Rethinking Exponential Averaging of the Fisher

Constantin Octavian Puiul0000-0002-1724-4533] 5
University of Oxford, Mathematical Institute,
constantin.puiu@maths.ox.ac.uk

Abstract. In optimization for Machine learning (ML), it is typical that
curvature-matrix (CM) estimates rely on an exponential average (EA)
of local estimates (giving EA-CM algorithms). This approach has little
principled justification, but is very often used in practice. In this paper, we
draw a connection between EA-CM algorithms and what we call a “Wake
of Quadratic models”. The outlined connection allows us to understand
what EA-CM algorithms are doing from an optimization perspective.
Generalizing from the established connection, we propose a new family of
algorithms, KL-Divergence Wake-Regularized Models (KLD-WRM). We give
three different practical instantiations of KLD-wWRM, and show numerically
that these outperform K-rAc on MNIST.

Keywords: Optimization - Natural Gradient - KL Divergence - Overfit.

1 Introduction

Recent research in optimization for ML has focused on finding tractable approxi-
mations for curvature matrices. In addition to employing ingenious approximating
structures ([1,2,3]), curvature matrices are typically estimated as an exponential
average (EA) of the previously encountered local estimates ([1,3,4,5,6]). This is
in particular true for Natural Gradient (NG) algorithms, which we focus on here.
These exponential averages emerge rather heuristically, and have so far only been
given incomplete motivations. The main such motivation is “allowing curvature
information to depend on much more data, with exponentially less dependence
on older data” [1]. However, it remains unclear what such an EA algorithm is
actually doing from an optimization perspective. In this paper, we show that
such EA algorithms can be seen as solving a sequence of local quadratic models
whose construction obeys a recursive relationship - which we refer to as a “Wake
of Quadratic Models”. Inspired by this recursion, we consider a similar, more
principled and general recursion for our local models - which we refer to as
a "KL-Divergence Wake-Regularized Models” (KLD-WRM). We show that under
suitable approrimations, KLD-WRM gives very similar optimization steps to EA-NG.
This equivalence raises the hope that using better approximations in our proposed
class of algorithms (KLD-WRM) might lead to algorithms which outperform EA-NG.
We propose three different practical instantiations of KLD-WRM (of increasing
approximation accuracy) and compare them with K-FAC, the most widely used
practical implementation of NG for DNNs. Numerically, KLD-WRM outperforms
K-FAC on MNIST: with higher test accuracy, lower test loss, and lower variance.

2 C. O. Puiu

2 Preliminaries

2.1 Neural Networks, Supervised Learning and Notation

We very briefly look at fully-connected (FC) nets (we omit CNN for simplicity).
We have dg := [x,1]7 (2 is the input to the net). The pre-activation at layer
l: z; = Wiay— for | € {1,2,...,n1}. The post-activation at layer I: a; = ¢;(2)
for | € {1,2,...,n.}. The augmented post-activation at layer I: a; = [a;, 1] for
le{l,2,....,ny — 1} (we augment the post-activations s.t. we can incorporate the
bias into the weight matrix W41 w.l.o.g.; this is standard practice for K-Fac [1]).

In the above, we consider ny, layers, and ¢,(-) are nonlinear activation functions.
We collect all parameters, namely {W;}}'*,, in a parameter vector 6 € R?. Let us
consider N, € ZT neurons in the output layer. The output of the net is hg(z) :=
a,, € RMe. The predictive (model) distribution of y|z is py(y|x) = pe(y|he(z)),
that is p(y|z) depends on x only through hgy(x).

In supervised learning, where we have labeled pairs of datasets D = {(z;,y:) }i.
Our objective to minimize is typically some regularized modification of

f(0) =—logp(DIf) = Y (—logp(yilhe(z:)))- (1)
(zi,y:)€ED
Thus, we have our loss function L(y;,x;;0) := —logp(y:|he(x;)), and f(0) =

E(Ii,yi)ep L(yi, x;;0). This is what we will focus on here, for simplicity of exposi-
tion, but our ideas directly apply to different ML paradigms, such as Variational
Inference (VI) in Bayesian Neural Networks (BNNs), and to RL as well.

Let us consider the iterates {0 }r=0.1,..., with g initialized in standard manner
(perhaps on the edge of Chaos)'. Let us denote the optimization steps taken at
O as sy, that is Ox 1 = 0 + si. Let g(0) and H(0) be the gradient and hessian
of our objective f(6). We will use the notation g := g(6;) and Hy := H(0).

2.2 KL-Divergence and Fisher Information Matrix

The symmetric?> KL-Divergence is a distance measure between two distributions:

1 1 plz)] 1 q(x)
D =—-|D D =—E,p|log=—=|+=Esq|log —=|.
kL(P,q) = 5 |Drr(allp)+Dr(pl q)} 5 e p{og o) | T |18 0
(2)
In our case, we are interested in the symmetric KL-divergence (SKL) between the
data joint distribution with one parameter value and the data joint distribution

with a different parameter value. We have

Dxr(61,62) == Dxr(po, (2, v), po, (x,9)). (3)

Since we only model the conditional distribution, we let py, (z,y) = §(z)p(y|he, (z)),
where §(z) is the marginal (empirical) data distribution of . This gives

! Note that the initialization issue is orthogonal to our purpose.
2 For convenience, we will refer to the symmetric KL-Divergence as SKL-Divergence.

