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Abstract. Catastrophic forgetting has been a significant problem hin-
dering the deployment of deep learning algorithms in the continual learn-
ing setting. Numerous methods have been proposed to address the catas-
trophic forgetting problem where an agent loses its generalization power
of old tasks while learning new tasks. We put forward an alternative
strategy to handle the catastrophic forgetting with knowledge amalgama-
tion (CFA), which learns a student network from multiple heterogeneous
teacher models specializing in previous tasks and can be applied to cur-
rent offline methods. The knowledge amalgamation process is carried out
in a single-head manner with only a selected number of memorized sam-
ples and no annotations. The teachers and students do not need to share
the same network structure, allowing heterogeneous tasks to be adapted
to a compact or sparse data representation. We compare our method
with competitive baselines from different strategies, demonstrating our
approach’s advantages. Source-code: github.com/Ivsucram/CFA

Keywords: Continual Learning · Transfer Learning · Knowledge Distil-
lation.

1 Introduction

Computational learning systems driven by the success of deep learning have
obtained great success in several computational data mining and learning system
as computer vision, natural language processing, clustering, and many more
[1]. However, although deep models have demonstrated promising results on
unvarying data, they are susceptible to catastrophic forgetting when applied to
dynamic settings, i.e., new information overwrites past experiences, leading to a
significant drop in performance of previous tasks.

In other words, current learning systems depend on batch setting training,
where the tasks are known in advance, and the training data of all classes are
accessible. When new knowledge is introduced, an entire retraining process of
the network parameters is required to adapt to changes. This becomes imprac-
tical in terms of time and computational power requirements with the continual
introduction of new tasks.
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To overcome catastrophic forgetting, learning agents must integrate continu-
ous new information to enrich the existing knowledge. The model must then pre-
vent the new information from significantly obstructing the acquired knowledge
by preserving all or most of it. A learning system that continuously learns about
incoming new knowledge consisting of new classes is called a class-incremental
learning agent.

A class-incremental solution showcases three properties:

1. It should learn from a data stream that introduces different classes at differ-
ent times,

2. It should provide a multi-class inference for the learned classes at any re-
quested time,

3. Its computational requirements should be bounded, or grow slowly, to the
number of classes learned.

Many strategies and approaches in the continual learning field attempt to
solve the catastrophic forgetting problem in the class-incremental scenario. Reg-
ularization techniques [5] identify essential parameters for inference of previous
tasks and avoid perturbing them when learning new tasks. Knowledge distilla-
tion methods have also been used [6], where knowledge from previous tasks and
incoming tasks are jointly optimized. Inspired by work in reinforcement learn-
ing, memory replay has also been an important direction explored by researchers
[19], where essential knowledge acquired from previous experiences is re-used for
faster training, or retraining, of a learning agent.

In this paper, we propose a catastrophic forgetting solution based on knowl-
edge amalgamation (CFA). Given multiple trained teacher models - each on a
previous task - knowledge amalgamation aims to suppress catastrophic forget-
ting by learning a student model that handles all previous tasks in a single-head
manner with only a selected number of memorized samples and no annotations.
Furthermore, the teachers and the students do not need to share the same struc-
ture so that the student can be a compact or sparse representation of the teach-
ers’ models.

A catastrophic forgetting solution based on the knowledge amalgamation
approach is helpful because it allows heterogeneous tasks to be adapted to a
single-head final model. At the same time, knowledge amalgamation explores
the relationship between the tasks without the need for any identifier during the
amalgamation process, being smoothly integrated into already existing learning
pipelines. This approach can be perceived as a post-processing continual learning
solution, where a teacher model is developed for each task and flexibly combined
into a single compact model when inference is required. As a result, it does not
need to maintain specific network architectures for each task.

Contributions:

– A novel class-incremental learning approach via knowledge amalgamation
which:
• Allows teachers and students to present different structures and tasks;
• Integrable into existing learning pipelines (including non-continual ones);
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2 Related Work

A neural network model needs to learn a series of tasks in sequences in the
continual learning setting. Thus, only data from the current task is available
during training. Furthermore, classes are assumed to be clearly separated. As
a result, catastrophic forgetting occurs when a new task is introduced and the
model loses its generalization power of old tasks through learning.

