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Abstract. The node drop pooling is a significant type of graph pool-
ing that is required for learning graph-level representations. However,
existing node drop pooling models still suffer from the information loss
problem, impairing their effectiveness in graph classification. To miti-
gate the detrimental effect of the information loss, we propose a novel
and flexible technique called Masked Graph Auto-encoder constrained
Pooling (MGAP), which enables vanilla node drop pooling methods to
retain sufficient effective graph information from both node-attribute
and network-topology perspectives. Specifically, MGAP reconstructs the
original node attributes of the graph using a graph convolutional network
and the node degree of the graph (i.e., structural information) using a
feedforward neural network with exponential neurons from the pooled
(masked) graphs generated by the vanilla node drop pooling models. No-
tably, MGAP is a plug-and-play technique that can be directly adopted
in the current node drop pooling methods. To evaluate the effectiveness of
MGAP, we conduct extensive experiments on eleven real-world datasets
by applying MGAP to three commonly-used methods, i.e., TopKPool,
SAGPool, and GSAPool. The experimental results reveal that MGAP
has the capacity to consistently improve the performance of all the three
node drop pooling models in the graph classification task.

Keywords: graph neural networks · graph pooling · graph auto-encoder
· graph classification.

1 Introduction

Graph Neural Networks (GNNs) have demonstrated their significant effective-
ness in a variety of graph classification tasks [6,2], including molecular property
prediction [1], cancer diagnosis [26], and brain-data analysis [17]. In contrast to
node-level tasks (e.g., the node classification), which mainly leverage the graph
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Fig. 1. Graph Reconstruction with two typical node drop pooling operators. The point
locations in the figure above represent the node attributes.

convolutional network (GCN) to generate node representations for downstream
tasks [13], graph classification requires obtaining holistic graph-level representa-
tions. Therefore, for graph classification, the pooling mechanism is an essential
component that condenses the input graph with GCN-learned node representa-
tions into a single vector or a coarser graph with a smaller size.

Early adopted graph pooling techniques such as average and maximum pool-
ing disregard node correlations, hence restricting overall performance [5,40]. Sub-
sequently, graph pooling utilizes hierarchical architecture to model the node cor-
relations [20,34] and can be roughly classified into node clustering pooling and
node drop pooling. Node clustering pooling requires clustering nodes into new
nodes, which is time-and space-consuming [37,3,38]. In comparison, node drop
pooling preserves only representative nodes by assessing their importance, and
is hence more efficient and suitable for large-scale networks [7,14,39].

Although efficient and effective, the current node drop pooling methods are
affected by information loss, resulting in suboptimal graph-level representations
and unsatisfactory performance in the graph classification task. To substanti-
ate the above idea, we conduct experiments on graph reconstruction to directly
quantify the amount of retained information after pooling. Specifically, we em-
ploy two node drop pooling algorithms (i.e., TopKPool [7] and SAGPool [14]) on
10 synthetic point cloud graphs. The experimental settings are consistent with
those proposed in prior research [3,1]. Fig. 1 depicts the reconstructed results
of the point cloud’s original attributes (i.e., coordinates) from its pooled graph,
which is generated by the node drop pooling operators. As shown in Fig. 1, node
drop pooling approaches frequently fail to recover the original graph signal, indi-
cating that they discard part of critical graph information, which explains their
inferior performance in graph classification.

We provide an intuitive explanation for the aforementioned phenomenon as
follows. Indeed, nodes connected in a graph typically share similar attributes [22],
and their similarity rises further after message propagation using GNNs (such
as GCN [13] or GAT [33]). Node drop pooling methods, such as TopKPool
and SAGPool, generate node scores based on the node attributes, resulting in
a high potential for most selected nodes to share similar attributes or to be
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Fig. 2. Illustration of the constraint mechanism. Visualization of node selection results
with and without (Base) constraints. The reserved nodes are highlighted in Red.

connected. Consequently, node drop pooling models may be stuck in significant
local structures, thus selecting redundant nodes and ignoring significant nodes
from other substructures. To empirically validate our analysis, we test the SAG-
Pool model [14] on a real-world dataset (i.e., IMDB-BINARY). The experimental
conditions are identical to those for the graph classification problem, which is
described in detail in Section 4.1. In this example study, 40% of the nodes that
are selected as significant nodes by the first pooling layer are marked in red.
As shown in Fig. 2 (a), SAGPool (i.e., Base) is more likely to select nodes
concentrated in the same area, confirming our hypothesis. As a result, existing
node drop pooling methods may overlook critical information in other parts of
a graph, causing loss of critical information and the lower performance in the
graph classification task.

