined with other schemes as [19] as well. In
constrast to [7], we sample consistent GPs from the posterior (cf. Sec. 4.)

Implicit transitions have become popular for NNs and provide useful tools
that we leverage. Implicit layers in neural networks denote layers, in which the
output is defined in terms of an optimization problem [10]. On a technical level,
we implement related techniques based on the implicit function theorem and
backpropagation. A NN with infinitely many layers was trained by implicitly
defining the equilibrium of the network [3]. Look et al. [23] propose an efficient
backpropagation scheme for implicitly defined neural network layers. We extend
these approaches from deterministic NNs to probabilistic GP models.

Including Hamiltonian structure into learning in order to preserve physical
properties of the system, is an important problem addressed by many sides.
The problem can be tackled by approximating the continuous-time Hamiltonian
system from data. This was addressed by applying a NN [11]. Since modern NN
approaches provide a challenging benchmark, we compare our method against
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[11]. In [20], the Hamiltonian structure is learned by stacking multiple symplectic
modules. GPs have been combined with symplectic structure as well [4, 26]. In
contrast to our approach, the focus lies on learning continuous-time dynamics with
direct GP inference and afterwards unrolling the dynamics via certain symplectic
or structure-preserving integrators. By learning and predicting the identical
discrete-time system, we omit an additional numerical error and predictions are
computational more efficient.

However, there is literature that addresses discrete-time Hamiltonian systems.
The Hamiltonian neural network approach was extended by a recurrent NN
coupled with a symplectic integrator [6]. In [27], the symplectic learning approach
was extended to variational autoencoders, adding uncertainty to the initial value.
Zhong et al. [35] extend previous approaches by adding control input. In contrast
to previous approaches, we are able to apply implicit integrators. This allows us to
address non-separable Hamiltonians and geometrical invariants. Further, our GP
approach allows to sample trajectories from a structure-preserving distribution.

3 Technical background and main idea

Next, we make our problem precise and provide a summary of the preliminaries.

3.1 Gaussian process regression

A GP is a distribution over functions [25]. Similar to a normal distribution, a
GP is determined by its mean function m(x) and covariance function k(x, y). We
assume the prior mean to be zero.

Standard GP inference: For direct training, the GP predictive distribution
is obtained by conditioning on n observed data points. In addition to optimizing
the hyperparameters, a system of equations has to be solved, which has a
complexity of O(n3). Clearly, this is problematic for large datasets.

Variational sparse GP: The GP can be sparsified by introducing pseudo
inputs [31]. Intuitively, we approximate the posterior with a lower number of
training points. An elegant approximation strategy is based on casting Bayesian
inference as an optimization problem. We consider pseudo inputs ξ = [ξ1, . . . , ξP ]
and targets z = [z1, . . . , zP ] as proposed in [17] and applied in [7, 19]. Intuitively,
the targets can be interpreted as GP observations at ξ. The posterior of pseudo
targets is approximated via a variational approximation q(z) = N (µ,Σ), where
µ and Σ are adapted during training. The GP posterior distribution at inputs x∗
is conditioned on the pseudo inputs and targets resulting in a normal distribution
f(x∗|z, ξ) ∼ N (µ(x∗), Σ(x∗)) with

µ(x∗) = k(x?, ξ)k(ξ, ξ)−1z, and Σ(x?) = k(x?, x?)− k(x?, ξ)k(ξ, ξ)−1k(ξ, x?).
(4)

Decoupled sampling: In contrast to standard (sparse) GP conditioning (4)
this approach allows to sample functions from the posterior that can be evaluated
at arbitrary locations [34]. Thus, iterative sampling at multiple inputs is achieved
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without conditioning on previous function evaluations. By applying Matheron’s
rule [18], the GP posterior is decomposed into two parts,

f(x?|z, ξ) = f(x?)︸ ︷︷ ︸
prior

+ k(x?, ξ)k(ξ, ξ)−1(z − fz)︸ ︷︷ ︸
update

≈
S∑
i=1

wiφi(x
?) +

P∑
j=1

vjk(x?, ξj),

(5)

where S Fourier bases φi and wi ∼ N (0, 1) represent the stationary GP prior
[24]. For the update in Eq. (5) it holds that v = k(ξ, ξ)−1(z − Φw) with feature
matrix Φ = φ(ξ) ∈ RP×S and weight vector w ∈ RS . The targets z are sampled
from the variational distribution q(z) at the inputs ξ. We add technical details
and details on the Fourier bases in our setting in the supplementary material.