Currently, there are three scenarios in which a continual learning experiment
can be configured. Task-incremental learning is the easiest of the scenarios, as a
model receives knowledge about which task needs to be processed. Models with
task-specific components are the standard in this scenario, where the multi-
headed output layer network represents the most common solution.

The second scenario, referred to as domain-incremental learning, does not
have task identity available during inference, and models only need to solve the
given task without inferring its task.

Finally, class-incremental learning, the third scenario, requires that the
models must solve each task seen so far while at the same time inferring its
task. The currently proposed method falls into this scenario. Furthermore, most
real-world problems of incrementally learning new classes of objects also belong
to this scenario.

Existing works to handle the continual learning problem are mainly divided
into three categories:

– Structure-based approach: One reason for catastrophic forgetting to oc-
cur is that the parameters of a neural network are optimized for new tasks
and no longer for previous ones. This suggests that not optimizing the entire
network or expanding the internal model structure to deal with the new tasks
while isolating old network parameters could attenuate catastrophic forget-
ting. PNN [8] pioneered this approach by adding new components to the net-
work and freezing old task parameters during training. Context-dependent
gating (XdG) [17] is a simple but popular approach that randomly assigns
nodes to tasks. However, these approaches are limited to the task-incremental
learning scenario by design, as task identity is required to select the correct
task-specific components during training.

– Regularization-based approach: When task knowledge is only available
during training time, training a different part of the network for each task can
still happen, but then the whole network is used through inference. Standard
methods in this approach estimate the importance of the network parameters
for the previously learned tasks and penalize future changes accordingly.
Elastic Weight Consolidation (EWC) [16] and its online counterpart (EWCo)
[32] adopt the Fisher information matrix to estimate the importance of the
network synapses. Synaptic intelligence (SI) [18] utilizes an accumulated
gradient to quantify the significance of the network parameters.

– Memory-based approach: This strategy replays old, or augmented, sam-
ples stored in memory when learning a new task. Learning without forget-
ting (LWF) [6] uses a pseudo-data strategy where it labels the samples of
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the current tasks using the model trained on the previous tasks, resulting
in training that mixes hard-target (likely category according to previous
tasks) with soft-target (predicted probabilities within all classes). Gradient
episodic memory (GEM) [21] and Averaged GEM (A-GEM) [22] successfully
boost continual learning performance by the usage of exact samples stored
in memory to estimate the forgetting case and to constraint the parameter
updates accordingly. Gradient-based Sample Selection (GSS) [27] focuses on
optimizing the selection of samples to be replayed. Dark Experience Replay
(DER/DER++) [28] and Function Distance Regularization (FDR) [29] use
past samples and soft outputs to align past and current outputs. Hindsight
Anchor Learning (HAL) [26] adds additional objectives into replaying, aim-
ing to reduce forgetting of key learned data points.
Alternatively, methods can also take advantage of generative models for
pseudo-rehearsal. For example, Deep Generative Replay (DGR) [19] utilizes a
separated generative model that is sequentially trained on all tasks to gener-
ate samples from their data distribution. Additionally, knowledge distillation
can be combined with DGR (DGR+distill) [20] to pair generated samples
with soft target knowledge. Alternatively, methods can also take advantage
of generative models for pseudo-rehearsal. For example, Deep Generative
Replay (DGR) [19] utilizes a separated generative model that is sequentially
trained on all tasks to generate samples from their data distribution. Addi-
tionally, knowledge distillation can be combined to DGR (DGR+distill) [20]
to pair generated samples with soft target knowledge.

The proposed CFA is a memory-based approach that presents a novel way
to perform continual learning using knowledge amalgamation, a derivation of
knowledge distillation, and domain adaptation to merge several teacher models
into a single student model.

2.1 Domain Adaptation

Transfer learning (TL) [2] is defined by the reuse of a model developed for a task
to improve the learning of another task. Neural networks have been applied to
TL because of their power in representing high-level features.

While there are many sub-topics of TL, we are deeply interested in domain
adaptation (DA) [10]. While there are many approaches to measure and reduce
the disparity between the distributions of these two domains, Maximum Mean
Discrepancy (MMD) [11] and Kullback-Leibler divergence (KL) [12] are widely
used in the literature. Our approach uses KL to approximate the representa-
tion of learning distributions between the teachers and the student, differing
itself from the original knowledge amalgamation method [3], where the MMD
approach is applied.

