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Abstract. Adversarial continual learning is effective for continual learn-
ing problems because of the presence of feature alignment process gener-
ating task-invariant features having low susceptibility to the catastrophic
forgetting problem. Nevertheless, the ACL method imposes considerable
complexities because it relies on task-specific networks and discrimina-
tors. It also goes through an iterative training process which does not fit
for online (one-epoch) continual learning problems. This paper proposes a
scalable adversarial continual learning (SCALE) method putting forward
a parameter generator transforming common features into task-specific
features and a single discriminator in the adversarial game to induce
common features. The training process is carried out in meta-learning
fashions using a new combination of three loss functions. SCALE out-
performs prominent baselines with noticeable margins in both accuracy
and execution time.

Keywords: Continual Learning · Lifelong Learning · Incremental Learn-
ing.

1 Introduction

Continual learning (CL) has received significant attention because of its im-
portance in improving existing deep learning algorithms to handle long-term
learning problems. Unlike conventional learning problems where a deep model
is presented with only a single task at once, a continual learner is exposed to a
sequence of different tasks featuring varying characteristics in terms of different
distributions or different target classes [9]. Since the goal is to develop a never-
ending learning algorithm which must scale well to possibly infinite numbers of
tasks, it is impossible to perform retraining processes from scratch when facing
new tasks. The CL problem prohibits the excessive use of old data samples and
only a small quantity of old data samples can be stored in the memory.

The CL problem leads to two major research questions. The first question
is how to quickly transfer relevant knowledge of old tasks when embracing a
? equal contribution
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new task. The second problem is how to avoid loss of generalization of old tasks
when learning a new task. The loss of generalization power of old tasks when
learning a new task is known as a catastrophic forgetting problem [9,20] where
learning new tasks catastrophically overwrites important parameters of old tasks.
The continual learner has to accumulate knowledge from streaming tasks and
achieves improved intelligence overtime.

There exists three common approaches for continual learning [20]: memory-
based approach [16], structure-based approach [26], regularization-based ap-
proach [14]. The regularization-based approach makes use of a regularization
term penalizing important parameters of old tasks from changing when learning
new tasks. Although this approach is computationally light and easy to imple-
ment, this approach does not scale well for a large-scale CL problem because
an overlapping region across all tasks are difficult to obtain. The structure-
based approach applies a network growing strategy to accommodate new tasks
while freezing old parameters to prevent the catastrophic forgetting problem.
This approach imposes expensive complexity if the network growing phase is
not controlled properly or the structural learning mechanism is often done via
computationally expensive architecture search approaches thus being infeasible
in the online continual learning setting. The memory-based approach stores a
small subset of old samples to be replayed along with new samples to handle the
catastrophic forgetting problem. Compared to the former two approaches, this
approach usually betters the learning performance. The underlying challenge
of this approach is to keep a modest memory size. SCALE is categorized as a
memory-based approach here where a tiny episodic memory storing old samples
is put forward for experience replay mechanisms.

The notion of adversarial continual learning (ACL) is proposed in [10]. The
main idea is to utilize the adversarial learning strategy [13,12] to extract task-
aligned features of all tasks deemed less prone to forgetting than task-specific
features. It offers disjoint representations between common features and private
features to be combined as an input of multi-head classifiers. The main bottle-
neck of this approach lies in expensive complexities because private features are
generated by task-specific networks while common features are crafted by the ad-
versarial game played by task-specific discriminators. In addition, ACL is based
on an iterative training mechanism which does not fit for online (single-epoch)
continual learning problems.

This paper proposes scalable adversarial continual learning (SCALE) reduc-
ing the complexity of ACL significantly via a parameter generator network and
a single discriminator. The parameter generator network produces scaling and
shifting parameters converting task-invariant features produced by the adversar-
ial learning mechanism to task-specific features [21,22]. Our approach does not
need to store task-specific parameters rather the parameter generator network
predicts these parameters leading to private features. Production of private fea-
tures are carried out with two light-weight operations, scaling and shifting. The
parameter generator is trained in the meta-learning way using the validation
loss of the base network, i.e., feature extractor and classifier. The meta-learning
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strategy is done by two data partitions: training set and validation set portray-
ing both new and old concepts. The training set updates the base network while
the validation set trains the parameter generator. Our approach distinguishes
itself from [22] where the adversarial training approach is adopted to produce
task-invariant features and we do not need to construct two different memories
as per [22]. Unlike ACL, the adversarial game is played by a single discriminator
without any catastrophic problem while still aligning the features of all tasks
well.

