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Abstract. Recommender systems usually face the bias problem, which
creates a gap between recommendation results and the actual user prefer-
ence. Existing works track this problem by assuming a specific bias and
then develop a method to mitigate it, which lack universality. In this
paper, we attribute the root reason of the bias problem to a causality
concept: confounders, which are the variables that influence both which
items the user will interact with and how they rate them. Meanwhile,
the theory around causality says that some confounders may remain
unobserved and are hard to calculate. Accordingly, we propose a novel
Counterfactual Inference for Deconfounded Recommendation (CIDR)
framework that enables the analysis of causes of biases from a causal per-
spective. We firstly analyze the causal-effect of confounders, and then uti-
lize the biased observational data to capture a substitute of confounders
on both user side and item side. Finally, we boost counterfactual infer-
ence to eliminate the causal-effect of such confounders in order to achieve
a satisfactory recommendation with the help of user and item side infor-
mation (e.g., user post-click feedback data, item multi-model data). For
evaluation, we compare our method with several state-of-the-art debias
methods on three real-world datasets, in addition to new causal-based
approaches. Extensive experiments demonstrate the effectiveness of our
proposed method.

Keywords: recommender systems · causal inference · unobserved con-
founders

1 Introduction

Recommender systems (RS) aim to provide personalized suggestions to users
in a wide spectrum of online applications, such as E-commerce (Amazon, Al-
ibaba), social networks (Twitter, Facebook), and search engines (Yahoo, Bing),
by mining user preferences from the user-item interactions (e.g., clicks, views).
However, interaction data are observational rather than experimental, which
makes various biases widely exist in the data [5] such as popularity bias [28], po-
sition bias [11], exposure bias [24], etc. Worse still, the recommendation models
trained on such biased data may not only inherit the bias but also amplify it.

Recent years have witnessed the success of incorporating causality into rec-
ommender systems. [2] used uniform data to guide the model for learning unbi-
ased causal embedding to eliminate the bias. [1] proposed a method to combine
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dual learning and Inverse Propensity Weighting (IPW) and constructed an unbi-
ased propensity model to remedy the position bias. [24] considered the exposure
bias from the perspective of item exposure features, and leveraged causal infer-
ence to eliminate the exposure bias. However, these methods do not consider
of the root reason of the bias. Inspired by [18], we argue that the existence of
most data biases is attributed to a causal inference concept—confounders. Con-
founders are variables that impact both the treatment assignments (which items
the users view) and the outcomes (how they rate them). The reason for con-
sidering confounding bias as the root reason for the data bias problem is that
biases in RS, such as popularity bias, position bias, and exposure bias, all have
the same mechanism of effect, i.e., they all affect what items the user were rec-
ommended (treatments) and the user’s decision (outcomes). Therefore, we treat
confounding bias as a collection of various data biases from the causal-effect
perspective. Because RS data are observational rather than experimental, it is
difficult to conduct a fine-grained analysis of the differences between covariates
and confounders. To simplify this issue, we considered confounders as a set of
covariates [26]. Hence, eliminating the confounding bias is crucial to enhancing
the recommendation effectiveness.

Confounders are problems that exist in real-world applications, while many
confounders cannot be directly observed [21], which leads to bias learning issues.
From a causal perspective, the conventional rating prediction can be treated as
the result of two causal-effect paths: user-rate path and item-rate path (Figure
1(a)). Unfortunately, embedding-based recommendation models, such as matrix
factorization (MF) [13], does not provide an unbiased inference of rating predic-
tion by these two paths due to the hidden confounder.

To overcome these obstacles, we first analyze the causality in RS and abstract
a causal diagram (Figure 1(b)), where we introduced the cause of confounding
bias, confounders, as a node. In our view, there are three paths affecting the
probability of an interaction: user-rate path, item-rate path and confounder-rate
path. However, existing works mainly concentrate on finding a better calcula-
tion for user/item-rate paths [12], thus ignore the effects of confounders. As
mentioned in [26], the confounders are hidden in the exposure data, which is a
form of implicit data (e.g., clicks, views) in recommender systems. So we argue
that confounders exist in the implicit data, which can be represented by fitting
an embedding using implicit data. In this regard, we propose the Counterfactual
Inference for Deconfounded Recommendation (CIDR), which uses implicit data
to estimate a substitute for the confounders, unitizes side data (i.e., user post-
click feedback data and item multi-model data) to extract the true user/item
features, and obtains the negative impact of confounders on the generation of
recommendations by causal-effect analysis. In the end, CIDR applies counterfac-
tual inference to reduce the bad effect of confounders and emphasizes the true
user/item feature. In this way, we attain a robust and unbiased rating predic-
tion model. We instantiate CIDR on MMGCN [29], which is a state-of-the-art
multi-model recommendation model that takes full advantage of user and item
extra features. Extensive experiments over three benchmarks demonstrate that
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our CIDR not only alleviates confounders effectively but also improves the rec-
ommendation accuracy over the backbone models.