2.2 Knowledge Distillation

Knowledge distillation (KD) [9] is a method of transferring learning from one
model to the other, usually by compression, where a larger teacher model su-
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pervises the training of a smaller student model. One of the benefits of KD is
that it can handle heterogeneous structures, i.e., the teacher and the student do
not need to share the same network structure. Instead, the teacher supervises
the student training via its logits, also called the soft target. In other words, KD
minimizes the distance between the student network output ẑ and the logits z
from a teacher network, generated from an arbitrary input sample:

LKD = ||ẑ − z||22 (1)

Although KD has become a field itself in the machine learning community,
many approaches are still performed under a single teacher-student relationship,
with a sharing task [9]. Contrary to these constraints, our method can process
multiple and heterogeneous teachers, condensing their knowledge into a single
student model covering all tasks.

2.3 Knowledge Amalgamation

Knowledge Amalgamation (KA) [3, 4] aims to acquire a compact student model
capable of handling the comprehensive joint objective of multiple teacher models,
each specialized in their task. Our approach extends the concept of knowledge
amalgamation in [24, 3] to the continual learning environment.

3 Problem Formulation

In continual learning, within the class-incremental learning scenario, we experi-
ence a stream of data tuples (xi, yi) that satisfies (xi, yi)

iid∼ Pti(X,Y ), containing
an input xi and a target yi organized into sequential tasks ti ∈ T = 1, ...T , where
the total number of tasks T is unknown a priori. The goal is to learn a predictor
f : X × T → Y, which can be queried at any time to predict the target vector y
associated to a test sample x, where (x, y) ∼ Pt. Such test pair can belong to a
task that we have observed in the past or the current task.

We define the knowledge amalgamation task as follows. Assume that we
are given N teacher models tNi=1 trained a priori, each of which implements a
specific task T . Let Di denote the set of classes handled by model ti. Without
loss of generality, we assume Di 6= Dj ,∀i 6= j. In other words, for any pair of
models ti and tj , we assume they classify different tasks. The goal of knowledge
amalgamation is to derive a compact single-head student model that can infer
all tasks, in other words, to be able to simultaneously classify all the classes in
D = ∪Ni=1Di. In other words, the knowledge amalgamation mechanism is done
in the post-processing manner where all teacher models trained to a specific
task are combined into a single model to perform comprehensive classification as
per its teacher models. This approach provides flexibility over existing continual
learning approaches because a teacher model can be independently built for a
specific task. Their knowledge can later be amalgamated into a student model
without loss of generalization power.
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Algorithm 1: CFA
Input: Teacher models TN , Task MemoryM, Student model S, number

of epochs
Output: Amalgamated Model S

1 for epoch in epochs do
2 M ← shuffle(M); # Optional
3 for sample m in M do
4 begin Joint Representation Learning:
5 LM = LR = 0; # Loss initialization
6 f̂S ← fS =← FS ; # Student encoder
7 for Ti in TN do
8 f̂T i ← fT i ← FT i; # Teacher encoder
9 F ′T i ← fT i ← f̂T i; # Teacher decoder

10 LM=LM +H(f̂S , f̂Ti
)−H(f̂S); # Eq. 3

11 LR = LR + ||F ′T i - FT i||22; # Eq. 4

12 begin Soft Domain Adaptation:
13 yT ← TN (m); # Stacked teachers’ soft output
14 DKLsoft = H(ŷS , yT )−H(ŷS); # Eq. 5

15 L = αDKLsoft + (1− α)(LM + LR); # Eq. 6
16 Sθ = Sθ − λ∇L; # Parameter learning

4 Proposed method

In this section, we introduce the proposed CFA and its details. The knowledge
amalgamation element is an extension of [3, 4] and consists of two parts: a joint
representational learning and a soft domain adaptation.

4.1 Joint Representation Learning

The joint representation learning scheme is depicted in Figure 1. The features of
the teachers and those to be learned from the students are first transformed into
a common feature space, and then two loss terms are minimized. First, a feature
ensemble loss LM encourages the features of the student to approximate those
of the teachers in the joint space. Then a reconstruction loss LR ensures the
transformed features can be mapped back to the original space with minimum
possible errors.