SCALE outperforms prominent baselines with over 1% margins in accu-
racy and forgetting index while exhibiting significant improvements in execution
times. The ablation study, memory analysis and sensitivity analysis further sub-
stantiate the advantages of SCALE for the online (one-epoch) continual learning
problems. This paper offers four major contributions: 1) a new online continual
learning approach, namely SCALE, is proposed; 2) our approach provides a scal-
able adversarial continual learning approach relying only on a single parameter
generator for feature transformations leading to task-specific features and a sin-
gle discriminator to induce task-invariant features; 3) the training process is done
in the meta-learning manner using a new combination of three loss functions: the
cross-entropy loss function, the DER++ loss function [4] and the adversarial loss
function [10]. Although the adversarial loss function already exists in [10], the
adversarial game is done differently here using the concept of BAGAN [18] rather
than that the gradient reversal strategy [10,12]; 4) All source codes, data and raw
numerical results are made available in https://github.com/TanmDL/SCALE to
help further studies.

Fig. 1: Structure of ACL based on task-specific feature extractors and discrimi-
nators.

2 Related Works

Regularization-based Approach relies on a penalty term in the loss func-
tion preventing important parameters of old tasks from significant deviations.

https://github.com/TanmDL/SCALE
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The L2-regularization strategy is combined with the parameter importance ma-
trix indicating the significance of network parameters. Different strategies are
proposed to construct the parameter importance matrix: Elastic Weight Consol-
idation (EWC) makes use of the Fisher Importance Matrix (FIM) [14], Synaptic
Intelligence (SI) utilizes accumulated gradients [32], Memory Aware Synapses
(MAS) adopts unsupervised and online criteria [1]. online EWC (oEWC) puts
forward an online version of EWC using Laplace approximation [28]. Learn-
ing without Forgetting (LWF) utilizes the knowledge distillation (KD) approach
to match between current and previous outputs. The regularization strategy is
better performed in the neuron level rather than in the synaptic level [19] be-
cause of the hierarchical nature of the deep neural network. [17] follows the same
principle as [19] and goes one step further using the concept of inter-task simi-
larity. Such approach allows a node to be shared across related tasks. Another
attempt to improve scalability of regularization-based approaches also exists in
[5] where the projection concept is put forward to induce wide local optimum
regions. The regularization-based approach heavily depends on the task-IDs and
the task-boundaries.

Structure-based Approach offers different philosophies where new tasks are
handled by adding new network components while isolating old components to
avoid the catastrophic forgetting problem. The pioneering approach is the pro-
gressive neural network (PNN) [26] where a new network column is integrated
when handling a new task. PNN incurs expensive structural complexities when
dealing with a long sequence of tasks. [31] puts forward a network growing condi-
tion based on a loss criterion with the selective retraining strategy. The concept
of neural architecture search (NAS) is proposed in [15] to select the best ac-
tion when observing new tasks. Similar approach is designed in [30] but with
the use of Bayesian optimization approach rather than the NAS concept. These
approaches are computationally prohibitive and call for the presence of task IDs
and boundaries. [23,3] put forward a data-driven structural learning for unsu-
pervised continual learning problems where hidden clusters, nodes and layers
dynamically grow and shrink. The key difference between the two approaches
lies in the use of regularization-based approach in [3] via the Knowledge Dis-
tillation (KD) strategy and the use of centroid-based experience replay in [23].
The data-driven structural learning strategy does not guarantee optimal actions
when dealing with new tasks.

Memory-based Approach utilizes a tiny memory storing a subset of old data
samples. Old samples of the memory are interleaved with current samples for
experience replay purposes to cope with the catastrophic forgetting problem.
iCaRL exemplifies such approach [24] where the KD approach is performed with
the nearest exemplar classification strategy. GEM [16] and AGEM [7] make use
of the memory to identify the forgetting cases. HAL [6] proposes the idea of
anchor samples maximizing the forgetting metric and constructed in the meta-
learning manner. DER [4] devises the dark knowledge distillation and success-
fully achieves improved performances with or without the task IDs. CTN is pro-
posed in [22] using the feature transformation concept of [21] and integrates the
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controller network trained in the meta-learning fashion. ACL [10] is categorized
as the memory-based approach where a memory is used to develop the adversar-
ial game. However, ACL imposes considerable complexities because of the use
of task-specific feature extractors and discriminators. We offer an alternative
approach here where private features are induced by the feature transformation
strategy of [21] and the adversarial game is played by one and only one discrim-
inator. Compared to [22], SCALE integrates the adversarial learning strategy
to train the shared feature extractor generating common features being robust
to the catastrophic forgetting problem and puts forward a new combination of
three loss functions.