Rethinking Exponential Averaging of the Fisher 3

1
Dgr(61,62) = N ze:DDKL (po, (ylzi), o, (y]:)). (4)
The Fisher has multiple definitions depending on the situation, but here we have
Fi.:=Fr) =E ;4 [V@ log po(y|z) Ve logpg(y|x)T . (5)
y~po(ylz)

This is the Fisher of the joint distribution pg(z,y) = §(x)p(y|he(x)). We let
F(Or,x) := Eyop, (y12) [Vo log po (y]2) Vg log po(y|x)"] be the Fisher of the condi-
tional distribution pg(y|x). Then, we have Fj, = E,4[F (6k,)]. Using the Fisher,
we have the following approximation (see [1,7]) for the SKL-Divergence

1

Dk 1. (po, (ylz), pe, (y|x)) ~ 52— 01)" F(61,%)(02 — 61), (6)
which is exact as 65 — 1. By plugging (6) into (4) and using linearity we get
1
]D)KL(01792) ~ (02 —01)TF1(92 —91). (7)

2
2.3 Natural Gradient and K-FAC
The natural gradient (NG) is defined as [7]

Vnaf(Ok) = F; gi. (8)

The NG descent (NGD) step is then taken to be séNGD) = —arVnaf(0k), for
some stepsize aj. NGD has favorable properties, the most notable of which is
re-parametrization invariance (when the step-size is infinitesimally small) [8]. The
NGD step can be expressed as the solution to the quadratic problem (see [1,8])
(NGD) ,

Sk

1
= argmins’ gy + —s7 Fys. 9)
s 2au,

K-FAC Storing and inverting the Fisher is prohibitively expensive. K-FAC is a
practical implementation of NG which bypasses this problem by approximating the
Fisher as a block-diagonal® matrix, with each diagonal block further approximated
as the Kronecker product of two smaller matrices [1]. That is, we have

FRFAC) .~ plockdiag ({AY @ I Yz ny), (10)

,,,,,

where each block corresponds to a layer and ® denotes the Kronecker product
[1]. For example, for FC nets, the Kronecker factors are given by
AY =By yplaiaaiy], I = By yop Ve LV, L), (11)

Note that the Kronecker factors depend on 6, which influences both the forward
and backward pass. Also, note they can be efficiently worked with since (A,(Cl) ®
I I)) - 01—)
L) = (AP o117 and (AP o177)o = vee (V) V AP,

where v maps to V' in the same way vec(WW;) maps to W; [1].

3 Block tri-diagonal approximation is also possible - but this lies outside our scope.

4 C. O. Puiu

2.4 Curvature in Practice: Exponential Averaging

In practice, many algorithms (including ADAM and K-FAC) do not use the curvature
matrix estimate as computed. Instead, they maintain an exponential average
(EA) of it (eg. [3,4,5,6]). In the case of NG, this EA is

k

Fk = kao + (]— - ,0) Zpk_iFm (12)
i=1

where p € [0,1) is the exponential decay parameter. Let us refer to NG algorithms
which replace the Fisher, F}, with its exponential average, F}, as EA-NG.
In a similar spirit, K-FAC maintains an EA of the Kronecker factors

k k
T l —q 4 =(1 l —i (1
AP =t AP +(1-p) Y oA, TP =t (1= p) Y o0, (13)

i=1 i=1

and in practice, A,(cl) and T ,il) in (10) are replaced with flg) and I’ ,El) respectively.
We will refer to the practical implementation of K-FAC which uses EA for the
K-FAC matrices as EA-KFAC, to emphasize the presence of the EA aspect. However,
this is the norm in practice rather than an exception, and virtually any algorithm
referred to as K-FAC (or as using K-FAC) is in fact an EA-KFAC algorithm.

3 A Wake of Quadratic Models (WoQM)

The idea behind woQM is simple. Instead of taking a step sy, at 6 which relies
only on the local quadratic model, sy = argming g7's + (1/2)sT Bys, we take a
step which relies on an EA of all previous local models. Formally, let us define

A
M (s) = gl's + ?ksTBks, (14)
for an arbitrary symmetric-positive definite curvature matrix By, (typically an
approximation of Hj or Fy). Note that 1/, is a step-size (or learning rate)
parameter. Our WoQM step, S, is then defined as the solution to

k k—1
min Y pF MY <s +y sj), with (15)
i=0 j=i

Xo =\, and Ay = (1 — p)), Vk € Z7, (16)

where we set 25;; s; = 0 by convention, p € [0,1) is an exponential decay
parameter, and A > 0 is a hyperparameter. While (15) does not appear to be
a proper exponential averaging, missing a 1 — p factor in terms where i > 1, it
can be easily rearranged as such by slightly modifying the definition of MéQ) (to
disobey (14)). To see this, multiply (15) by (1 — p) and then absorb the 1 — p

Rethinking Exponential Averaging of the Fisher 5

factor in the definition of MéQ). Our stated definition makes the exposition more
compact while preserving intuition.
For our choice of model (14), the woQM step si (at 6y) is the solution of

min [0 (s o g o)+ 3 [swsms an

=0 i=0

where we dropped all the constant terms, and have (i) := exp(I;~oy log(1 — p)),
where I¢ is the indicatior function of event £. We use the x(i) term for notational
compactness. Note that definition (15) can be used for general models M; (rather
than quadratic Mi(Q))7 leading to a larger family of algorithms for which woQMm
represents a particular instantiation: the Wake of Models (WoM) family.

3.1 Connection with Exponential-Averaging in Curvature Matrices

We now look at how the woQM step relates to Exponential-Averaging Curvature
matrices (EA-CM). EA-CM is standard practice in stochastic optimization, and in
particular in training DNNs (see for example [1,3,4,5,6]). Formally, using EA-CM
boils down to taking a step based on (14), but with By replaced by

k k
By, := p"By + (1 - p) ZpkiiBi = Z K(1)p" " B;. (18)

=1 =0

Note that we used the same exponential decay parameter for convenience, but
this is not required.