Adaptation Layer The adaptation layer aligns the output feature dimension
of the teachers and students via a 1 x 1 convolution kernel [13] that generates
a predefined length of output with different input sizes. Let FS and FTi

be
respectively the original features of the student and teacher Ti, and fS and fTi
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Fig. 1. A summarized workflow of the proposed CFA. It consists of two parts: A joint
representation learning and knowledge amalgamation. In the joint representation learn-
ing, the features of the teachers (showing two here) and those to be learned by the
students are first transformed into a joint space. Later on, knowledge amalgamation
enforces a domain invariant feature space between the student and teachers via KL.

Fig. 2. An illustration of the shared extractor sub-network. A sub-network is shared
between the teachers and the student during the joint representation learning proce-
dure. This shared extractor aims to create a domain-invariant space via KL, which is
then decompressed back into the student model.



8 Marcus de Carvalho, Mahardhika Pratama , Jie Zhang, and Yajuan Sun

their respective aligned features. In our implementation, fS and fTi
have the

same size of FS and FTi
.

Shared Extractor Once the aligned features are derived, a naive approach
would be to directly average the features of the teachers fTi

as that of the student
fS . However, due to domain discrepancy of the training data and architectural
differences of the teacher networks, the roughly aligned features may remain
heterogeneous. To this end, the teachers and students share the parameters of
a small learnable sub-network, illustrated in Figure 2. This shared extractor
consists of three consecutive residual blocks of 1 stride. It converts fTi

and fS
into the common representation spaces f̂Ti and f̂S . In our implementation, f̂Ti

and f̂S is half the size of fTi
and fS .

Knowledge Amalgamation To amalgamate knowledge from heterogeneous
teachers, we enforce a domain invariant feature space between the student and
teachers via the KL divergence, computed as follows:

DKLi(f̂S ||f̂Ti) = H(f̂S , f̂Ti)−H(f̂S), (2)

where H(f̂S , f̂Ti
) is the cross entropy of f̂Ti

and f̂S and H(f̂S) is the entropy of
f̂S .

We then aggregate all such pairwise KL losses between each teacher and
the student, as shown in Figure 2, and write the overall discrepancy LM in the
shared space as:

LM =

N∑
i=1

DKLi, (3)

To further enhance the joint representation learning, we add an autoencoder
[23] reconstruction loss between the original teachers’ feature space. Let F ′T i
denote the reconstructed feature of teacher Ti, the reconstruction loss LR is
defined as

LR =

N∑
i=1

||F ′T i − FT i||2, (4)

4.2 Soft Domain Adaptation

Apart from learning the teacher’s features, the student is also expected to pro-
duce identical or similar inferences as the teachers do. We thus also take the
teachers’ predictions by feeding unlabelled input samples to them and then su-
pervise the student’s training.

We assume that all teacher models handle non-overlapping classes, then di-
rectly stack their score vectors and use them as the student’s target. A similar
strategy can be used for teachers with overlapping classes, where the logits of
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repeating classes can be summed or averaged, but we do not explore it here.
Instead of directly applying a cross-entropy loss between the student output and
the teachers’ soft output, as most knowledge distillation solutions do, we also
enforce a domain invariant space into the discriminative (fully-connected) layers
of the student by applying the KL between the student output and the stacked
teachers’ soft output.

Let yT denote the stacked teachers’ soft output and ŷS denote the corre-
sponding student soft output, then KL is applied as:

DKLsoft
(ŷS ||yT ) = H(ŷS , yT )−H(ŷS) (5)

4.3 Final Loss

We incorporate the loss terms in Eqs 3, 4 and 5 into our final loss function. The
whole framework is trained end-to-end by optimizing the following objective:

L = αDKLsoft
(ŷS ||yT ) + (1− α)(LM + LR) (6)

where α ∈ [0, 1] is a hyper-parameter to balance the three terms of the loss
function. By optimizing this loss function, the student network is trained from
the amalgamation of its teachers without annotations.

5 Experiments

We evaluate CFA and its baselines under four benchmarks. Then, an ablation
study gives further insight regarding CFA memory usage and internal proce-
dures. Finally, we executed all CFA experiments using the same structure for
the teachers and students; a ResNet18 backbone [25] as a feature extractor and
two fully-connected layers ahead of it.