3 Problem Formulation

Continual learning (CL) problem is defined as a learning problem of sequentially
arriving tasks T1, T2, ..., Tk, k ∈ {1, ...,K} where K denotes the number of tasks
unknown in practise. Each task carries triplets Tk = {xi, yi, ti}Nk

i=1 where Nk
stands for a task size. xki ∈ Xk denotes an input image while yki ∈ Yk, yki =
[l1, l2, ..., lm] labels a class label and tki stands for a task identifier (ID). The goal
of CL problem is to build a continual learner fφ(gθ(.)) performing well on already
seen tasks where gθ(.) is the feature extractor and fφ(.) is the classifier. This
paper focuses on the online (one-epoch) task-incremental learning and domain-
incremental learning problems [29] where each triplet of any tasks {xi, yi, ti} v
Tk is learned only in a single epoch. The task-incremental learning problem
features disjoint classes of each task, i.e., Suppose that Lk and Lk′ stand for
label sets of the k − th task and the k′ − th task, ∀k, k′Lk ∩ Lk′ = ∅. The
domain-incremental learning problem presents different distributions or domains
of each task P (X,Y )k 6= P (X,Y )(k+1) while still retaining the same target
classes for each task. That is, a multi-head configuration is applied for the task-
incremental learning problem where an independent classifier is created for each
task fφk

(.). The domain-incremental learning problem is purely handled with a
single head configuration fφ(.). The CL problem prohibits the retraining process
from scratch 1

K

∑K
k=1 Lk,Lk , E(x,y)vDk

[l(fφ(gθ(x)), y)]. The learning process is
only supported by data samples of the current task Tk and a tiny memoryMk−1
containing old samples of previously seen tasks to overcome the catastrophic
forgetting problem.

4 Adversarial Continual Learning (ACL)

Fig. 1 visualizes the adversarial continual learning method [10] comprising four
parts: shared feature extractor, task-specific feature extractors, task-specific dis-
criminator and multi-head classifiers. The shared feature extractor generates
task-invariant features while the task-specific feature extractors offer private
features of each task. The task-specific discriminator predicts the task’s origins
while the multi-head classifiers produce final predictions. The training process
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is governed by three loss functions: the classification loss, the adversarial loss
and the orthogonal loss. The classification loss utilizes the cross-entropy loss
function affecting the multi-head classifiers, the shared feature extractor and the
task-specific feature extractors. The adversarial loss is carried out in the min-max
fashion between the shared feature extractor and the task-specific discriminators.
The gradient reversal layer is implemented when adjusting the feature extractor
thus converting the minimization problem into the maximization problem. That
is, the shared feature extractor is trained to fool the task-specific discriminators
and eventually generates the task-invariant features. The orthogonal loss en-
sures clear distinctions between the task-specific features by the shared feature
extractor and the private features by the task-specific feature extractors.

The task-specific discriminator is excluded during the testing phase and the
inference phase is performed by feeding concatenated features of the private
features and the common features to the multi-head classifiers producing the
final outputs. ACL incurs high complexity because of the application of the
task-specific feature extractors and the task-specific discriminators. We offer a
parameter generator here generating scaling and shifting parameters to perform
feature transformation. Hence, the task-specific features are generated with low
overheads without loss of generalization, while relying only on a single discrimi-
nator to play the adversarial game inducing aligned features. In addition, ACL
relies on an iterative training procedure violating the online continual learning
requirements whereas SCALE fully runs in the one-epoch setting.