It is obvious from (17) that we can get an analytic solution for woQM step sy,
as a function of {s; ?;&, (95, Bj)};?zo, p and A. Thus, by using the relationship
recursively we can get an analytic solution for s, as a function of {(g;, B;)}*_,
p and A. When doing this, the connection between WoQM and EA-CM is revealed.
The result is presented in Proposition 3.1.

Proposition 3.1: Analytic Solution of woQM step. The WoQM step s at
iterate 0y can be expressed as

sp=—-A"'B g, VkeZ". (19)

Proof. Relies on simple inductive argument. See supplementary material. [

Proposition 3.1 tells us that the woQM step is exactly the step obtained by
using an EA curvature matrix By in a simple quadratic model of the form (14).
That is, woQM (15)-(16) is the principled optimization formulation of a EA-CM
step?, when the EA-CM stepsize is constant and equal to 1/\. Thus, we see what
EA-CM is actually doing from an optimization perspective: instead of perfectly
solving for the local quadratic model, it solves for a trade-off between all previously

4 woqM with p = 0 and By based on quantities at) only is also the principled
optimization formulation of no-EA CM algorithms, which take steps of the form (14).

6 C. O. Puiu

encountered models, where the weights of the trade-off are (almost®) given by an
exponential average (older models receive exponentially less “attention”).

There are two observations to make at this point. First, we began by noting
that the justification for EA-CM is largely heuristic, but we ended up explaining
EA-CM through some optimization model which involved an EA of local models
(the woQM model). Since the EA was the difficult part to justify in the first place,
it might seem that we are sweeping the problem from under one rug to another.
However, this is not the case. The woQM formulation aims to reveal a different
perspective on EA-CM algorithms, rather than explain the presence of EA itself.
It is indeed true that we did not justify why one should use EA and thus get the
woQM family, but this is not required to enhance our understanding and draw
conclusions. We can draw conclusions purely based on the established equivalence.
This leads us to the second observation, which is why EA-CM improves stability
from a stochastic optimization perspective. Rather than conferring stability
because it “uses more data” ([1,4]), EA-CM can alternatively be thought of as
conferring stability because it uses the collection of all previous noisy local models
to build a better model® (in terms of both noise and functional form).

Note that what we have discussed so far applies when using any curvature
matrix By. In particular, Proposition 3.1 can be directly applied to establish
an equivalence between EA-NG algorithms and FISHER-woQM algorithms (WoQM
algorithms with By, = Fy,). In fact, we can replace the Fisher by any approximation
and still have the equivalence holding, if the EA is done in the form of (12).

3.2 Fisher-WoQM and Practical K-FAC Equivalence

We have seen (in Section 2.4) that K-FAC holds an EA for the Kronecker factors
(see (13)), rather than for the K-FAC approximation to Fy (as in (12)). Thus, the
EA scheme employed by K-FAC is not the same as (12) with Fj <« F,EKFAC).
Therefore, we cannot directly apply Proposition 8.1 to obtain an equivalence
between EA-KFAC and KFAC-WoQM (WoQM with By, + F,EK F AC)). We can loosely
establish this equivalence by viewing the FA over the Kronecker factors as a

F,gKFAC) (see Section 4 in
(KFAC)
k

convenient (but coarse) approximation to the EA over

the supplementary material). Indeed, carrying an EA for is impractical.

Our equivalence reveals that EA-NG is actually solving an exponentially
decaying wake of quadratic models (WoQM) where the curvature matrix (meant
to be a Hessian approximation) is taken to be an approximate Fisher. This is
in contrast with the typical EA-NG interpretation which says that we take NG
steps by solving quadratic models of the form (14) with By = F}, but then we
further approximate Fy, as an EA based on {F i }?;11 While EA-KFAC does not do

the exact same thing, it can be seen as a (very crude) approximation to it.

5 Can modify the definition of Mé@ s.t. woQM is a proper EA of quadratic models.

5 Although it is still not clear why putting the previous local models together in an
exponentially-averaged fashion is “right” for conferring further stability - and this
aspect remains heuristic. While this could be informally and partly explained by
“older models should matter less”, the complete explanation remains an open question.

Rethinking Exponential Averaging of the Fisher 7

Dealing with Infrequent Updates In practice, the curvature matrix is not
computed at each location, and the EA update is typically performed every
N, =~ 100 steps’ to save computation cost (at least in supervised learning®)
[1]. In this circumstance, the final implementation of EA-NG would actually be
equivalent to a woQM algorithm where we set

Fy., if mod (k,N,) =0

B={" (&,) | (20)
B,, whereq := N, LN—uJ, otherwise

n (20), F}, represents an approximation for the Fisher Fj, whose computation

has an associated cost. Recall that By, = Z?:o #(j)p*~9B;. Note that (20) is

well defined since By = By = FO, then By = By = ... = Bn,—1 = By, and hence
By = By =...= By, _1 = By, and so on. Further note that by (19), defining our
WwoQM Curvature matirx as in (20) gives us the EA-NG matrix that we want, since
we can easily see that: By, = pBg + (1 —)FN = pFo +(1-)FN We can
then easily extend the argument to show By, = Zj o k(3)p1~ JF(KFAC) which
is exactly the form of EA that EA-NG employs when updating statlstlcs every
N, steps. Note that we can apply Proposition 3.1 irrespectively of our choice of
By, so in particular, it must hold for By as defined in (20).