To address the limitations of existing node drop pooling methods, we de-
sign a masked graph auto-encoder constrained strategy called Masked Graph
Auto-encoder constrained Pooling (MGAP), which mitigates the information-
loss impact associated with graph pooling. Specifically, we incorporate a graph
auto-encoder layer with two decoders into graph pooling models in order to im-
pose implicit restrictions on the pooled graphs from two perspectives. Firstly,
from the node-attribute perspective, we apply GCN layers to the embeddings of
pooled nodes to reconstruct the original node attributes (Section 3.1), aiming
to prevent the pooled graph from losing excessive critical attribute information.
Secondly, from the network-topology perspective, we adopt a feedforward neural
network to rebuild the node degree (Section 3.2), which enables the node drop
pooling models to reserve more important nodes with regard to the topology as-
pect. As illustrated in Fig. 2 (b) and (c), the selected nodes are distributed across
different substructures or cover the fundamental nodes in the graph, demonstrat-
ing that the proposed attribute- and topology-view constraints enable models to
reserve significant nodes from the attribute and topology aspects (retaining more
attribute and topological information), respectively. Additionally, Fig. 2 (d) il-
lustrates the effect of combining constraints from the two views. Subsequently,
we describe how to integrate MGAP with the present architecture for node drop
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pooling (Section 3.3). To further demonstrate the practical efficiency of our
MGAP, we provide an in-depth analysis of time efficiency (Section 3.4).

Furthermore, we extensively examine MGAP across three backbone mod-
els and eleven benchmark datasets, which vary in content domains and dataset
sizes. The experimental results demonstrate that MGAP generally and consis-
tently improves the performance of the current node drop pooling models (e.g.,
TopKPool, SAGPool, and GSAPool). Our contributions are summarized as fol-
lows.

– We propose MGAP to alleviate the information-loss effect in graph pooling
from the perspectives of attribute space and topology space.

– We demonstrate that MGAP is a plug-and-play and easy-to-compute mod-
ule, which can be combined with node drop pooling methods to enhance their
performance in the graph classification task. Furthermore, MGAP maintains
controllable time and memory complexities.

– We conduct extensive experiments using three typical node drop pooling
methods with and without MGAP in the graph classification task across
eleven real-world datasets. The experimental results comprehensively demon-
strate the effectiveness of MGAP.

2 Preliminaries and Related Works

2.1 Notations

Let G = (V, E) denote a graph with the node set V and edge set E . The node
attributes are denoted by X ∈ Rn×d, where n is the number of nodes and d
is the dimension of node attributes. The graph topology is represented by an
adjacency matrix A ∈ {0, 1}n×n.

2.2 Problem Statement

Definition 1 (Graph Classification). The task of graph classification is to
learn a mapping function f :

f : G → Y, (1)

where G = {G1, G2, . . . , Gt} is the set of input graphs, Y = {y1, y2, . . . , yt} is the
set of labels associated with the graphs, and t is the number of graphs.

2.3 Graph Convolutional Networks

Recently, numerous studies have been conducted based on Graph Convolutional
Networks, which generalize convolutional operation in graph data. The basic
idea behind such methods as Graph Convolutional Network (GCN) [13], Graph-
SAGE [10], Graph Attention Network (GAT) [33], and Graph Isomorphism Net-
work (GIN) [36], is to update the embedding of each node with messages from
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its neighbor nodes. Formally, the above message-passing mechanism in the l-th
layer can be formalized as follows:

h(l+1)
v = COM(l)

({
h(l)
v ,AGG(l)

({
h
(l)
v′ : v′ ∈ Nv

})})
, (2)

where Nv is the set of neighbors of node v. h(l)
v ∈ Rc is the representation vector

for node v in the l-layer, where c is the dimension of the node embeddings.
AGG and COM refer to the aggregation and combination functions, respectively.
The methods mentioned above have achieved excellent performance in the node
classification and link prediction tasks. However, an additional pooling operation
is required to obtain a representation of the entire graph for downstream graph-
level tasks (for example, the graph classification).