5.1 Replay Memory

To retrieve proper4 logits from the teachers, CFA uses the replay memory strat-
egy, where it records some previous samples to be replayed during the amalga-
mation process. The nearest-mean-of-exemplars strategy was used to build the
replay memory, but any other sample selection strategy can be used.

Nearest-Mean-of-Exemplars strategy Consider ti(x) the logits of a teacher
ti on a specific task i. We compute the mean exemplar for each class in class y
as µy = 1

||Di||
∑
x∈Di

ti(x). A sample x is then added to the memory if there is
free space or by descending sorting out the memory and x by their L2 distance.

4 Meaning, related to the original data distribution
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5.2 Baselines setup

We set up two different configurations of CFA. CFAfixed uses the nearest-mean-
of-exemplars replay memory strategy with a fixed memory footprint of 1000 sam-
ples. Meanwhile, CFAgrow uses the teachers’ confidence replay memory strategy
with a growing memory allowing 1000 samples per task. Hence, CFAfixed mem-
ory footprint maintains the same, independent of the number of classes learned
so far5, while CFAgrow memory footprint slowly grows are more classes are in-
troduced.

All teachers and students have the same architecture, a pre-trained ResNet18
feature-extractor followed by two fully-connected layers, a R1000×500 followed by
a R500×output. CFA is optimized under Adam with learning rate λ = 10−4,
hyper-parameter α = 0.5, and 100 training epochs.

The other baselines are based on the source-code release by [28]. Their con-
figuration is also detailed in the supplemental document. The ones which are
memory-based contains a memory budget of 1000 samples per task, making them
similar to CFAgrow.

All methods have been evaluated using the same computation environment,
a Windows machine with an Intel Core i9-9900K 5.0 GHz with 32GB of main
memory and an Nvidia GeForce 2080 Ti.

5.3 Metrics

The continual learning protocol is followed, where we observe three metrics:

Average Accuracy: ACC =
1

T

T∑
i=1

RT,i (7)

Backward Transfer: BWT =
1

T − 1

T−1∑
i=1

RT,i −Ri,i (8)

Forward Transfer: FWT =
1

T − 1

T∑
i=2

Ri−1,i − b̄i (9)

where R ∈ RTxT is a test classification matrix, where Ri,j represents the test
accuracy in task tj after completely learn ti. The details are given by [21].

5.4 Benchmarks

SplitMNIST is a standard continual learning benchmark that adapts the entire
MNIST problem [15] into five sequential tasks, with a total of 10 classes.

SplitCIFAR10 features the incremental class problem where the full CIFAR10
problem [14] is divided into five sequential tasks, with a total of 10 classes.
5 Storage of the original teacher models parameters is still required, usually in sec-
ondary memory, as HDD or SSD.
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Table 1. Numerical results over five execution runs.

Baseline Metric (%) SplitMNIST SplitCIFAR10 SplitCIFAR100 SplitTinyImageNet

EWCo [16, 32]
ACC 19.13 ± 0.02 18.57 ± 2.04 7.91 ± 0.79 7.39 ± 0.03
BWT -97.37 ± 0.26 -88.51 ± 5.18 -83.80 ± 1.56 -71.79 ± 0.62
FWT -13.36 ± 1.38 -10.09 ± 5.64 -1.02 ± 0.15 -0.44 ± 0.16

LWF [6]
ACC 19.20 ± 0.06 16.27 ± 4.55 9.13 ± 0.43 0.41 ± 0.20
BWT -96.52 ± 0.94 -89.24 ± 9.60 -83.34 ± 5.57 -50.33 ± 3.25
FWT -11.92 ± 2.01 -11.05 ± 1.88 0.16 ± 0.71 -0.25 ± 0.03

ER [30]
ACC 23.41 ± 0.60 69.07 ± 3.31 27.41 ± 2.94 12.33 ± 1.23
BWT -93.83 ± 0.92 -24.15 ± 14.17 -66.35 ± 1.22 -71.07 ± 2.35
FWT -8.83 ± 3.14 -11.84 ± 0.40 -0.98 ± 0.08 -0.5 ± 0.05

AGEM [22]
ACC 9.19 ± 0.65 13.49 ± 4.12 0.94 ± 0.32 1.55 ± 0.32
BWT -40.52 ± 46.02 -47.26 ± -47.26 2.99 ± 5.74 -14.93 ± 2.12
FWT -8.97 ± 3.54 -6.06 ± -6.06 0.74 ± 1.74 -0.55 ± 0.20