By extending our reasoning, we see that any heuristic which adapts N, as a
function of observations up until £ can be transformed into an equivalent heuristic
of picking between By = Bq (where ¢ is now more generally the previous location
where we computed F k) and By = Fk Thus, the equivalence between woQM and
EA-NG holds irrespectively of the heuristic which decides when to update the
EA-NG matrix. The exact same reasoning holds for generic EA-CM algorithms.

3.3 Fisher-WoQM: A Different Perspective

Since we have the following approximation® for k > i [§]

Drcr (0, 0r + 5) ~ Dicr, (6, 0k + 5) - <S+Zs]> <s+zsj> (21)

one might think that a woQM model with By = F, and p € (0,1) would in fact
be some form of approximate “KL-Divergence Wake-Regularized'® model”. This
is indeed true, as we can write our FISHER-WOQM as

k
rn;n[zpk—igz} 5+/\Z) (22)
=0

Note that Dgr(0;, 0, + s) in (21) is a second-order approximation of the

" More complicated heuristics can be designed, see [9].

8 In RL we may prefer updating the k-FAc EA-matrix at each step [10].

9 Which is exact in the limit as) + s — 6;, but would nevertheless be very crude in
practice, particularly for large k — i, since the steps taken might be relatively large.

10 Regularizing w.r.t. SKL divergences relative to all previous distributions, as opposed
to just the most recent one - as the quadratic model associated with NG step does.

8 C. O. Puiu

SKL-Divergence between py, (z,y) and pg, +s(z,y). Thus, we see that FISHER-
WoQM (same as EA-NG by Prop. 8.1) is in fact solving a reqularized linear model,
where the model gradient is taken to be the momentum gradient (with parameter
p), and the regularization term is an exponentially decaying wake of (crudely)
approzimate SKL-divergences relative to previously encountered distributions.

This equivalence raises scope for a new family of algorithms: perhaps using
another model for the objective f, rather than a simple linear model based on
momentum-gradient, and/or using a better approximation for the KL divergence
could lead to better performance. This is the main topic of this paper, explored
formally in Section 4 and numerically in Section 5. We now note that woQM
(and thus also EA-NG by Proposition 3.1, and approximately so, EA-KFAC) is in
fact a particular instantiation of the family proposed in the next section.

4 A KL-Divergence Wake-Regularized Models Approach

We now propose a new family of algorithms, which we call KL-Divergence Wake-
Regularized Models (KLD-WRM; reads: “Cold-Worm”). At each location 0y, the
KLD-WRM step s is defined as the solution to the problem

k
min M(s; Fi) + A Y C(0)p" "Drcr(6:, 0x + 5), (23)
1=0

where p € [0,1), M(s; Fy) is a model of the objective which uses at most all
the information (F) encountered up until and including 60y, and ((7) allows for
different 'A’s” at different 4’s. Simple choices would be ((i) = 1, or ((i) = k(7).

The motivation behind KLD-WRM is two-fold. First, a wake of SKL regu-
larization allows us to stay close (in a KL sense) to all previously encountered
distributions, rather than only to the most recent one. Thus, we might expect
KLD-WRM to give more conservative steps in terms of distribution (pg(y|z))
change. Second, KLD-WRM can be seen as a generalization'! of EA-NG (which is
also FISHER-WoQM), which also “undoes” the approximation'? of SKL.

Note that (23) is the most general formulation of KLD-WRM, but in order
to obtain practical algorithms we have to make further approximations and
definitions (of M and (). For example, we could set

k

M(s; F) =Y vF 7'M, (8 + ’21 Sj> (24)

=0

where the models M;(s) are general models (not necessary quadratic), constructed
only based on local information at 6;. This would be a Wake of Models KLD-WRM

"1 The linear model [Z?:o pkiigi]Ts in (22) becomes arbitrary, and k(i) is replaced
by a general ¢ : ZT — R.

12 For small ||s|| we have (6,0 + s) =~ D(0||0 + s) = D(0 + s||0) ~ (1/2)s” F()s. Thus,
the generalization towards our family could use £D(6||60 + s) + (1 — £)D(6 + s||6)
V¢ € R, instead of the SKL (i.e. £ =1/2). We choose SKL for simplicity.

Rethinking Exponential Averaging of the Fisher 9

(WoM-KLD-WRM). We could make this even more particular, for example by
considering instantiations where v = 0, but p € [0,1) in (24). This would give a
Local-Model KLD-WRM (LM-KLD-WRM), whose steps s are the solution to

k
min M(s) + A Y C(0)p" " Drcr (6,01 + 5), (25)
=0

In this paper, we focus on LM-KLD-WRM instantiations (a particular sub-family of
KLD-WRM), and leave the general case as future work. We give three instantiations
of LM-KLD-WRM of increasing complexity, and discuss the links with already
existing methods. We investigate their performance in Section 5.

4.1 Connection between KLD-WRM and Fisher-WoQM

It is easy to see that setting v = p, ((i) = s(i), M;(s) = s g; and approximating
Dxr(0;, 0 +) ~ Dir(0;, 0 +) (defined in (21)) in a WoM-KLD-WRM gives
the woQM family. Note that woQM is not an LM-KLD-WRM model as Mj/(s) can
only include information local to 6 (eg. cannot include gi_1). However, the
simplest instantiation of LM-KLD-WRM takes steps which are formally similar to
FISHER-WoQM (and thus EA-NG) steps. We investigate this in Section 4.2.