Fig. 2: SCALE consists of the parameter generator, the feature extractor, the
multi-head classifiers (the single-head classifier in the domain-incremental learn-
ing problem) and the discriminator. The parameter generator generates the scal-
ing and shifting coefficients converting the common features into the task-specific
features. The task-specific features and the task-invariant features are combined
and feed the classifier. The training process is controlled by the classification loss,
the DER++ loss and the adversarial loss. The training process of the parameter
generator is carried out in the meta-learning fashion minimizing the three loss
functions. The single discriminator is updated by playing an adversarial game
using the cross entropy loss and the DER++ loss.
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5 Learning Policy of SCALE

The learning procedure of SCALE is visualized in Fig 2 and Algorithm 1 where
it comprises four blocks: the feature extractor gθ(.), the parameter generator
Pϕ(.), the multi-head classifiers fφk

(.) (the single-head classifier in the domain-
incremental learning problem) and the single discriminator Dξ(.). The feature
extractor extracts the task-invariant features enabled by the adversarial learning
mechanism with the discriminator predicting the task IDs. Unlike ACL where
task-specific features are produced by task-specific feature extractors, SCALE
benefits from the feature transformation strategy with the scaling parameters Φ1

and the shifting parameters Φ2 produced by the parameter generator. The scal-
ing and shifting parameters modify the common features into the task-specific
features. The classifier receives aggregated features and thus delivers the final
predictions. Since the scaling and shifting parameters assure distinct task-specific
features of those common features, the orthogonal loss is removed. SCALE re-
places the task-specific discriminators in ACL with only a single discriminator.

5.1 Feature Transformation

SCALE does not deploy any task-specific parameters violating the fixed ar-
chitecture constraint [22] rather the parameter generator produces the scaling
and shifting parameters thereby reducing its complexity significantly. We adopt
similar idea of [21,22] where the scaling and shifting parameters creates the
task-specific features via the feature transformation procedure as follows:

g̃θ(x) =
Φ1

||Φ1||2
� gθ(x) +

Φ2

||Φ2||2
(1)

where � denotes the element-wise multiplication. Φ1, Φ2 are the scaling and
shifting parameters generated by the parameter generator Pϕ(t) = {Φ1, Φ2}
taking the task IDs as input features with an embedding layer to produce low-
dimensional features. This implies the parameter generator network ϕ to produce
the scaling and shifting parameters Φ1, Φ2. A residual connection is implemented
to linearly combine the shared and private features:

gθ(x) = g̃θ(x) + gθ(x) (2)

We follow the same structure as [22] where the feature transformation strategy
is implemented per layer with one parameter generator per layer. It is imple-
mented for all intermediate layers except for the classifier in the case of multi-
layer perceptron network while it is only applied to the last residual layer for
convolutional neural network, thus only utilizing a single parameter generator
network. A nonlinear activation function s(.) is usually applied before feeding
the combined features to the classifier fφk

(s(gθ(.))).
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5.2 Loss Function

The loss function of SCALE consists of three components: the cross-entropy (CE)
loss function, the dark-experience replay++ (DER++) loss function [4], and the
adversarial loss function [10]. The CE loss function focuses on the current task
and the previous tasks simultaneously while the DER++ loss function concerns
on the past tasks thus distinguishing the second part of the DER++ loss with
the CE loss function. The adversarial loss function is designed to align features
of all tasks. Suppose that o = fφ(gθ(.)) stands for the output logits or the pre-
softmax responses and l(.) labels the cross-entropy loss function, the loss function
of SCALE is expressed:

L = E(x,y)vDk∪Mk−1
[l(o, y)]︸ ︷︷ ︸

LCE

+E(x,y)vMk−1
[λ1||o− h||2 + λ2l(o, y)]︸ ︷︷ ︸
LDER++

+

E(x,y)vDk∪Mk−1
[λ3l(Dξ(gθ(x)), t)]︸ ︷︷ ︸
Ladv

(3)

where h = fφ(gθ(.))k−1 is the output logit generated by a previous model, i.e.,
before seeing the current task. λ1, λ2, λ3 are trade-off constants. The second term
of LDER++, l(o, y), prevents the problem of label shifts ignored when only check-
ing the output logits without the actual ground truth. The three loss functions
are vital where the absence of one term is detrimental as shown in our ablation
study.