3.2 Runge-Kutta integrators

A RK integrator ψf for a continuous-time dynamical system f (1) is designed to
approximate the solution x(tn) at discrete time steps tn via x̄n. Hence,

x̄n+1 = ψf (x̄n) = x̄n + h

s∑
j=1

bjgj , gj = f(x̄n + h

s∑
l=1

ajlgl), j = 1, . . . , s, (6)

where gj are the internal stages and x̄0 = x(0). We use the notation x̄ to indicate
numerical error corrupted states and highlight the subtle difference to ground
truth data. The parameters ajl, bj ∈ R determine the properties of the method,
e.g., the stability radius of the method [14], the geometrical properties, or whether
it is symplectic [12].

Implicit integrators: If ajl > 0 for l ≥ j, Eq. (6) takes evaluations at time
steps into account where the state is not yet known. Therefore, the solution of a
nonlinear system of equations using a numerical solver is required. A prominent
example is the implicit Euler scheme x̄n+1 = x̄n + hf(x̄n+1).

3.3 Main idea

We propose to embed RK methods (6) into GP regression. Since the underlying
ground truth dynamics f (1) are given in continuous time, the discretization
matters. Naive methods, such as the explicit Euler method, are known to be
inconsistent with physical behavior. Therefore, we investigate how to learn more
sophisticated models that, by design, are able to preserve physical structure of the
original system. Further, we will develop this idea into a tractable inference scheme.
In a nutshell, we learn GP dynamics f̂ that yield predictions xn+1 = ψf̂ (xn).
This enforces the RK (6) instead of explicit Euler (3) structure. Thus, leading to
properties like volume preservation. The main technical difficulty lies in making
the implicitly defined transition probability p(ψf̂ (xn)|xn) tractable.
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4 Embbedding Runge-Kutta integrators in GP models

Next, we dive into the technical details of merging GPs with RK integrators. We
demonstrate how to make the distribution of any (implicit) RK method tractable.

4.1 Efficient evaluation of the transition model

At its core, we consider the problem of evaluating implicitly defined distributions of
RK integrators ψf̂ . To this end, we derive a sampling-based technique. Leveraging
decoupled sampling (5) allows to sample a consistent dynamics function from the
GP posterior distribution and thus, proper RK integrator steps. The procedure
is illustrated in Fig. 1. We model the dynamics f̂ via d variational sparse GPs.
Let z ∈ RP×d be a sample from the variational posterior q(z) (cf. Sec. 3.1).
The probability of an integrator step p(ψf̂ (xn)|z, xn) is formally obtained by
integrating over all possible GP dynamics f̂ |z,

p(xn+1|z, xn) = p(ψf̂ (xn)|z, xn) =

∫
f̂

p(ψf̂ (xn)|f̂)p(f̂ |z)df̂ . (7)

Next, we show how to sample from the distribution p(ψf̂ (xn)|z, xn) in Eq. (7).
Performing an RK integrator step ψf̂ (xn) requires the computation of RK stages
g? = (g?1 , . . . , g

?
s ) (6)

g? = arg min
g
‖g − f̂(xn + hAg)‖2, (8)

with A = (ajl)j=1,...s,l=1...j determined by the RK scheme (6). In the explicit
case A is a sub-diagonal matrix so gj can be calculated iteratively. In the implicit
case, a minimization problem has to be solved numerically, which requires the
iterative evaluation of multiple intermediate function evaluations. In both, the
explicit and implicit case, inputs to the dynamics f̂ depend on the output of
previous dynamics function evaluations. Thus, all evaluations can not directly
be drawn from their joint posterior GP distribution. In order to ensure that
iterative evaluations of f̂ indeed correspond to the identical GP posterior sample,
conditioning on prior evaluations is necessary.