4.2 Simplest KLD-WRM Instantiation: Smallest Order KLD-WRM

The simplest practical instantiation of KLD-WRM, Smallest Order KLD-WRM
(SO-KLD-WRM), uses the most crude approximations to LM-KLD-WRM (25) and
sets ((7) = k(). The SO-KLD-WRM step s (at 6;) is given by

k
msing,zs +)\Z k(1) p" " Dg 1 (0;, 0k + 5), (26)
i=0
It is trivial to see that sO-KLD-wWRM differs from FISHER-WoQM (22) only through
replacing [Z?:o pk_igi} with gg. Since FISHER-WoQM is equivalent to EA-NG,
one might expect that SO-KLD-WRM steps are formally similar to EA-NG steps.
Proposition 4.1 formalizes this result.

Proposition 4.1: Analytic Solution of SO-KLD-WRM step. The SO-KLD-
WRM step s at iterate 0y can be expressed as

sk = =2 E gk — pgr—1), (27)
Vk € Z*t, where Fy, = Zf:o k(i) p* =t F; and we set g_1 := 0 by convention.

Proof. By induction. See the supplementary material. (]

Note that we set g_1 = 0 to avoid providing two separate cases (for k =0
and for k > 1). Proposition 4.1 tells us that the SO-KLD-WRM step is formally
similar to the FISHER-WoQM step (which we have seen is the EA-NG step). The
only (formal) difference between the SO-KLD-WRM step and the EA-NG step is
that gi gets replaced by g — pgr—1 in (19). By “formally” here, we mean that the
expressions look very similar. However, when considering the two implemented
algorithms, the paths taken can be very different.

10 C. O. Puiu

We have seen that EA-NG (being equivalent to FISHER-WoQM) algorithms
are in fact a sub-family of the KLD-WRM family, and obviously SO-KLD-WRM is
also a sub-family of KLD-WRM. Thus, the formal difference in the steps between
SO-KLD-WRM and EA-NG tells us these two sub-families are distinct. The formal
similarity between SO-KLD-WRM and EA-NG, combined with the fact that both are
members of the KLD-WRM family raises hopes that more accurate instantiations
KLD-WRM might lead to better performance than EA-NG.

Note that basing our SO-KLD-WRM step computation on Proposition 4.1 gives
a tractable algorithm, while solving (26) directly gives an intractable algorithm.
To see this, review definition (21), and realize that solving equation (26) directly
requires storing all previous Fjsj matrix-vector products as a minimum (if the
algorithm is written efficiently). Thus, we have an exploding number of vectors
that need to be stored when solving (26) directly, which eventually will overflow
the memory - giving an untractable algorithm. Conversely, using Proposition
4.1 only requires storing at most 2 matrices (F and F},) and 2 gradient-shaped
vectors at any one moment in time. Thus, using Proposition 4.1 with tractable
approximations for F} gives a tractable algorithm.

Reconsidering Gradient Momentum in EA-KFAC By comparing (22)
and (26), we see that FISHER-WoQM (which is also EA-NG) can almost be seen as
SO-KLD-WRM with added momentum for the gradient. The equivalence would be
exact if we would have a (i) inside the sum of the linear term of (22). In EA-KFAC,
gradient momentum is not added in the standard fashion. A different way to add
momentum is proposed'® and presented as successful, perhaps because trying
to add gradient momentum in the standard fashion gives worse performance [1].
From our discussion, this could be because EA-KFAC can be interpreted as an
approximate EA-NG, and EA-NG is a SO-KLD-WRM algorithm which already has
included gradient momentum. Thus, further adding momentum does not make
sense. Note that by adding momentum to gradient in the standard fashion we

mean replacing g by Z?:o k(1) p* " gr (see [3]).

SO-KLD-WRM in practice When implementing SO-KLD-WRM in practice,
we use the K-FAC approximation of the Fisher. Note that Proposition 4.1 tells us
that we need not store all previous K-FAC matrices. Instead, we can only save
the EA-KFAC matrix. As we have discussed in Section 3, we can skip computing
the K-FAC matrix at some locations to save on computation. To do that, we just
pretend the new K-FAC matrix at 6 is the EA-KFAC that we currently have stored.
For example, if we want to compute K-FAC matrices only once in N, steps, we
use (20), but different heuristics can also be used (for eg. as in [9]). Of course,
in practice we store an EA for the Kronecker factors (instead of an EA for the
K-FAC matrix), as is standard with practical K-FAC implementation [1].

13 More akin to a subspace method rather than a standard momentum method (see [1]).

Rethinking Exponential Averaging of the Fisher 11

4.3 Second KLD-WRM Instantiation: Q-KLD-WRM

The Quadratic KLD-WRM (Q-KLD-WRM) is an LM-KLD-WRM instantiation which
uses a second-order approximation for both the Model and the SKLs, and sets
¢(z) = k(i). The Q-KLD-WRM step si (at 0) solves

k
1 .
msin gls+ isTBks +A E k(1) p* " Dge 1, (0i, 01 + 5), (28)
=0

where By, is a curvature matrix which aims to approximate the Hessian Hy. That
is, Q-KLD-WRM sets M}, in (25) to be a quadratic model. Since (28) is overall a
quadratic, we can obtian an analytic solution for the Q-KLD-WRM step.

Proposition 4.2: Analytic Solution of Q-KLD-WRM step. The Q-KLD-WRM
step sy at location Oy is given by the solution to the problem

A _ 1
min s7 gy, + §ST [Fk +)\Bk} s (29)

where gy is given by the one-step recursion
Gra1 = grr1 + p(I = My)gx — pgr, Yk € Z7, (30)

with o = go, Fj := Zf:o k(i) pF*~'F;, and M, = [I—}— %Bkﬁ‘kfl]fl‘ That is, the
Q-KLD-WRM step is formally given by s, = —% [Fk + %Bk]_lgk.