5.3 Meta-training Strategy

The meta-training strategy [27,11] is implemented here to update the parameter
generator Pϕ(.) subject to the performance of the base network fφ(gθ(.)). This
strategy initiates with creation of two data partitions: the training set T ktrain and
the validation set T kval where both of them comprise the current data samples
and the memory samples T k ∪Mk−1. The meta-learning strategy is formulated
as the bi-level optimization problem using the inner loop and the outer loop [22]
as follows:

Outer : min
ϕ

E(x,y)vT k
val

[L]

Inner : s.t {φ∗, θ∗} = argmin
φ,θ

E(x,y)vT k
train

[L]
(4)

where L denotes the loss function of SCALE as formulated in (3). From (4), the
parameter generator and the classifier are trained jointly. Because of the absence
of ground truth of the scaling and shifting coefficients, our objective is to find the
parameters of the parameter generator ϕ that minimizes the validation loss of the
base network. This optimization problem is solvable with the stochastic gradient
descent (SGD) method where it first tunes the parameters of the classifier in the
inner loop:

{φ, θ} = {φ, θ} − α
∑

(x,y)∈T k
train

∇{φ,θ}[L] (5)
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where α is the learning rate of the inner loop. Once obtaining updated param-
eters of the base network, the base network is evaluated on the validation set
and results in the validation loss. The validation loss is utilized to update the
parameter generator:

ϕ = ϕ− β
∑

(x,y)∈T k
val

∇ϕ[L] (6)

where β is the learning rate of the outer loop. Every outer loop (6) involves the
inner loop . Both inner and outer loops might involve few gradient steps as in
[22] but only a single epoch is enforced in SCALE to fit the online continual
learning requirements.

5.4 Adversarial Training Strategy

The adversarial training strategy is applied here where it involves the feature
extractor gθ(.) and the discriminatorDξ(.). The goal is to generate task-invariant
features, robust against the catastrophic forgetting problem. The discriminator
and the feature extractor play a minimax game where the feature extractor is
trained to fool the discriminator by generating indistinguishable features while
the discriminator is trained to classify the generated features by their task labels
[10]. The adversarial loss function Ladv is formulated as follows:

Ladv = min
g

max
D

K∑
k=0

Ik=tk log(Dξ(gθ(x))) (7)

where the index k = 0 corresponds to a fake task label associated with a Gaussian
noiseN (µ,Σ) while Ik=tk denotes an indicator function returning 1 only if k = tk

occurs, i.e, tk is the task ID of a sample x. The feature extractor is trained to
minimize (7) while the discriminator is trained to maximize (7). Unlike [10] using
the gradient reversal concept in the adversarial game, the concept of BAGAN
[18] is utilized where the discriminator to trained to associate a data sample to
either a fake task label k = 0 or one of real task labels k = 1, ..,K having its
own output probability or soft label. A generator role is played by the feature
extractor. The discriminator is trained with the use of memory as with the base
network to prevent the catastrophic forgetting problem where its loss function
is formulated:

Ldisc = Ladv + LDER++ (8)

where LDER++ is defined as per (3) except that the target attribute is the
task labels rather than the class labels. Unlike [22] using two memories, we use a
single memory shared across the adversarial training phase and the meta-training
phase.

6 Experiments

The advantage of SCALE is demonstrated here and is compared with recently
published baselines. The ablation study, analyzing each learning component, is
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Algorithm 1 Learning Policy of SCALE
Input: continual dataset D, learning rates µ, β, α, iteration numbers nin =
nout = nad = 1
Output: parameters of the base learner {φ, θ}, parameters of the parameter
generator ϕ, parameters of the discriminator ξ
for k = 1 to K do

for n1 = 1 to nout do
for n2 = 1 to nin do
Update base learner parameters {θ, φ} using (4)

end for
Update parameter generator parameters ϕ using (6)

end for
for n3 = 1 to nad do
Update discriminator parameters ξ minimizing (8)

end for
Mk =Mk−1 ∪Bk /*Update memory/*

end for

Table 1: Experimental Details
Datasets #Tasks #classes/task #training/task #testing/task Dimensions
PMNIST 23 10 1000 1000 1× 28× 28

SCIFAR-10 20 5 2500 500 3× 32× 32

SCIFAR-10 5 2 10000 2000 3× 32× 32

SMINIIMAGENET 20 5 2400 600 3× 84× 84

provided along with the memory analysis studying the SCALE’s performances
under different memory budgets. All codes, data and raw numerical results are
placed in https://github.com/TanmDL/SCALE to enable further studies.