2.4 Graph Pooling

Definition 2 (Graph Pooling). Let a graph pooling operator be defined as any
function POOL that maps a graph G to a new pooled graph G′ = (V ′, E ′) :

G′ = POOL(G), (3)

where |V ′| < |V| and |V| is the number of nodes5. The generic goal of graph
pooling is to reduce the number of nodes in a graph while preserving its semantic
information.

Graph pooling, which plays a crucial role in representing the entire graph,
could be roughly divided into global pooling and hierarchical pooling. Global
pooling performs global sum/average/max-pooling [5] or more sophisticated op-
erations [40,36] on all node attributes to produce graph-level representations,
which disregard the topology of graphs. Contrarily, hierarchical pooling models
are later proposed considering the graph topology, which could be classified into
node clustering pooling and node drop pooling. 1) Node clustering pooling
considers the graph pooling problem as a node clustering problem to map the
nodes into a set of clusters [37,3,20,38], which is limited by time and memory
complexities caused by the dense soft-assignment matrix computation. Addition-
ally, as discussed in previous studies [23,9], clustering-enforcing regularization
that enforces clustering is typically ineffective. 2) Node drop pooling exploits
learnable scoring functions to eliminate nodes with relatively lower significance
scores [7,14,16,39,8,41]. While the node drop pooling is more economical and
suitable to large-scale networks than node clustering pooling, it suffers from an
inevitable information loss. For a detailed description of graph pooling, please
refer to the recent review [19].

5 In some very specific cases, there exists |V ′| ≥ |V|, causing the graph to be up scaled
by pooling.
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2.5 Graph Auto-Encoder

Recent years have seen a surge of interest in studying the framework of auto-
encoder for graph embedding. The non-probabilistic graph auto-encoder model
(GAE) [12] consists of a GCN encoder, integrating the graph topology and node
attributes, and a nonlinear inner product decoder, reconstructing the adjacency
matrix. Formally, the auto-encoder can be summarized as:

Â = σ(ZZ>), with Z = GCN(X,A), (4)

where Â ∈ {0, 1}n×n is the reconstructed adjacency matrix, and σ is the logis-
tic sigmoid function. Z ∈ Rn×c is the node embedding matrix, where c is the
dimension of the node embeddings.

Instead of reconstructing the graph topology in GAE, some methods attempt
to design a decoder to reconstruct the node attributes [25,15] or both the topol-
ogy and attributes [31]. However, these methods are unsuitable for large-scale
graphs. Therefore, some methods [27,28] have introduced general frameworks
to scale GAE to large-scale graphs. Unlike the above methods, which perform
auto-encoder in the Euclidean space, some recent studies [24,21] have attempted
to encode and decode graphs in the hyperbolic space. Furthermore, Salha et
al. [30] extended the GAE frameworks to address link prediction in directed
graphs using gravity-inspired decoder scheme. Due to the space limitation, some
other GAE methods, such as linear GAE [29], permutation-invariant GAE [35],
and adaptive GAE [18], are not presented here in detail. Compared with the
above studies, our manuscript heuristically exploits auto-encoder to constrain
the pooled graphs of node drop pooling methods.

3 MGAP: Masked Graph Auto-Encoder Constrained
Pooling

The whole structure of the proposed MGAP is illustrated in Fig. 3, which con-
tains two parts: the constraint from the perspective of attribute (Section 3.1)
and the constraint from the perspective of topology (Section 3.2). Addition-
ally, we discuss how to integrate the present node drop pooling methods with
MGAP (Section 3.3). Finally, we conduct an extensive investigation of com-
plexity (Section 3.4).