In prior work on state-space models, iterative samples at different time-steps
were drawn independently, ignoring these correlations [7]. It was shown in [19]
that this introduces a non-negligible error in the forward propagation of the
probability distribution. In our case, the sampling scheme in [7] would lead
to an even larger error since consistency would not be ensured along a single
integration step. In the implicit case, this would result in a minimization problem
that changes while it is solved numerically. However, naive GP conditioning on
prior function evaluations is computationally intractable.

We address the problem by leveraging decoupled sampling [34]. This sampling
approach allows to compute a consistent GP dynamics function f̂ |z via Eq. (5)
before applying the RK scheme. Technically, sampling the dynamics function f̂ is



Structure-preserving Gaussian Process Dynamics 7

θ g? = argming η(g, xn, θ)

z wµ,Σ

xn ψ xn+1

Fig. 1: The evaluation of an integrator step. First, weights w ∼ N (0, 1) and
inducing targets z ∼ N (µ,Σ) (green) are sampled. This yields tractable solutions
to the minimization problem for the RK stages g? (red), which yields RK steps
xn+1 = ψ(yn). The trainable parameters are marked in blue.

achieved by sampling inducing targets z from N (µ,Σ) and weights w ∼ N (0, 1)

(cf. Sec. 3.1). We are now able to evaluate the dynamics f̂ at arbitrary locations.
This allows to define and solve the system of equations (8) with respect to
the fixed, but sampled, GP dynamics f̂ . Combining Eq. (8) and Eq. (5) with
u = u(g) = xn + hAg yields

g? = arg min
g

∥∥∥ g − S∑
i=1

wiφi(u)−
M∑
j=1

vjk(u, ξj)
∥∥∥2. (9)

Next, we give an example. Consider the IA-Radau method [14] xn+1 = xn +
h
(
1
4g1 + 3

4g2
)
, with

g1 = f̂

(
xn +

h

4
(g1 − g2)

)
, g2 = f̂

(
xn + h

(
1

4
g1 +

5

12
g2

))
. (10)

After sampling z and w, the RK scheme (10) is transformed into a minimization
problem (9). With u1 = xn + h

4 (g1 − g2), and u2 = xn + h( 1
4g1 + 5

12g2) it holds

that
(
g?1
g?2

)
= arg ming F (g), with

F (g) =

∥∥∥∥∥ g1 −
∑S
i=1 wiφi(u1)−∑M

j=1 vjk(u1, ξj)

g2 −
∑S
i=1 wiφi(u2)−∑M

j=1 vjk(u2, ξj)

∥∥∥∥∥
2

. (11)

4.2 Application to model learning via variational inference

Next, we construct a variational-inference model learning scheme that is based on
the previously introduced numerical integrators. Here, we exemplary develop the
integrators for an inference scheme similar to [7] and make the method precise. It
is also possible to extend the arguments to other inference schemes such as [19].
In contrast to [7] we sample functions f̂ instead of independent draws from the
GP dynamics. This allows to produce trajectories that are generated by a fixed
but probabilistic vector field. Unlike typical state-space models as [7, 19] we do
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not consider transition noise. Thus, the proposed variational posterior is suitable
[19]. Structure preservation is in general not possible when adding transition
noise to each time step [1, §5].