The main contributions of this work are as follows:

– We construct a causal graph and then analyze how confounders affect the
RS models, which reveals the relationship between confounders and the bias
problem from a causal-effect perspective.

– We propose a novel CIDR framework with counterfactual learning to capture
a substitute representation of confounders in order to mitigate the bad effect
of it and emphasize the true user preference via side information.

– We instantiate the proposed framework on MMGCN and validate it on three
widely used real-world datasets. Extensive experiments are conducted to val-
idate the effectiveness of our proposal.

2 Methodology

2.1 Preliminary

Basic Notations In this paper, we use capital letters to represent random
variables (e.g., X, Y , M). We use lowercase letters to represent the specific real-
izations of such random variables (e.g., x, y, m). We use uppercase calligraphy
to denote a set (e.g., U ,V). We utilize bold-font lowercase letters to represent the
latent vector embedding of users, items, and other elements, such as u, v ∈ RK ,
where RK are the dimension of embedding vectors.

Basic Concept of Causal Inference

Definition 1 (Causal Graph). A causal graph is a directed acyclic graph
(DAG) G=(N , E), which consists of a set of nodes (N ) representing the variables
in U and V, and a set of edges (E) between the nodes representing the functions
in F , which is a collection of function that assign a value to each variable V
based on the values of other variables in the model.

Definition 2 (Counterfactual Inference). Counterfactual inference is a method
for estimating what the descendant variables would be if the value of one treat-
ment variable was different from its real value in the factual world.

We simply use Yx∗ = y to denote the counterfactual situation, “Y ” would be
y had X been x∗, though the observed value of X in the real world is not x∗.

Definition 3 (Causal Effect1). The causal effect of a binary random variable
X on another random variable Y is defined as,

P (y|do(X = 1))− P (y|do(X = 0), (1)

which reflects comparisons between two potential outcomes of the same vari-
able given two different treatments

1 In this work, we follow [28] and [17] to define the causal effect on individual rather
than a population.
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In the next section, we will further analysis the recommendation from the
view of such causal effect and explore the causal effect of confounders on recom-
mendation results.

Fig. 1. The causal graph of conventional recommendation models and our proposed
CIDR, where node U, I, C, L,M , and Y denote the user features, item features, user
preference, item content features, substitute confounders, and prediction score, respec-
tively. And * represents the reference value of random variables. (a) Example of a
conventional recommendation models. (b) Our proposed causal graph. (c) The factual
world. (d) The counterfactual world.

2.2 Causal look in Recommendation

Link to Conventional Recommendation. In Figure 1(a), we first abstract
a causal graph to describe the process of data generation in conventional RS
models, where node U, I, C, and Y denote the user features, item features, con-
founders, and prediction score, respectively. We use edges to denote causal ef-
fects, where C→U(I) means the direct effect comes from confounders on user
(item) features, and U(I)→Y means user (item) features will directly affect the
prediction score. C→U(I)→Y denotes the indirect effect comes from confounders
to the predictions via the mediators U and I.

However, the lack of consideration of C makes these predictions made by
conventional RS models mismatch the historical interactions and misrepresent
user preference and item attribution. For instance, considering an item at the
top of the recommended list, users may click on it simply because they trust the
recommendation systems rather than like this item. From a causal perspective,
there is a direct effect of position (i.e., confounder) on clicking behavior.