3.1 Constraint in Attribute Space

The node attribute in a graph is essential for graph representation learning be-
cause each node attribute depicts partial characteristics of the graph. However,
as illustrated in Fig. 1, current node drop pooling methods tend to discard a
large amount of node attribute information, which may cause the decreased per-
formance in the graph classification task. Therefore, we suggest compensating
for this information loss through the use of an auto-encoder system. Specifically,
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Fig. 3. The illustration of the proposed MGAP, which includes two parts: the attribute-
view constrained module and the topology-view constrained module.

given the hidden representations of partially pooled nodes, we attempt to re-
construct the original node attributes of all nodes in the graph. In the proposed
approach, there are three Components: (C1) the node drop pooling encoder,
(C2) the designed decoder in attribute space, and (C3) the reconstruction tar-
get, the details of which are introduced as below.

(C1) Node Drop Pooling Encoder. Instead of following the standard
GAE approaches [12], which adopt the well-established GNN models shown in
Eq. (2) as an encoder, we employ one-layer GCN with graph pooling (GNN and
NDP in Fig. 3 (a)) as the encoder. The objective of the encoder is to learn the
embeddings of each node and to select which partial nodes to discard (mask).
The embeddings of these masked nodes will not be observed by the decoder. As
shown in Fig. 3 (a), the encoder first performs message propagation on the graphs
to generate node embeddings using Eq. (2), and then generates coarsened graphs
using node drop pooling methods. We used the SAGPool model [14] to describe
the process of node drop pooling encoder, which consists of three disjoint parts:

1) Generating Scores. SAGPool predicts the significance scores for each node
by using graph convolution as follows:

S(l) = GCN(Z(l),A(l)) ∈ Rn(l)×1, (5)

where S(l) ∈ Rn(l)×1 is the score matrix for the nodes, A(l) ∈ {0, 1}n(l)×n(l)

is the
adjacency matrix of the coarsened graph in the layer l, and n(l) is the number
of reserved nodes in the coarsened graph.
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2) Selecting Nodes. Subsequently, SAGPool selects the nodes with the top-k
significance scores as follows:

idx(l) = TOPk(S(l)), (6)

where TOPk ranks values and returns the indices of the largest k values in S(l),
and idx(l) indicates the reserved node indices for new graphs.

3) Coarsening Graphs. With the selected nodes, a new graph coarsened from
the original one is obtained by learning new attribute and adjacency matrices:

Z(l+1) = Z
(l)

idx(l) � S
(l)

idx(l) ∈ Rn(l+1)×1;

A(l+1) = A
(l)

(idx(l),idx(l))
∈ {0, 1}n

(l+1)×n(l+1)

,
(7)

where ·idx is an indexing operation, Z
(l)

idx(l) is the row-wise indexed embedding

matrix, � is the broadcast elementwise product, and A
(l)

(idx(l),idx(l))
is the row-

wise and column-wise indexed adjacency matrix. Z(l+1) and A(l+1) are the new
attribute and corresponding adjacency matrices, respectively.

(C2) Decoder in Attribute Space. Unlike traditional GAE, MGAP, with
the embeddings of pooled nodes, aims to recover the original attributes of graphs
containing pooled nodes and masked (dropped) nodes. In particular, follow-

ing [7], we first initialize an empty attribute matrix X̂0 ∈ Rn×c for the new

graph. Subsequently, we insert the pooled node embeddings Z(l) ∈ Rn(l)×c into

X̂0 to obtain a new embedding matrix X̂
(l)
∈ Rn×c (the zero padding opera-

tion in Fig. 3 (b)). The other row vectors (embeddings of the dropped nodes)
remain zero. Then, we adopt graph convolution as the decoder, as introduced
in Eq. (2), on the new node embedding matrix X̂ and the original adjacency

matrix A(0) = A ∈ Rn×n to reconstruct the node attributes:

ψa

(
X̂

(l)
)

= GCN
(
X̂

(l)
,A(0)

)
∈ Rn×d. (8)

(C3) Reconstruction Target. The constraint in attribute space aims to
improve the power of pooling methods to preserve node information; that is, the
learned embeddings of reserved nodes can recover the original attributes of the
whole graph. Therefore, we directly measure the Euclidean distance between the

reconstructed attribute matrix ψa(X̂
(l)

) and the original input attribute matrix
X ∈ Rn×d, and consider it as the loss function, which is formalized as follows:

L(l)
a =

∥∥∥X − ψa(X̂
(l)

)
∥∥∥2
F
, (9)

where L(l)
a is the attribute-view constrained loss in the layer l, which enables

pooling models to reserve additional important nodes from the perspective of
node attributes, and ‖ · ‖F is the Frobenius norm.
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3.2 Constraint in Topology Space