Factorizing the joint distribution of noisy observations, noise-free states,
inducing targets and GP posterior yields

p(x̂1:N , x1:N , z, f̂) =

N−1∏
n=0

p(x̂n+1|xn+1)p(xn+1|xn, f̂)p(f̂ |z)p(z). (12)

The posterior distribution p(x1:N , z, f̂ |x̂1:N ) is factorized and approximated by a
variational distribution q(x1:N , z, f̂). Here, the variational distribution q is chosen

q(x1:N , z, f̂) =

N−1∏
n=0

p(xn+1|xn, f̂)p(f̂ |z)q(z), (13)

with the variational distribution q(z) of the inducing targets from Sec. 3.1. The
model is adapted by maximizing the Evidence Lower Bound (ELBO)

log p(x̂1:N ) ≥ Eq(x1:N ,z,f̂)

[
log

p(x̂1:N , x1:N , z, f̂)

q(x1:N , z, f̂)

]

=

N∑
n=1

Eq(x1:N ,z,f̂)
[log p(x̂n|xn)]−KL(p(z)||q(z)) =: L.

(14)

Now, the model can be trained by maximizing the ELBO L (14) with a
sampling-based stochastic gradient descent method that optimizes the sparse
inputs and hyperparameters. The expectation Eq(x1:N ,z,f̂)

[
log p(x̂1:N ,x1:N ,z,f̂)

q(x1:N ,z,f̂)

]
is

approximated by drawing samples from the variational distribution q(x1:N , z, f̂)
and evaluating p(x̂n|xn) at these samples. Samples from q are drawn by first
sampling pseudo targets z and a dynamics function f̂ from the GP posterior (5).
Trajectories are produced by succesively computing consistent integrator steps
xn+1 = ψf̂ (xn) as described in Sec. 4.1. This yields a recurrent learning scheme,
by iterating over multiple integration steps. We are able to use our model for
predictions by sampling functions from the trained posterior.

4.3 Gradients

The ELBO (14) is minimized by applying stochastic gradient descent to the
hyperparameters. When conditioning on the sparse GP (4), the hyperparameters
include θ = (µ1:d, Σ1:d, θ

GP
1:d ) with variational sparse GP parameters µ1:d, Σ1:d

and GP hyperparameters θGP1:d . The gradient dxn+1

dθ depends on dg?

dθ and dxn

dθ via
the integrator (6). It holds that

dg?

dθ
=
∂g?

∂θ
+
dg?

dxn

dxn
dθ

. (15)
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By the dependence of xn+1 on g? and of g? on xn (15), the gradient is backpropa-
gated through time. For an explicit integrator, the gradient dg?

dθ can be computed
explicitly, since g?j depends on g?i with i < j. For implicit solvers, the implicit
functions theorem [21] is applied. It holds that g? = arg ming η(g, xn, θ) with the
minimization problem η derived in Eq. (9). For the gradients of g? with respect
to xn, respectively θ, it holds with the implicit function theorem [21]

dg?

dxn
=

(
∂2η

∂g?2

)−1(
∂2η

∂xn∂g?

)
. (16)

5 Application to symplectic integrators

In summary, we have first derived how to evaluate the implicitly defined RK
distributions. Afterward, we have embedded this technique into a recurrent
learning scheme and finally, shown how it is trained. Next, we make the method
precise for symplectic integrators and Hamiltonian systems.

5.1 Hamiltonian systems and symplectic integrators

An autonomous Hamiltonian system is given by

x(t) =

(
p(t)
q(t)

)
with ẋ(t) =

(
ṗ(t)
q̇(t)

)
=

(
−Hq(p, q)
Hp(p, q)

)
(17)

and p, q ∈ Rd. Here, Hp and Hq denote the partial derivatives of H with resepect
to p and q. In many applications, q corresponds to the state and p to the velocity.
The Hamiltonian H often resembles the total energy and is constant along
trajectories. The flow of Hamiltonian systems ψt is volume preserving in the
sense of vol(ψt(Ω)) = vol(Ω) for each bounded open set Ω. The flow ψt describes
the solution at time point t for the initial values x0 ∈ Ω.