Link to Deconfounded Recommendation. To bridge this gap, we scruti-
nize a new causal graph (Figure 1(b)), where we add a new direct path from
confounders to prediction score (C→Y ). Meanwhile, recall that the presence of
confounders will cause user/item representations to be skewed. So we also add
two new nodes, M and L, two new direct edges, L→U and M→I, to obtain
more accurate user/item features. M and L denote content features extracted
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from item multi-model data and user preferences learned from positive post-click
feedback, respectively. Formally, we formulate the prediction score as:

ŷuic = Yu,i,c = Y (U = u, I = i, C = c), where

u = U(C = cu, L = l), i = I(C = ci,M = m),
(2)

where Y (), U(), and I() denote as the score function of Y , and the aggregation
function of U and I. c denotes the substitute representation of the confounders,
cu, ci, are the subdivision substitute confounders of such direct effect on user and
item side, respectively. In this manner, the RS model can capture both direct and
indirect effect of confounders. We further analyzed the proposed causal graph.
From this graph, an observation can be concluded.

Observation. Confounders will affect the prediction score from both the di-
rect and indirect path.

The indirect effect C→(U, I)→Y denotes that confounders alter the exposure
likelihood of items and users’ activities, causing the user (item)’s representation
to be disrupted. Finally, the indirect effect is included in the predictions. Such an
indirect effect, however, may be reasonable. For example, a user may particularly
enjoy romantic films, occasionally like action films, and dislike other genres (i.e.,
genres as a confounder). As a result, it’s natural to recommend more romantic
movies to him or her. In other words, making decisions with such an indirect
effect in mind is appropriate.

In contrast, the direct path C→Y indicates that confounders blend the pre-
diction score with confounding biases, which means that the recommendation
model gives recommendations only with the consideration of confounders. In the
prior example, such a direct effect may lead to the model only recommending
romantic movies regardless of action or other movies-something that is illogical
and should be avoided. As the conventional RS model usually ignores such ef-
fects, such model will inevitably emphasize the bad effect of confounders while
missing the actual user preference and item attribution. Based on the above
analyses, we make the following hypothesis:

Hypothesis. There is a lack of consideration of such a direct effect, resulting
in the recommendation model capturing skewed user preference and amplifying
the bad effect of confounders. Thus, such an effect has to be eliminated when
formulating the predictive model.

2.3 Deconfounded Analysis

Following the definitions in [18–20], we formulate the total effect (TE) from
confounders C to prediction score Y as:

TE = Yu,i,c − Yu∗,i∗,c∗ , (3)

where u∗ and i∗ are the reference value of U and I, which indicates that the U
and I does not have their own characteristics, and the corresponding attributes
are all the same for all users and items. Note that we treat the average value as
the reference value.
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Recall that RS models may suffer from the spurious correlation between
confounders and prediction scores, resulting in unsatisfactory recommendations.
Therefore, we expect RS models to eliminate the direct effect of confounders.
Based on the causal graph in figure1(b) and the intervention [17], such an effect
can be denoted by the natural direct effect (NDE) of confounders on predictions:

NDE = Yu∗,i∗,c − Yu∗,i∗,c∗ , (4)

Yu∗,i∗,c stands for the prediction score under no-treatment intervention do(U=u∗)
and do(I=i∗), and corresponds to a counterfactual thinking: What the prediction
score would be if the recommendation result can only be affected by the confound-
ing bias? Yu∗,i∗,c∗ is the reference value (i.e., constant for any users and items).

Since the effect of C on the mediator U(I) is blocked, NDE explicitly captures
the confounding bias. Furthermore, the reduction of confounding bias can be re-
alized by subtracting NDE from TE and then get the total indirect effect (TIE).
The implication is that RS models should not make predictions based on con-
founders alone, but formulate predictions taking a combination of confounders
and user (item) features. We formulate the TIE as:

TIE = TE −NDE = Yu,i,c − Yu∗,i∗,c. (5)

2.4 Deconfounded Recommendation Model

The causal effect is estimated by comparing two states of Y , the prediction score,
for example, Yu,i,c and Yu∗,i∗,c in Equation (5) correspond to the prediction score
of normal strategies, and the Y affected by the effect of confounders alone (figure
1(d)), respectively. In words, we formulated the causal effect based on comparing
the value of Y in different states. Now, we use the TIE from Equation (5) as the
deconfounded prediction score.