In addition to the attribute information discussed previously (Section 3.1), topo-
logical information in a graph is essential in graph representation learning. There-
fore, it is logical and critical to ensure that the pooled nodes can reassemble the
network topology. We propose to reconstruct the node degree, motivated by
NWR-GAE [32], with the goal of capturing topological information. Specifically,
our solution consists of three Components: (C1) the node drop pooling encoder,
which is the same as the encoder in attribute-view constraint and will not be
given any further details here, (C2) the designed decoder in topology space, and
(C3) the reconstruction target, all of which are described in detail below.

(C2) Decoder in Topology Space. The decoders in existing graph auto-
encoders are designed to drive the embeddings of the linked nodes similar, which
appears away from our motivation that enables models to capture the topologi-
cal information. Therefore, we suggest reconstructing the node degree, which is a
typical graph topological feature that reflects the receptive field of a node. Specif-
ically, given the embedding of the pooled nodes, we adopt an FNN layer with
an activation function ReLU(·), which makes the predicted value non-negative,
to reconstruct the node degree in the l-th layer:

ψt

(
Z(l)

)
= ReLU

(
FNN

(
Z(l)

))
∈ Rn(l)×1. (10)

(C3) Reconstruction Target. We measure the Euclidean distance between

the truth degree D(l) ∈ Rn(l)×1 and the predict degree ψt(Z
(l)), which is for-

malized as follows:

L(l)
t =

∥∥∥D(l) − ψt

(
Z(l)

)∥∥∥2
F
, (11)

where L(l)
t is the topology-view constrained loss in the layer l. With this loss, a

fraction of important nodes from the perspective of the topology can be reserved.

3.3 Node Drop Pooling Framework with MGAP

Fig. 3 (a) illustrates in detail how to apply MGAP to the node drop pooling
framework. Concretely, we view a GCN layer followed by a node drop pool-
ing layer, such as TopKPool or SAGPool, as a pooling function unit and name
it GCN-Pool layer for convenience. A GCN-Pool layer takes a graph as input
and outputs a pooled graph that is represented by an embedding matrix and
a new adjacency matrix. The two decoders ψa (Decoder (a) in Fig. 3) and ψt

(Decoder (t) in Fig. 3 ) are trained to simultaneously reconstruct the original
node attributes and network topology, which generates two losses, La and Lt.
The pooled graph is then fed into the next GCN-Pool layer and, simultaneously,
a readout module, in which the node embeddings are added up as the graph
embedding in this layer. Finally, the graph embeddings in all layers are added
up to the final graph representation, that is taken as the input of an Multi-
layer Perceptron (MLP) classifier for predicting the label of the original graph.
Classification error is defined by the cross-entropy loss Lclass.
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By combining the classification loss Lclass and two constrained losses in
Eq. (9) and (11), we obtained the total loss:

Ltotal = Lclass + λaLa + λtLt, (12)

where λa and λt are the trade-off weight parameters, and La and Lt are the
average attribute- and topology-view constrained losses of all layers, respectively.
Notably, the graph classification task is performed by GCN-Pool layer in the
proposed framework, and the decoders were only used for constraining the pooled
nodes and their embeddings in GCN-Pool. Thus, the decoders are used only in
the training phase. After obtaining the trained model, we apply GCN-Pool to
perform graph classification in the test set without decoders.

3.4 Complexity Analysis

Our proposed MGAP is highly efficient because the major operations involved
in it are only GCN and FNN, as shown in Fig. 3 (b) and (c), respectively.
Theoretically, the time complexity of GCN layer is O

(
L‖A‖0d+ Lnd2

)
, where

L is the number of layers, n is the number of nodes, and ‖A‖0 is the number of
nonzeros in the adjacency matrix A. The time complexity of FNN layer is O(1).
The time complexity for calculating La by Eq. 9 is O(nd) and calculating Lt

by Eq. 11 is O(n′), where n′ is the number of the pooled nodes. Thus, the total
time complexity of the proposed method is O

(
L‖A‖0d+ Lnd2

)
, which is on par

with the neighborhood aggregation operation in node drop pooling methods.