Symplectic integrators are volume preserving for Hamiltonian systems (17)
[12]. Thus, vol(Ω) = vol(ψf (Ω)) for each bounded Ω. Further, they provide a
more accurate approximation of the total energy than standard integrators [12].
When designing the GP, it is critical to respect the Hamiltonian structure (17).
Additionally, the symplectic integrator ensures that the volume is preserved.

5.2 Explicit symplectic integrators

A broad class of real world systems can be modeled by separable Hamiltonians
H(p, q) = T (p) + V (q). For example, ideal pendulums and the two body problem.
Then, for the dynamical system it holds that

ṗ(t) = −V ′(q), q̇(t) = T ′(p), (18)
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with V : Rd → Rd and T : Rd → Rd. For this class of problems, explicit sym-
plectic integrators can be constructed. In order to ensure Hamiltonian structure,
V ′1(q), . . . , V ′d(q) and T ′1(p), . . . , T ′d(p) are modeled with independent sparse GPs.
Symplecticity is enforced via discretizing with a symplectic integrator.

Consider for example the explicit symplectic Euler method

pn+1 = pn − hV ′(qn), qn+1 = qn + hT ′(pn+1). (19)

The symplectic Euler method (19) is a partitioned RK method, meaning that
different schemes are applied to different dimensions. Here, the explicit Euler
method is applied to pn and the implicit Euler method to qn. The integrator (19)
is embedded into the sampling scheme (cf. Sec. 4.1) by sampling from V ′ and T ′
and the scheme can readily be embedded into the inference scheme (cf. Sec. 4.2).

5.3 General symplectic integrators

The general Hamiltonian system (17) requires the application of an implicit
symplectic integrator. An example for a symplectic integrator is the midpoint
rule applied to (17)

xn+1 = xn + hJ−1∇H
(
xn + xn+1

2

)
, with J−1 =

(
0 −1
1 0

)
. (20)

Again, it is critical to embed the Hamiltonian structure into the dynamics model
by modeling H with a sparse GP. Sampling from (20) requires evaluating the
gradient ∇H, which is again a GP [25].

6 Experiments

In this section, we validate our method numerically. In particular, we i) demon-
strate volume-preserving predictions for Hamiltonian systems and the satisfaction
of a quadratic geometric constraint for a mechanical system; ii) show that we
achieve higher or equal accuracy as state-of-the-art methods; and iii) illustrate
that our method can easily deal with different choices of RK integrators.

6.1 Methods

We construct our structure-preserving GP model (SGPD) by tailoring the RK
integrator to the underlying problem. We compare with the following methods:
Hamiltonian neural network (HNN) [11]: Deep learning approach that is
tailored to respect Hamiltonian structure.
Consistent PR-SSM model (Euler) [7]: Standard variational GP model that
corresponds to explicit Euler discretizations. Therefore, we refer to it in the
following as Euler. In general all common GP state-space models correspond to
the Euler discretization. Here, we use a model similar to [7], but in contrast to [7]
we compute consistent predictions via decoupled sampling as discussed in Sec. 4.
The general framework is more flexible and can also cope with lower-dimensional
state observations. Here, we consider the special case, where we assume noisy
state measurements.
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Fig. 2: State trajectory samples for the rigid body dynamics with SGPD (left)
and Euler (right). Shown are 5 rollouts from the GP posterior. Both systems are
illustrated as a function over time. The training horizon is marked with dotted
lines. SGPD visibly enforces structure in contrast to Euler.

6.2 Learning task and comparison

In the following, we describe the common setup of all experiments. For each
Hamiltonian system, we consider at least one period of a trajectory as training
data and all methods are provided with identical training data. For all experiments,
we choose the ARD kernel [25]. We apply the training procedure described in
Sec. 4.2 on subtrajectories and perform predictions via sampling of trajectories.
Since we observed too much influence of the KL-divergence on the ELBO, we
include a scaling factor inspired by [2]. In order to draw a fair comparison, we
choose similar hyperparameters and number of inducing inputs for our SGPD
method and the standard Euler discretization. Details are moved to the appendix.
In contrast to our method, the HNN requires additional derivative information,
either analytical or as finite differences. Here, we assume that analytical derivative
information is not available and thus compute finite differences.