6.1 Datasets

Four datasets, namely Permutted MNIST (PMNIST), Split CIFAR100 (SCI-
FAR100), Split CIFAR10 (SCIFAR10) and Split MiniImagenet (SMINIIMA-
GENET), are put forward to evaluate all consolidated algorithms. The PMNIST
features a domain-incremental learning problem with 23 tasks where each task
characterizes different random permutations while the rests focus on the task-
incremental learning problem. The SCIFAR100 carries 20 tasks where each task
features 5 distinct classes. As with the SCIFAR100, the SMINIIMAGENET con-
tains 20 tasks where each task presents disjoint classes. The SCIFAR10 presents
5 tasks where each task features 2 mutually exclusive classes. Our experimental
details are further explained in Table 1.

https://github.com/TanmDL/SCALE
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6.2 Baselines

SCALE is compared against five strong baselines: GEM [16], MER [25], ER-
Ring [8], MIR [2] and CTN [22]. The five baselines are recently published and
outperform other methods as shown in [22]. All algorithms are memory-based ap-
proaches usually performing better than structure-based approach, regularization-
based approach [22]. No comparison is done against ACL [10] because ACL is
not compatible under the online (one-epoch) continual learning problems due
to its iterative characteristics. Significant performance deterioration is observed
in ACL under the one-epoch setting. All baselines are recently published, thus
representing state-of-the art results. All algorithms are executed in the same
computer, a laptop with 1 NVIDIA RTX 3080 GPU having 16 GB RAM and 16
cores Intel i-9 processor having 32 GB RAM, to ensure fairness and their source
codes are placed in https://github.com/TanmDL/SCALE.

6.3 Implementation Notes

Source codes of SCALE are built upon [22,16] and our experiments adopt the
same network architectures for each problem to assure fair comparisons. A two
hidden layer MLP network with 256 nodes in each layer is applied for PMNIST
and a reduced ResNet18 is applied for SCIFAR10/100 and SMINIIMAGENET.
The hyper-parameter selection of all consolidated methods is performed using
the grid search approach in the first three tasks as with [7] to comply to the
online learning constraint. Hyper-parameters of all consolidated algorithms are
detailed in the supplemental document. Numerical results of all consolidated
algorithms are produced with the best hyper-parameters. Since the main focus
of this paper lies in the online (one-epoch) continual learning, all algorithms run
in one epoch. Our experiments are repeated five times using different random
seeds and the average results across five runs are reported. Two evaluation met-
rics, averaged accuracy [16] and forgetting measure [7] are used to evaluate all
consolidated methods. Since all consolidated algorithms make use of a memory,
the memory budget is fixed to 50 per tasks.

6.4 Numerical Results

The advantage of SCALE is demonstrated in Table 2 where it outperforms
other consolidated algorithms with significant margins. In SMINIIMAGENET,
SCALE beats CTN in accuracy with over 1.5% gap and higher than that for
other algorithms, i.e., around 10% margin. It also shows the smallest forgetting
index compared to other algorithms with over 1% improvement to the second
best approach, CTN. The same pattern is observed in the SCIFAR100 where
SCALE exceeds CTN by almost 2% improvement in accuracy and shows im-
proved performance in the forgetting index by almost 2% margin. Other algo-
rithms perform poorly compared to SCALE where the accuracy margin is at
least over 9%. and the forgetting index margin is at least over 5%. In pMNIST,
SCALE beats its counterparts with at least 2% gap in accuracy while around 2%

https://github.com/TanmDL/SCALE
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Table 2: Numerical results of consolidated algorithms across the four problems.
All methods use the same backbone network and 50 memory slots per task

Method SMINIIMAGENET SCIFAR100
ACC(�) FM(�) ACC(�) FM(�)

GEM 54.50±0.93 7.40±0.89 60.22±1.07 9.04±0.84
MER 53.38±1.74 10.96±1.57 59.48±1.31 10.44±1.11
MIR 54.92±2.29 8.96±1.68 61.26±0.46 9.06±0.63
ER 54.62±0.80 9.50±1.09 60.68±0.57 9.70±0.97
CTN 63.42±1.18 3.84±1.26 67.62±0.76 6.20±0.97
SCALE 64.96±1.10 2.60±0.60 70.24±0.76 4.16±0.48

Method pMNIST SCIFAR10
ACC(�) FM(�) ACC(�) FM(�)

GEM 71.10±0.47 10.16±0.41 75.9±1.3 12.74±2.85
MER 68.70±0.35 12.04±0.30 79.4±1.51 9.7±1.07
MIR 71.90±0.49 11.74±0.34 79±1.16 9.28±0.91
ER 74.76±0.56 9.06±0.58 79.76±1.26 8.68±1.49
CTN 78.70±0.37 5.84±0.36 83.38±0.8 5.68±1.43
SCALE 80.70±0.46 2.90±0.27 84.9±0.91 4.46±0.4

margin is observed in the forgetting index. SCALE is also the best-performing
continual learner in the SCIFAR10 where it produces the highest accuracy with
1.5% difference to CTN and the lowest forgetting index with about 1% gap to
CTN. Numerical results of Table 2 are produced from five independent runs
under different random seeds.