4 Experiments

In this section, we study the effectiveness of MGAP for graph classification.
Specifically, we would like to answer the following questions:
Q1. How often and how much does MGAP improve the performance of the base
node drop pooling methods? (Section 4.2)
Q2. Does each component of MGAP contribute to the improvements in perfor-
mance? (Section 4.3)
Q3. How much extra computation time and memory does MGAP incur?(Section 4.4)
Q4. How would the parameters affect the performance? (Section 4.5)

4.1 Experimental Settings

Datasets. To answer Q1, we use 11 publicly available and well-known bench-
mark datasets, including bioinformatics datasets (D&D, PROTEINS, and EN-
ZYMES), molecule datasets (NCI1, NCI109, PTC-MR, MUTAG, MUTAGENIC-
ITY, and FRANKENSTEIN), and social network datasets (IMDB-BINARY and
IMDB-MULTI). The above 11 real-world datasets vary in content domains and
dataset sizes, and the dataset statistics are summarized in Table 1.

Backbone Models. We select three representative node drop pooling mod-
els as the backbone: TopKPool [7]. This method selects the top k nodes based
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Table 1. Statistics and properties of benchmark datasets (TUdatasets).

Datasets # Graphs # Classes Avg. # Nodes Avg. # Edges

Bioinformatics
D&D 1,178 2 284.32 715.66
PROTEINS 1,113 2 39.06 72.82
ENZYMES 600 6 32.63 124.20

Molecules

NCI1 4,110 2 29.87 32.30
NCI109 4,127 2 29.68 32.13
PTC-MR 344 2 14.30 14.69
MUTAG 188 2 17.93 19.79
MUTAGENICITY 4,337 2 30.32 30.77
FRANKENSTEIN 4,337 2 16.90 17.88

Social Networks
IMDB-BINARY 1,000 2 19.77 96.53
IMDB-MULTI 1,500 3 13.00 65.94

TUDatasets: https://chrsmrrs.github.io/datasets/docs/datasets/

on the scores generated by a learnable function that only considers node at-
tributes. SAGPool [14]. This method selects the important nodes with higher
scores that are generated by a graph convolution layer, which involves node at-
tributes and network topology. Particularly, this method has two variants: 1)
SAGPool (G) is a global node drop pooling method that drops unimportant
nodes at one time at the end of the architecture. 2) SAGPool (H) is a hier-
archical node drop pooling method that sequentially drops unimportant nodes
with multiple graph convolution layers. We use SAGPool (H) in this study.
GSAPool [39]. This method predicts scores from two perspectives: 1) using an
MLP layer to capture the significant node attributes and 2) using a GNN layer
to capture the significant network topology. Subsequently, the model linearly
combines the two scores mentioned above.

Implementation Details. For a fair comparison, we adopt the same set-
tings on all datasets and models. Specifically, we evaluate the model performance
with a 10-fold cross validation setting, and the dataset split is based on the con-
ventionally used training/test splits[36,1]. Each convolution layer consists of 128
hidden neurons, and the pooling ratio in each pooling layer is set as 0.5, i.e., re-
moving 50% of nodes per graph after a pooling operation. We employ Adam [11]
to optimize the parameters with learning rate as 5e−4 and weight decay as 1e−4,
and adopt early stopping to control the training epochs based on validation loss
with patience set as 50. We then report the average performance on the test sets,
by performing overall experiments 100 times with different seeds from 42 to 51.

Hyper-parameter tuning. As described in Section 3.3, two hyper-parameters
λa and λt are used in our MGAP, which serve as trade-off weights in the loss
function. We utilize a grid search to tune the above two hyper-parameters with
a search space {1, 1e−1, 1e−2}.

Environments. 1) Software. All models are implemented with Python
3.7, PyTorch 1.9.0 or above (which further requires CUDA 10.2 or above), and

https://chrsmrrs.github.io/datasets/docs/datasets/
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Table 2. MGAP performance across three backbone models and 11 datasets in the
graph classification task. The reported results are mean and standard deviation over
100 different runs.

Molecules

NCI1 NCI109 MUTAG PTC-MR MUTAGE. FRANK.