We consider a twofold goal: invariant preservation and accurate predictions in
the L2 sense. Predictions are performed by unrolling the first training point over
multiple periods of the system trajectory. The L2-error is computed via averaging
5 independent samples from the GP posterior X̂i = 1

5

∑5
j=1 X̂

j
i and computing√

1
N

∑N
i=1 ‖Xi − X̂i‖2 with ground truthX1:N . Integrators are volume-preserving

if and only if they are divergence free, which requires det(ψ′) = 1 [12]. Thus, we
evaluate det(ψ′) for the rollouts, which is intractable for the Hamiltonian neural
networks. We observed that we could achieve similar results by propagating
the GP mean in terms of constraint satisfaction and L2-error. Here, we focus
on trajectory samples in order to highlight that our approach allows to sample
structure-preserving rollouts from a structure-preserving GP distribution.

Code will be published upon request.
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Fig. 3: State trajectory samples for the two-body problem with SGPD (left)
and long-term behavior of SGPD and Euler (right). The two-body problem
is represented as a phase plot in the two-dimensional space. Shown are single
rollouts. The divergent behavior of Euler is clearly visible (right).

Table 1: Shown are the total L2-errors in 1a and an analysis of the total energy
for the non-separable system 1b.

(a) L2-err. (mean (std) over 5 indep. runs)

task SGPD Euler HNN
(i) 0.421 (0.1) 0.459 (0.12) 4.69 (0.02)
(ii) 0.056 (0.01) 0.057 (0.009) 0.12 (0.009)
(iii) 0.033 (0.01) 0.062 (0.04) 0.035 (0.007)
(iv) 0.046 (0.014) 0.073 (0.02) -

(b) Energy for system iii)

method energy err. std. dev.
SGPD 9 · 10−4 2 · 10−3

Euler 2 · 10−3 4 · 10−3

HNN 9 · 10−3 7 · 10−5

6.3 Systems and integrators

We consider four different systems here i) ideal pendulum; ii) two-body problem;
iii) non-separable Hamiltonian; and iv) rigid body dynamics.

Separable Hamiltonians: the systems i) and ii) are both separable Hamilto-
nians that are also considered as baseline problems in [11]. Due to their structure,
we can apply the symplectic Euler method (cf. Sec. 5.2) to both problems.

The Hamiltonian of a pendulum is given by H(p, q) = (1 − 6 cos(p)) + p2

2 .
Training data is generated from a 10-second ground truth trajectory with dis-
cretization dt = 0.1 and disturbed with observation noise with variance σ2 = 0.1.
Predictions are performed on a 40-second interval.

The two body problem models the interaction of two unit-mass particles
(p1, q1) and (p2, q2), where p1, p2, q1, q2 ∈ R2 and H(p, q) = 1

2 + ‖p1‖2 + ‖p2‖2 +
1

‖q1−q2‖2 . Noisy training data is generated on an interval of 18.75 seconds, dis-
cretization level dt = 0.15, and variance σ2 = 1 · 10−3. Predictions are performed
on an interval of 30 seconds. The orbits of the two bodies q1 and q2, predicted by
our SGPD method, are shown in Fig. 3 (left) for a single sample from posterior.
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(b) Non-separable system
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(c) Rigid body dynamics

Fig. 4: The proposed SGPD (blue) preserves structure: The analytic volume is
preserved via SGPD for the Hamiltonian systems in 4a and 4b, while simulations
show that the explicit Euler (orange) does not preserve volume. Further, the
SGPD rollout preserves the quadratic constraint over time for the rigid body
system in 4c, while the standard GP with explicit Euler does not.