DER [28]
ACC 60.85 ± 2.87 72.99 ± 6.43 32.60 ± 9.77 23.62 ± 3.30
BWT -42.80 ± 3.81 -22.71 ± 5.00 -44.64 ± 8.54 -52.19 ± 3.66
FWT -12.25 ± 2.71 -9.36 ± 8.93 -0.93 ± 0.09 -0.46 ± 2.12

DER++ [28]
ACC 72.86 ± 0.95 77.86 ± 7.59 38.82 ± 8.28 23.94 ± 2.52
BWT -24.64 ± 1.21 -16.27 ± 5.71 -49.03 ± 7.60 -43.82 ± 5.95
FWT -12.59 ± 0.48 -6.26 ± 8.81 -0.91 ± 0.07 -0.26 ± 2.16

FDR [29]
ACC 78.08 ± 3.41 48.00 ± 5.36 32.26 ± 5.51 13.30 ± 1.64
BWT -21.73 ± 4.36 -86.58 ± 4.37 -62.87 ± 5.83 -67.08 ± 1.69
FWT -10.10 ± 1.13 -11.41 ± 2.95 -0.87 ± 7.29 -0.67 ± 0.22

GSS [27]
ACC 24.69 ± 0.80 43.96 ± 2.86 13.94 ± 0.30 9.60 ± 0.84
BWT -91.69 ± 1.04 -55.71 ± 2.57 -78.21 ± 0.32 -69.36 ± 0.28
FWT -10.31 ± 1.96 -10.56 ± 3.30 -0.39 ± 0.55 -0.53 ± 0.05

HAL [26]
ACC 88.25 ± 0.46 50.11 ± 1.18 11.00 ± 2.87 3.23 ± 0.11
BWT -13.61 ± 0.62 -47.01 ± 2.14 -44.74 ± 1.84 -32.68 ± 4.10
FWT -8.81 ± 3.28 -11.70 ± 1.69 -0.97 ± 0.26 -0.24 ± 0.31

CFAfixed (Ours)
ACC 83.51 ± 1.35 74.96 ± 0.46 27.76 ± 2.28 23.44 ± 2.55
BWT -7.95 ± 1.53 -14.25 ± 1.76 -16.41 ± 1.49 -17.58 ± 1.89
FWT 69.46 ± 9.41 54.28 ± 6.57 26.91 ± 3.17 20.49 ± 5.50

CFAgrow (Ours)
ACC 89.25 ± 3.66 79.40 ± 1.15 38.74 ± 3.26 32.50 ± 3.35
BWT 69.77 ± 1.31 49.00 ± 2.78 11.49 ± 2.65 23.33 ± 3.45
FWT 91.77 ± 5.18 65.67 ± 8.22 21.84 ± 4.26 32.58 ± 5.12

SplitCIFAR100 features the incremental class problem where the complete
CIFAR100 problem [14] is divided into 10 sequential subsets, totalling 100 classes.
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SplitTinyImageNet features the incremental class problem where 200 classes
from the full ImageNet [31] are resized to 64x64 colored pixels and divided into
10 sequential tasks.

5.5 Numerical results

We compare CFAfixed and CFAgrow against one regularization-based approaches
(EWCo), one knowledge distillation approaches (LWF6), and six memory-based
approaches (AGEM, DER, DER++, FDR, GSS, HAL).

Table 1 presents a metric summary between the chosen baselines and bench-
marks. It demonstrates that CFAfixed and CFAgrow are comparable, or even
stronger, in comparison with the current state-of-the art methods, specially when
we take in consideration that CFAfixed presents a fixed memory footprint. Fur-
thermore, both CFAfixed and CFAgrow have great BWT and FWT metrics, with
CFAgrow being the only model providing positive values to all metrics. This
means that CFA signalizes some zero-shot learning [21], although not explicitly
focused here.

Furthermore, the most outstanding achievement of CFA is being able to
achieve good continual learning performance when applied to an offline environ-
ment while maintaining competitive results. In other words, all other methods
are fully continual learning procedures, which would require an organization to
shift its entire learning pipeline from scratch. In contrast, CFA leverages the
power of individual teachers trained on the tasks, be it in an online or offline
environment. This scenario is expected in current organization pipelines, sav-
ing costs in an inevitable paradigm shift from offline to online learning agent
technologies.