SAGPool 71.71±0.75 70.70±0.95 72.56±3.09 56.41±1.63 74.27±1.04 58.74±0.61

+ MGAP 73.02±1.00 71.95±0.63 73.72±1.88 58.80±2.29 74.99±1.22 59.06±0.81

Gain 1.83% ↑ 1.76% ↑ 1.60% ↑ 4.23% ↑ 0.97% ↑ 0.54% ↑

TopKPool 71.90±1.22 70.69±1.00 71.83±1.66 57.15±3.14 75.10±0.94 58.84±0.80

+ MGAP 72.83±1.24 72.35±1.03 73.06±2.77 58.35±2.70 76.46±1.05 58.96±0.53

Gain 1.29% ↑ 2.35% ↑ 1.71% ↑ 2.10% ↑ 1.81% ↑ 0.0% ↑

GSAPool 73.70±0.89 71.83±1.65 72.56±2.41 56.10±1.83 76.65±1.12 59.11±0.69

+ MGAP 75.36±1.68 74.10±1.95 72.44±3.42 57.59±2.81 77.94±1.03 59.57±0.32

Gain 2.25% ↑ 3.16% ↑ 0.16% ↓ 2.66% ↑ 1.68% ↑ 0.78% ↑

Bioinformatics Social Networks
Average

D&D PROT. ENZYM. IMDB-B IMDB-M

SAGPool 74.21±1.23 72.65±1.26 47.42±1.54 70.71±1.36 48.43±0.81 65.25
+ MGAP 76.20±0.73 74.53±1.04 48.93±3.69 72.88±1.22 49.71±0.80 66.70

Gain 2.68% ↑ 2.58% ↑ 3.18% ↑ 3.07% ↑ 2.64% ↑ 2.22% ↑

TopKPool 73.71±1.04 72.81±0.74 46.02±3.53 70.96±1.15 48.97±0.60 65.27
+MGAP 75.97±0.96 73.95±1.23 49.58±2.01 72.05±0.50 49.52±0.79 66.64

Gain 3.06% ↑ 1.56% ↑ 7.73% ↑ 1.53% ↑ 1.12% ↑ 2.10% ↑

GSAPool 74.19±1.32 73.20±1.11 49.08±2.02 71.06±1.15 49.03±0.50 66.00
+ MGAP 76.24±1.03 73.49±1.39 55.05±2.86 72.34±1.26 49.68±0.61 67.59

Gain 2.76% ↑ 0.40% ↑ 12.16% ↑ 1.80% ↑ 1.32% ↑ 2.40% ↑

PyTorch-Geometric 1.7.3 or above. 2) Hardware. Each experiment was run on
a single GPU (NVIDIA V100 with a 16 GB memory size), and the experiments
were run on the server at any given time6.

4.2 Overall results

To answer Q1, we conduct extensive experiments for graph classification on 11
datasets using three backbone models. The accuracy results of all models summa-
rized in Table 2 are averaged over 100 runs with random weight initializations
(10 different seeds through the 10-fold cross validation). We highlight the best
performance in bold per backbone model and dataset. In Table 2, we report
the improvement achieved by MGAP on each backbone model and each dataset.
We obtain the following findings. 1) Evidently, MGAP consistently improves the

6 The source code is available at https://github.com/liucoo/mgap.

https://github.com/liucoo/mgap
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Table 3. Ablation study results. Bold: the best performance per backbone model and
dataset. Underline: the second best performance per backbone model and dataset.

PTC-MR IMDB-BINARY

SAGPool TopKPool GSAPool SAGPool TopKPool GSAPool

Base 56.41±1.6 57.15±3.1 56.10±1.8 70.71±1.4 70.96±1.2 71.06±1.2

MGAP 58.80±2.2 58.35±2.7 57.59±2.8 72.88±1.2 72.05±0.5 72.34±1.3

w/o attr-const 58.44±1.9 57.21±3.5 56.21±3.1 72.43±0.9 71.87±0.9 71.89±0.9

w/o topo-const 58.35±2.6 57.76±1.6 56.56±2.0 71.72±1.1 71.29±0.85 71.50±0.9

accuracy of all three node drop pooling models on all datasets in most cases,
sometimes by large margins. 2) Specifically, MGAP achieves improvements over
three node drop pooling models (averaged across datasets): 2.22% (SAGPool),
2.10% (TopKPool), and 2.40% (GSAPool). 3) MGAP obtains more significant
enhancement on bioinformatics datasets and increases the accuracy by up to
12.16%. Intuitively, this may be because the information loss, caused by the
condensation of selected nodes into the local structure, makes a greater impact
on bioinformatics datasets. In summary, the above results indicate that MGAP
is a general framework for improving the performance of base node drop pooling
methods.