Non-separable Hamiltonian: As an example for a non-separable Hamilto-
nian system we consider Eq. (17) with H(p, q) = 1

2

[
(q2 + 1)(p2 + 1)

]
[30]. The

implicit midpoint rule (20) is applied as the numerical integrator (cf. Sec. 5.3).
The training trajectory is generated on a 10-seconds interval with discretization
dt = 0.1 and disturbed with noise with variance σ2 = 5 · 10−4. Rollouts are
performed on an interval of 40 seconds.

Rigid body dynamics: Consider the rigid body dynamics [12]ẋ1ẋ2
ẋ3

 =

 0 3
2x3 −x2

− 3
2x3 0 x1

2
x2 −x1

2 0

x1x2
x3

 =: f(x) (21)

that describe the angular momentum of a body rotating around an axis. The
equations of motion can be derived via a constrained Hamiltonian system. We ap-
ply the implicit midpoint method. Since the HNN is designed for non-constrained
Hamiltonians it requires pairs of p and q and is, thus, not applicable. Training
data is generated on a 15-seconds interval with discretization dt = 0.1. Due to
different scales, x1 and x2 are disturbed with noise with variance σ2 = 1 · 10−3,
and x3 is disturbed with noise with variance σ2 = 1 · 10−4. Predictions are
performed on an interval of 50 seconds (see Fig. 2 (middle) for SGPD and Fig. 2
(right) for Euler). The rigid body dynamics preserve the invariant x21+x22+x23 = 1,
which refers to the ellipsoid determined by the axis of the rotating body. We
include this property as prior knowledge in our SGPD model via xT f̂(x) = 1 [12].
The dynamics f̂ is again trained with independent sparse GPs, where the third
dimension is obtained by solving f̂(x) = 1− f̂1x1+f̂2x2

x3
.

6.4 Results

For systems (i),(ii), and (iii), we demonstrate volume preservation. Fig. 4 depicts
that volume is preserved for the symplectic integrator-based SGPD in contrast
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to the standard explicit Euler method. Shown are the results for samples from
the GP posterior in order to highlight the properties of the structure-preserving
distribution. However, volume preservation applies to mean predictions as well.
For the rigid body dynamics, we consider the invariant x21 + x22 + x23 = 1. Fig.
4c demonstrates that the implicit midpoint is able to approximately preserve
the invariant along 5 samples from the GP posterior. In contrast, the explicit
Euler fails on all samples. The results demonstrate that even though the explicit
Euler method achieves comparable results in terms of accuracy, it is not able to
preserve structure. In summary, our method either shows the smallest L2-error
(see Table 1a) or achieves state-of-the-art accuracy. For the two-body problem, we
demonstrate that the Euler long-term predictions are less stable than long-term
predictions with SGPD. To this end we compute rollouts with 2500 points in Fig.
3 with SGPD (left) and Euler (right).

The midpoint method-based SGPD furthermore shows accurate approximation
of the constant total energy for the systems (iii) and (iv). For system (iii), the
total energy corresponds to the Hamiltonian H. Inspired by [11], we average
the approximated energy along 5 independent trajectories Hn =

∑5
i=1

Hi
n

5 and
compute the average total energy Ĥ = 1

n

∑
nHn. Afterwards, we evaluate the

error ‖H−Ĥ‖ and the deviation
√∑

n
|Hn−H|2
n−1 (see Table 1b). Our SGPDmethod

yields the best approximation to the ground truth energy. In the appendix, we
provide additional information for multiple runs of the experiment. For the rigid
body dynamics our method yields accurate approximation of the energy as well.
Details and an evaluation of higher-order methods is moved to the appendix.

7 Conclusion and future work

In this paper we combine numerical integrators with GP regression. Thus, resulting
in an inference scheme that preserves physical properties and yields high accuracy.
On a technical level, we derive a method that samples from implicitly defined
distributions. By the means of empiricial comparison, we show the advantages
over Euler-based state-of-the-art methods that are not able to preserve physical
structure. An important extension that we want to address in the future are
partial observations and control input.

Acknowledgements The authors thank Barbara Rakitsch, Alexander von Rohr
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