6.5 Memory Analysis

This section discusses the performances of consolidated algorithms, MER, MIR,
CTN, SCALE under different memory budgets |Mk| = 50, 100, 150, 200 per task.
GEM and ER are excluded here because ER performs similarly to MER and
MIR while GEM is usually worse than other algorithms. The memory analysis
is carried out in the SCIFAR100 and in the SMINIIMAGENET. Our numerical
results are visualized in Fig. 2(a) for the SCIFAR100 and in Fig. 2(B) for the
SMINIIMAGENET. It is obvious that SCALE remains superior to other algo-
rithms under varying memory budgets in the SCIFAR100 where the gap is at
least 1% to CTN as the second best algorithm across all memory configurations.
In SMINIIMAGENET problem, SCALE outperforms other algorithms with the
most noticeable gap in |Mk| = 50 presenting the hardest case. The gap with
CTN becomes close when increasing the memory slots per tasks but still favours
SCALE. Note that the performances of SCALE and CTN is close to the joint
training (upper bound) with increased memory slots in the SMINIIMAGENET,
i.e., no room for further performance improvement is possible.
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(a) (b)

Fig. 3: Consolidated Algorithms under Different Memory Budgets in case of (a)
SCIFAR100, and (b) SMINIIMAGENET

Table 3: Ablation Study: Different Learning Configurations of SCALE

Method SCIFAR10 SCIFAR100
ACC(�) FM(�) ACC(�) FM(�)

A 83.66±1.42 6.26±1.23 68.58±1.88 5.88±2.06
B 76.08±2.83 16.32±3.57 45.32±2.09 27.68±1.95
C 81.68±1.22 7.12±1.63 66.64±1.71 5.76±0.78
SCALE 84.9±0.91 4.46±0.40 70.24±0.76 4.16±0.48

6.6 Ablation Study

This section discusses the advantage of each learning component of SCALE
where it is configured into three settings: (A) SCALE with the absence of ad-
versarial learning strategy meaning that the meta-training process is carried out
only with the CE loss function and the DER++ loss function while removing
any adversarial games; (B) SCALE with the absence of DER++ loss function
meaning that the meta-training process is driven by the CE loss function and
the adversarial loss function while the adversarial game in (8) is undertaken
without the DER++ loss function; (C) SCALE with the absence of parameter
generator network meaning that no task-specific features are generated here due
to no feature transformation approaches. Table 3 reports our numerical results
across two problems: SCIFAR10 and SCIFAR100.

Configuration (A) leads to drops in accuracy by about 2% and increases in
forgetting by about 2% for SCIFAR10 and SCIFAR100. These facts confirm the
efficacy of the adversarial learning strategy to boost the learning performances of
SCALE. Such strategy allows feature’s alignments of all tasks extracting common
features, being robust to the catastrophic forgetting problem. Configuration (B)
results in major performance degradation in both accuracy and forgetting index
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Table 4: Execution Times of All Consolidated Algorithms across All Problems