5.6 Ablation study

Memory Analysis Table 2 put the strongest baselines face to face to compare
how their accuracies change over different memory budgets. CFAfixed maintains
a competitive performance, even though it presents a fixed memory footprint.
So, even though it has a performance similar to DER, DER++, and FDR, it
benefits from using less memory and being applied to current offline learning
pipelines.

Joint representation learning analysis As shown in Table 3, Joint Repre-
sentation Learning (JTL) is the main adaptation driver, responsible for driving
the student’s latent space to represent different tasks. Furthermore, as we are
using the same architecture for the teachers and students, the difference be-
tween α = 1.0 and α = 0.5 is not that significant here but immensely important
when dealing with entire heterogeneous structures, as noted by [3]. When JTL

6 A multi-class implementation was put forward to deal with class-incremental learn-
ing, as in [28]
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Table 2. ACC(%) metrics over different budget memories.

Benchmark Memory budget CFAfixed CFAgrow DER DER++ FDR

Split CIFAR10

100 48.87 ± 5.26 61.36 ± 2.02 46.77 ± 3.12 51.91 ± 4.21 39.60 ± 4.54
200 61.20 ± 4.35 69.33 ± 1.54 58.41 ± 3.23 64.92 ± 6.15 44.49 ± 4.31
500 69.53 ± 3.30 74.63 ± 1.20 65.63 ± 5.95 72.45 ± 6.85 48.20 ± 5.30
1000 74.96 ± 0.46 79.40 ± 1.15 72.99 ± 6.43 77.86 ± 7.59 41.91 ± 6.42
2000 76.45 ± 1.90 82.21 ± 2.52 73.81 ± 5.12 77.44 ± 8.90 47.39 ± 7.01

Split CIFAR100

100 7.75 ± 1.20 21.34 ± 2.30 13.23 ± 0.00 22.88 ± 4.90 12.23 ± 4.50
200 12.87 ± 2.12 26.01 ± 2.53 19.98 ± 0.00 23.78 ± 5.20 14.74 ± 2.24
500 21.23 ± 2.23 30.59 ± 3.54 26.53 ± 5.23 31.45 ± 6.43 22.26 ± 4.21
1000 27.76 ± 2.28 38.74 ± 3.26 32.60 ± 9.77 38.82 ± 8.28 32.26 ± 5.51
2000 41.50 ± 3.45 47.54 ± 3.18 36.78 ± 9.88 43.45 ± 8.54 33.12 ± 5.40

Table 3. ACC(%) results with varying hyper-parameter α of the CFAfixed with 1000 of
memory budget, controlling the influence of the Joint Representation Learning (JTL)
and Soft Domain Adaptation (SDA) into its main loss.

Description Split CIFAR10

α = 1.0 | JTL(×)SDA(X) 35.78 ± 10.78
α = 0.5 | JTL(X)SDA(X) 74.96 ± 0.46
α = 0.0 | JTL(X)SDA(×) 69.68 ± 2.23

is disabled, the model has difficulties learning high-feature representations only
with the soft domain adaptation (SDA), resulting in a tremendous catastrophic
forgetting.

6 Conclusion

This paper proposes CFA, an approach to handle catastrophic forgetting for the
class-incremental environment with knowledge amalgamation. CFA can amalga-
mate the knowledge of multiple heterogeneous trained teacher models, each for
a previous task, into a single-headed student model capable of handling all tasks
altogether.

We compared CFA with a set of competitive baselines under the class-
incremental learning scenario, yielding positive generalization with excellent av-
erage accuracy and knowledge transfer capabilities, backed by backward and
forward knowledge transfer metrics. At the same time, CFA demonstrated some
zero-shot learning aptitude and handled an enormous number of classes simul-
taneously.
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CFA presents a novel approach towards continual learning using knowledge
amalgamation, enabling easy integration to current learning pipelines, enabling
the shift from offline to online learning with a performance similar to or superior
to the best of the only-online existing methods. Our approach is perceived as a
post-processing approach of continual learning, distinguishing itself from existing
approaches. Our future work is directed to explore the continual learning problem
in multi-stream environments.
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