4.3 Ablation Study

To answer Q2, we conduct ablation studies on the dataset PTC-MR (social
domain) and IMDB-BINARY (biochemical domain) using the SAGPool model.
For convenience, we name the methods without attribute-view and topology-
view constraints as w/o attr-const and w/o topo-const, respectively. Note
that except the selected component, the rest remain the same as the complete
model. From Table 3, we obtain that all variants with some components removed
exhibit clear performance drops compared to the complete model, indicating that
each component contributes to the improvements. Furthermore, MGAP without
the topology-view constraint performs poorly on the IMDB-BINARY dataset,
thereby demonstrating the significance of the proposed topology-view constraint
for datasets in social domain, where network topology plays an important role.

4.4 Efficiency Analysis

To answer Q3, we compare the time and memory efficiency of MGAP with that
of three backbone models. 1) Time Efficiency. Fig. 4 (a) illustrates the average
per-epoch training time on all 11 datasets. We fix the training epochs to 10 with
10 different random seeds. It is observed that the additional time consumption
keeps relatively low. 2) Memory Efficiency. The experimental settings are the
same as those in measuring the time efficiency. Fig. 4 (b) shows that our MGAP
is efficient in terms of memory. The above results confirm that our MGAP is
practically efficient.
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Fig. 4. Memory and time efficiency of MGAP compared with three backbone models.
(a) The reported values are the average per-epoch training time on all 11 datasets. (b)
The reported values are the average GPU memory usage on all 11 datasets.
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Fig. 5. Parameter analysis on the PTC-MR dataset. Left. Model performance varying
with the pooling ratio. Right. Parameter sensitivity of trade-off weights λa and λt.

4.5 Parameter Analysis

To answer Q4, we investigate the sensitivity of the parameters of two types
on the PTC-MR dataset using the SAGPool model. 1) Inherent Parameter
Sensitivity. We study how the graph pooling ratio would affect the graph clas-
sification performance. As shown in the left part of Fig. 5, SAGPool equipped
with MGAP (+MGAP) performs better in all cases, suggesting that the pro-
posed method enable node drop pooling methods to select the nodes that are
essential for graph-level representation learning regardless of the pooling ratio.
2) Introduced Parameter Sensitivity. We investigate the effects of two new
parameters, λa and λt, which serve as the trade-off weights in the loss func-
tion. In this parameter sensitivity study, both parameters are searched within
the range of {10, 1, 1e−1, 1e−2, 1e−3, 1e−4, 1e−5, 0}. Note that the search space
is only {1, 1e−1, 1e−2} in the graph classification experiments. As shown in the
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right part of Fig. 5, the method performs best when λa is 1e−4 and λt is 10,
demonstrating the importance of combining attribute and topology constraints
of the pooled graphs. The results of the above two experiments further validate
the robustness and effectiveness of the proposed MGAP.

5 Conclusion and Future Work

Conclusion. In this study, we empirically verify the information-loss prob-
lem of current node drop pooling models and propose MGAP, a novel plug-in and
easy-to-compute module, to solve this problem from the perspectives of attribute
space and topology space. Through extensive experiments, we demonstrate that
MGAP generally improves common node drop pooling methods across various
benchmark datasets in the graph classification task.

Future Work. For future directions, 1) choose various formulas of GNNs,
such as attention mechanism [33], as a decoder, in addition to GCN, for recon-
structing the original attributes of nodes. 2) Consider other topological features,
such as triangle count, local clustering score, eigenvector centrality, and between-
ness, in addition to node degrees. 3) Further design other evaluation criteria for
topological information loss, such as some criteria studied in graph coarsening
algorithms [4]. 4) Explore the effects of MGAP on other tasks such as graph
reconstruction, graph compression, and node classification, and further design
more reasonable constraints for these tasks.
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