Dataset Methods Execution Times

pMNIST SCALE 41.33
CTN 52.01
ER 26.28
MIR 23.56
MER 26.80
GEM 28.53

SCIFAR10 SCALE 142.1
CTN 358.5
ER 250.86
MIR 242.52
MER 257.44
GEM 151.96

SCIFAR100 SCALE 108.33
CTN 321.87
ER 211.94
MIR 218.24
MER 222.39
GEM 314.24

SMINIIMAGENET SCALE 193.73
CTN 298.33
ER 290.27
MIR 254.20
MER 261.17
GEM 540.46

across SCIFAR10 and SCIFAR100, i.e., 10% drop in accuracy for SCIFAR10 and
25% drop in accuracy for SCIFAR100; 12% increase in forgetting for SCIFAR10
and 23% increase in forgetting for SCIFAR100. This finding is reasonable because
the DER++ loss function is the major component in combatting the catastrophic
forgetting problem. Configuration (C) leaves SCALE without any task-specific
features, thus causing drops in performances. 3% drop in accuracy is observed for
SCIFAR10 while 4% degradation in accuracy is seen for SCIFAR100. The same
pattern exists for the forgetting index where 3% increase in forgetting occurs
for SCIFAR10 and 1.5% increase in forgetting happens for SCIFAR100. Our
finding confirms the advantage of each learning component of SCALE where it
contributes positively to the overall performances.
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Table 5: Sensitivity Analysis of Hyper-parameters in SCIFAR100
Hyper-parameters ACC (�) FM(�)
λ1, λ2 = 3, λ3 = 0.9 69.5±0.54 5.5±0.44
λ1, λ2 = 3, λ3 = 0.3 69.34±1.04 5.12±0.53
λ1, λ2 = 3, λ3 = 0.09 69.26±1.22 5.2±1.08
λ1, λ2 = 3, λ3 = 0.03 69.88±0.98 4.82±0.55
λ1, λ2 = 1, λ3 = 0.9 69.2±0.76 5.16±0.85
λ1, λ2 = 1, λ3 = 0.3 69.24±0.84 5.44±1.19
λ1, λ2 = 1, λ3 = 0.09 69.8±0.73 4.88±0.90
λ1, λ2 = 1, λ3 = 0.03 70.24±0.76 4.16±0.48

6.7 Execution Times

Execution times of all consolidated algorithms are evaluated here because it is an
important indicator in the online continual learning problems. Table 4 displays
execution times of consolidated algorithms across all problems. The advantage
of SCALE is observed in its low running times compared to other algorithms
in three of four problems except in the pMNIST. SCALE demonstrates signif-
icant improvements by almost 50% speed-up from CTN in realm of execution
times because it fully runs in the one-epoch setting whereas CTN undergoes few
gradient steps in the inner and outer loops. Note that both SCALE and CTN
implement the parameter generator network. This fact also supports the adver-
sarial learning approach of SCALE, absent in CTN, where it imposes negligible
computational costs but positive contribution to accuracy and forgetting index
as shown in our ablation study. Execution times of SCALE are rather slow in
pMNIST problem because the parameter generator is incorporated across all
intermediate layers in the MLP network. The execution times significantly im-
proves when using the convolution structure because the parameter generator is
only implemented in the last residual block. SCALE only relies on one and only
discriminator to produce aligned features while private features are generated
via parameter generator networks.

7 Sensitivity Analysis

Sensitivity of different hyper-parameters, λ1, λ2, λ3, are analyzed here under the
SCIFAR100 where these hyper-parameters control the influence of each loss func-
tion (3). Other hyper-parameters are excluded from our sensitivity analysis be-
cause they are standard hyper-parameters of deep neural networks where their
effects have been well-studied in the literature. Note that the hyper-parameter
sensitivity is a major issue in the online learning context because of time and
space constraints for reliable hyper-parameter searches. Specifically, we select
λ1, λ2 = 1 and λ1, λ2 = 3, while varying λ3 = [0.03, 0.09, 0.3, 0.9]. Table 5 re-
ports our numerical results.

It is observed that SCALE is not sensitive to different settings of hyper-
parameters. That is, there does not exist any significant gaps in performances
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compared to the best hyper-parameters as applied to produce the main results
in Table 2, λ1, λ2 = 1, λ3 = 0.03, the gaps are less than < 1%. Once again,
this finding confirms the advantage of SCALE for deployments in the online
(one-epoch) continual learning problem.

8 Conclusion

This paper presents an online (one-epoch) continual learning approach, scal-
able adversarial continual learning (SCALE). The innovation of SCALE lies in
one and only one discriminator in the adversarial games for the feature align-
ment process leading to robust common features while making use of the fea-
ture transformation concept underpinned by the parameter generator to produce
task-specific (private) features. Private features and common features are linearly
combined with residual connections where aggregated features feed the classifier
for class inferences. The training process takes place in the strictly one-epoch
meta-learning fashion based on a new combination of the three loss functions.
Rigorous experiments confirm the efficacy of SCALE beating prominent algo-
rithms with noticeable margins (> 1%) in accuracy and forgetting index across
all four problems. Our memory analysis favours SCALE under different memory
budgets while our ablation study demonstrates the advantage of each learning
component. In addition, SCALE is faster than other consolidated algorithms in
3 of 4 problems and not sensitive to hyper-parameter selections. Our future work
is devoted to continual time-series forecasting problems.
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