Proof. By induction. See the supplementary material. O

By comparing Propositions 4.1 and 4.2, we see that, unlike SO-KLD-WRM,
the Q-KLD-WRM step deviates significantly from the FISHER-WoQM step (also the
EA-NG step). Note that setting By = 0 in Proposition 4.2 gives Proposition 4.1.
That is, SO-KLD-WRM is a particular case of Q-KLD-WRM (with By = 0).

Note that {gx} could explode with k, leading to divergence. A sufficient

‘2 <6, Vk e Zt, with § € (0,1)
and that [|[Vf(0)|, < K, V6. Under this condition, one can see that ||gi|l, <

gk — pgr—1ll + 6 1|gr—1ll,- Applying this inequality recursively, and noting that
llgr — pgr—1lls < (14 p)K4, we get that our sufficient condition yields |G|, <
2-K,, Vk € ZT. The condition pHI — M, ’2 =p HI - [T+ %Bkafl]lez <4
can always be achieved in practice, since taking A — oo or p — 0 gives 6 = 0.
In a similar fashion to the role of Proposition 4.1, the role of Proposition
4.2 (besides highlighting any similarity or dissimilarity to EA-NG) is to give a
tractable algorithm. Again, as with SO-KLD-WRM, Q-KLD-WRM is not tractable if
we implement it by solving (28) directly for the same reasons. On the other hand,
implementing Proposition 4.2 requires simultaneous storage of at most 3 matrices
and 3 gradient-shaped vectors at any one point in time - that is, the storage cost
does not explode with k. However, because we now have two different sets of
matrices involved: {F}} and { By}, the situation is more subtle. In particular, if

condition for {gx} to stay bounded is p HI — M,

12 C. O. Puiu

By, and F,'* are block-diagonal, then we can see that all involved matrices are
block-diagonal, and thus tractably storable and invertable (eg. choose By = F,
and approximate Fj ~ F,SKFAC)“’). On the contrary, By and Fj might be
tractably storable and invertible in isolation, but if they have different structures,
computing si from Proposition 4.2 might be intractable.

Q-KLD-WRM in practice In practice, we can in principle employ one of
two approximations for By. The first option is to use a BFGS approximation
([11], [12]). The second option is to replace By by the K-FAC matrix. This latter
approximation can be justified through the qualified equivalence between the
Fisher and the Generalized Gauss-Newton (GGN) matrix, the latter of which is
an approximation to the Hessian. However, in order for the qualified equivalence
to hold, we need our predictive distribution p(y|he(z)) to be in the exponential
family with natural parameters hg(x) (thinking of each conditional y|z as a
different distribution with its own parameters; see [8]). This qualified equivalence
holds for most practically used models (see [8]), so is not of huge practical concern.

As we have discussed, it is not obvious how one could get a tractable algorithm
from Proposition 4.2 if the structures of By and F}, are dissimilar. Thus, in this
paper we focus on instantiations where By := Fj, ~ F,EKFAC). In our experiments,
we will choose p(y|hg(x)) such that the qualified equivalence between Fisher and
GGN matrix holds, and thus use By, ~ F579 p ~ FEFAD | Ag is typical

) k k y L'k k yp

with K-FAC, we also choose to store an EA for the Kronecker factors, rather than
for the block-diagonal matrix. With these choices, one can efficiently compute the
Q-KLD-WRM step form Proposition 4.2 (details in the supplementary material).

4.4 Third KLD-WRM Instantiation: QE-KLD-WRM

The Quadratic Objective Approxvimation Ezact SKL'S KLD-WRM (QE-KLD-WRM) is
the final instantiation of LM-KLD-WRM which we propose here. The QE-KLD-WRM
step si (at) solves

k
1 .
msinngs + isTBks + A E C()p" D (0;, 0% + 5), (31)
i=0

where By, is a curvature matrix at 6y, treated the same as we did in Q-KLD-WRM.

Practical QE-KLD-WRM for Regression To be able to work with the exact
SKL, we restrict ourselves to a class of pg(y|x) models where the SKL can be
expressed in terms of euclidean norms of differences in the network output space.
Consider equation (4). For predictive distributions of the form (which are used
in regression)

p(y‘hek(‘rj)) :N(y|h9k(xj)7])7 (32>

14 Of course, Fj, will have the same structure as Fj.
15 Using K-FAC further reduces the storage and computation cost through the K-factors.
16 Note there is no tilde on D in (31

Rethinking Exponential Averaging of the Fisher 13

we have a special form for Dycr (p(ylhe, (x;)), p(y|ho,(x;))), namely

Dict (bl (2)): p(olhas (23))) = 5 o, (27) — hos ()2 (33)

See the supplementary material for derivation details. Note that predictive
distributions of the form (32) are the most frequently used in practice with
regression. For this choice of predictive distribution, Dg, (61, 62) becomes

N
1
Drcr(61,02) = 57 > o, (5) — Ry ()13 - (34)
=0

Thus, the QE-KLD-WRM step solves

k N
. 1 A N i
mSmQI{S + §3T3k5 ToN ZC(Z)Pk Z [lho, (z5) — h9k+5(xj)||§ . (35)
i=0 =0

Practical QE-KLD-WRM for Classification A similar practical computation
of Dk, is also available for classification (see the supplementary material).

QE-KLD-WRM in Practice While the KL-regularization term in (35) is in
principle computable, the amount of associated storage would explode with k
(storing old parameters). To bypass this problem, we have two options. We could
either choose to discard very old regularization terms, or model them through the
approximation (21) (as we did for Q-KLD-WRM, but now only do so for old terms).
The latter approach, while convenient, is not well principled - we should really
use second-order approximation when we are close (so for recent distributions),
not when we are far away. This can be improved, but is left as future work. In
this paper, we focus on implementations that use the former approach. Note that
we now need to iteratively solve (35) (for eg. with sGD), and get an approximate
QE-KLD-WRM step. Further note that the Q-KLD-WRM step given by Proposition
4.2 is an approximation of the solution to (35), where the SKL-divergence is
approximated by its second-order Taylor expansion (21). Thus, the Q-KLD-WRM
step is a good initial guess for (35), and we exploit this fact in practice.

Extension to Variable Stepsize For woQM, SO-KLD-WRM and Q-KLD-WRM,
we have so far considered only cases when the “step-size” 1/ is fixed across
different locations 6. Indeed, our established equivalence between FISHER-WoQM
and EA-NG holds for fixed A only. However, we may desire variable X < \(*) in
our KLD-WRM algorithms. To incorporate variable A(*) in Q-KLD-WRM, all one has
to do is to merely replace (30) with gry1 = gry1 + AFED /XE)p[g, — gi, — ngk]
and all X’s in Proposition 4.2 with A*). The version of Proposition 4.2 which
includes variable A(*) can be found in the supplementary material. Proposition
4.1 with variable A(*) then follows trivially as a particular case with By, = 0.

14 C. O. Puiu

4.5 Connection with Second Order Methods (SOM)

The particular KLD-WRM instantiation in equation (28), most simply illustrates the
connection between our proposed class of algorithms and SOM. Setting A <— 0 in
(28) reverses Q-KLD-WRM back to a simple second order algorithm. More generally,
from (23) we see that relative to SOM, KLD-WRM generalizes the local second
order model to an arbitrary model that may also include previous information
(in principle), and more importantly, it adds a wake of Dy, regularization. The
connection between NG and Generalized Gauss-Newton can be found in [8].

5 Numerical Results

We compare our proposed KLD-WRM instantiations (SO, Q and QE) with K-FAC, on
the MNIST classification problem. We investigated 4 different hyper-parameter
settings for each solver, but only present the best ones here. The complete results,
implementation details, as well as more in depth discussion can be found in
Section 8 of the supplementary material. Figures 1 and 2 show test loss and
test accuracy for our considered solvers. Ten runs were performed for each solver.
Important summary statistics of these results are shown in Table 1.
Hyper-parameters: The values of p and A are specified in Figures 1 and 2.
We used ((i) = x(i)/330 for QE, and (i) = (i) for the other solvers, because
the QE estimates of the SKL term were larger. The QE-specific hyper-parameters
are: w/A — the learning rate of the inner SGD solving (35), Nig — the number of
inner SGD steps per iteration, and Ncap — the total number of networks stored.
For the results presented here, these were set to 7-107%, 10 and 4 respectively.
Test Accuracy and Loss: All KLD-WRM variants exceed 97.5% mean test
accuracy, outperforming K-FAC by about 1.5%. The SD is 4-5 times lower for
KLD-WRM variants, which is desirable. Analogous observations hold for the test
loss. Since higher variance may more frequently yield “favorable” outliers, we
show relevant metrics for this aspect in Columns 2-6 of Table 1. We see that
even from the favorable outliers point of view, KLD-WRM is mostly preferable.
Robustness and Overall Performance: If we can only run the training
a few times (perhaps once), it is preferable (in terms of epochs; both from a
test accuracy and test-loss point of view) to use KLD-WRM rather than K-FAC.

4

Table 1. MNIST results summary. sO, Q and QE refer to KLD-WRM variants. “Accuracy’
and “loss” are the test-set ones. pgec and ogee are the mean and SD of the empirical
distribution of accuracy at the end of epoch 50. Notation is analogous for piss and
Oloss, which refer to the loss. NV¢ is the number of runs for which condition C is satisfied.

NachQS% Nace>98% NaecZQSﬁ% -/\/’loss§0425 Moss§0.2 Hacc Tacc |Mloss|Oloss
K-FAC 3 3 1 5 2 96.19% | 3.2% |0.26 |0.10
SO 4 2 0 7 0 97.60% |0.85% | 0.25 | 0.04
Q 5 4 0 4 0 97.69% |0.69% | 0.26 | 0.04
QE 8 7 2 9 0 98.01%|0.64%0.23(0.02

Rethinking Exponential Averaging of the Fisher 15

Test Loss for K-FAC, p=0.95,A = 100
I\ + 025Loss
« 02loss

0.35

0.30

Loss

0.25

A
\f'\/ /
WV

020 snereser 020

A

0.1 0.1
0 10 20 30 40 50 0 10

20 30
Number of Epochs Number of Epochs

Test Loss for Q-KLD-WRM, p=0.5,A =100 0.407<5t Loss: QE-KLD-WRM, p= 0.5, & =0.07, Neop =4, Nis = 10
T : |

A
o
)\ \«/V

40 50

0.35

]) M| o

0.25

Loss

0.20

0.15 0.15
0 10 20 30 40 50 0 10 20 30 4o 50

Number of Epochs Number of Epochs

Fig. 1. MNIST test-loss results for K-FAC, and our three KLD-wRM variants.

That is because all our KLD-WRM variants more robustly achieve good test metrics.
Conversely, if we can run the training many times (and choose the best run)
K-FAC’s large variance may eventually play to our advantage (not guaranteed).

KLD-WRM variant selection and winners: SO-KLD-WRM and Q-KLD-WRM
have virtually the same computation cost per epoch as K-FAC. Conversely, QE-
KLD-WRM has the same data acquisition and linear algebra costs as K-FAC, but
3-10 times higher oracle cost (fwd. and bwd. pass cost), owing to approximately
solving (35). Thus, when data cost is relatively low, SO-KLD-WRM and Q-KLD-
WRM will be preferable, as they will have the smallest wall-time per epoch (while
having almost the same performance per epoch as QE-KLD-WRM). Conversely,
when data cost dominates, all 4 solvers will have the same wall-time per epoch. In
this case, QE-KLD-WRM is preferable as it gives the best performance per epoch!”.

6 Conclusions and Future Work

We established an equivalence between EA-CM algorithms (typically used in ML)
and woQM algorithms (which we defined in Section 3). The equivalence revealed
what EA-CM algorithms are doing from a model-based optimization point of view.
Generalizing from woQM, we defined a broader class of algorithms in Section 4:
KLD-WRM. We then focused our attention on a different subclass of KLD-WRM,
LM-KLD-WRM, and provided three practical instantiations of it. Numerical results
on MNIST showed that performance-metrics distributions have better mean and
lower variance for our KLD-WRM algorithms, indicating they are preferable to
K-FAC in practice due to higher robustness.

Future work: (a) KLD-WRM for VI BNNs and RL; (b) convergence theory;
(c) investigate Q and QE variants when By, and Fj, have different structures; (d)
consider KLD-WRM algorithms outside the LM-KLD-WRM subfamily (include info.
at {0} <k In M(s; Fy); see (23)); (e) consider arbitrary £ € R (see footnote 12).

17 Codes available at: https://github.com/ConstantinPuiu/Rethinking-EA-of-the-Fisher

16

C. O. Puiu

990 Test Accuracy for K-FAC, p=0.95,A =100 99Test Accuracy for SO-KLD-WRM, p=0.33,A =100
98.5 /W’L/ 98.5
98.0 " " 98.0
N\ A
2975 X ‘\/}M‘ WA 5975
e) e
597.0 \/\4 597.0
o o
o]
< 96.5

g
N
-

96.0 96.0

A N
* 96% accuracy \ V A RAA *® 96% accuracy
95.5] # 98% accuracy 95.5] ¢ 98% accuracy
» 98.5% accuracy n f\ « 98.5% accuracy
95.01—= ! 95. =
30 40 50

0 10 20 0 10 20 30 40 50
Number of Epochs Number of Epochs

9 GTest Accuracy for Q-KLD-WRM, p=0.5,A =100 Test Acc.: QE-KLD-WRM, p=0.5, w = 0.07, Neap =4, Nis = 10

99

98.5

98.5

98.0 98.0

>975 >975
9 9
e e
597.0 597.0
o o
o) g
<965 < 96.5
96.0 96.0
= 96% accuracy ® 96% accuracy
95.5] # 98% accuracy 95.5] ¢ 98% accuracy
- 98.5% accuracy + 98.5% accuracy
95.0 - 95. = .
10 20 30 40 50 0 10 20 30 40 50
Number of Epochs Number of Epochs

Fig. 2. MNIST test-accuracy results for K-FAC, and our three KLD-wWRM variants.

Acknowledgments Thanks to Jaroslav Fowkes for very useful discussions. I
am funded by the EPSRC CDT in InFoMM (EP,/L015803/1) in collaboration
with Numerical Algorithms Group and St. Anne’s College (Oxford).

References

1.

10.

11.

12.

Martens, J.; Grosse, R. Optimizing neural networks with Kronecker-factored ap-
proximate curvature, In: arXiv:1503.05671 (2015).

. Yang, M.; Xu, D; Wen, Z.; Chen, M.; Xu, P. Sketchy empirical natural gradient

methods for deep learning, In: arXiv:2006.05924 (2021).

Ba, J.; Kingma, D. Adam: A method for stochastic optimization, ICLR (2015).
LeCun, Y.; Bottou, L.; Orr, G.; Muller, K. Efficient backprop. Neural networks:
Tricks of the trade, pages 546-546 (1998).

Schaul, T.; Zhang, S.; LeCun, Y. No more pesky learning rates. In ICML (2013).
Park, H.; Amari, S.-1.; Fukumizu, K. Adaptive natural gradient learning algorithms
for various stochastic models. Neural Networks, 13(7):755-764 (2000).

Amari, S. I. Natural gradient works efficiently in learning, Neural Computation,
10(20), pp. 251-276 (1998).

Martens, J. New insights and perspectives on the natural gradient method,
arXiv:1412.1193 (2020).

Osawa, K.; Yuichiro Ueno, T.; Naruse, A.; Foo, C.-S.; Yokota, R. Scalable and
practical natural gradient for large-scale deep learning, arXiv:2002.06015 (2020).
Wu, Y.; Mansimov, E.; Grosse, R. B.; Liao, S.; Ba, J. Scalable trust-region method
for deep reinforcement learning using kronecker-factored approximation. In Advances
in neural information processing systems, pages 5285-5294 (2017).

Bottou, L.; Curtis, F. E.; Nocedal, J. Optimization methods for large-scale machine
learning (2018).

Goldfarb, D.; Ren, Y.; Bahamou, A. Practical Quasi-Newton methods for training
deep neural networks, arXiv:2006.08877, (2021).

	Rethinking Exponential Averaging of the Fisher