ŷuic = TIE = Yu,i,c − Yu∗,i∗,c. (6)

By using TIE for recommendation prediction, we can mitigate spurious cor-
relation between confounders and prediction scores. So the next key question is
how we can obtain such alternative representations of confounders to estimate
the causal effect of it. In this work, we treat the exposure data as the evidence of
confounders exists in the data (refer [9, 26] for details and proof which we omit
for brevity). We use MMGCN to train on both such exposure (confounded) data
and user post-click feedback data to obtain confounded , preference (content)
representations of user (item). Formally, we obtain the user preference represen-
tation l, user confounded representation cu, item content feature m, and item
confounded representation ci.

Once we obtain the above representations, we can calculate the prediction
score now. Specifically, we split Yu,i,e and Yu∗,i∗,c into six different scores, Yu,i,
Yu,ci ,Ycu,i, Yu∗,i∗ ,Yu∗,ci , and Ycu,i∗ . Then, we calculate the values of these com-
ponents by: Yu,i=lTm, Yu,ci=lTci, Ycu,i=cu

Tm, Yu∗,i∗=EYu∗,i∗ , Yu∗,ci=EYu∗,ci
,

Ycu,i∗=EYcu,i∗ .
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Fusion Strategy. Next, with the motivation of integrating the newly added
confounded score Yu,ci , Ycu,i, Yu∗,ci , and Ycu,i∗ with conventional score Yu,i and
Yu∗,i∗ . Inspired by [17], we calculate the values of these two predictions via a
classical fusion strategy, Multiplication, which can be formulated as:

Yu,i,c = f(Yu,i, Yu,ci , Ycu,i) =Yu,i∗(σ(Yu,ci)+σ(Ycu,i)),

Yu∗,i∗,c = f(Yu∗,i∗ , Yu∗,ci , Ycu,i∗) =Yu∗,i∗ ∗(σ(Yu∗,ci)+σ(Ycu,i∗)),
(7)

where σ represent the non-linear sigmoid function.

Algorithm 1: CIDR Algorithm

Input: Dataset, including observed interactions as user-item pair (p, q),
the user preference representation l and user confounded
representation cu for all users, and the item content feature m
and item confounded representation ci for all items;
regularization parameters α, β for the two joint tasks; L2-norm
regularization weight: λθ.

Output: Prediction Y
1 while stop condition is not reached do
2 Read batch of training samples ;
3 for each batch in training set do
4 Loss ← 0 ;
5 for each training sample (p, q) in the batch do

6 Yu,i←lp
Tmq ;

7 Yu,ci←lp
Tcqi ;

8 Ycu,i←cpu
Tmq ;

9 k←Yu∗,i∗←EYu∗,i∗ ;

10 Yu∗,ci←EYu∗,ci
;

11 Ycu,i∗←EYcu,i∗ ;

12 Loss←Loss + Lu,i + α∗Lcu + β∗Lci + λθ||Θ||22
13 end
14 Y←Yu,i,c − k ∗ σ(Yu∗,ci)− k ∗ σ(Ycui∗)

15 end

16 end
17 return Y

Deconfounded Training. Based on the analysis before, we need to optimize
the prediction score Yu,i,c from the factual world and Yu∗,i∗,c from the counter-
factual world. We adopt multi-task learning to train the CIDR model with the
following learning objective function:

L = Lui + α ∗ Lcu + β ∗ Lci + λθ||Θ||22
= l(Yu,i, Y ) + α ∗ l(Ycu,i, Y ) + β ∗ l(Yu,ci , Y ) + λθ||Θ||22

(8)
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where α and β are the hyper-parameters to tune the relative weight of tasks.
Lu,i is the loss function of task of capturing user preference and item content
features from side data. Lcu and Lci are the loss function of user side task and
item side task for capturing the confounded user and item representation. l is
the BPR loss and Y is the label from the training epochs. Yu,ci and Ycu,i can
be estimated by forcing the model to accept the ci and cu as the item and user
representation, respectively. Θ and λθ denote parameters of the model and the
L2-normalization weight.
Counterfactual Inference. To eliminate the direct effect of causal path C→Y
from the rating prediction. We calculate predictions and perform the following
reduction to eliminate such bad effects:

Y = Yu,i,c − Yu∗,i∗,c = Yu,i,c − k ∗ σ(Yu∗,ci)− k ∗ σ(Ycu,i∗) (9)

where k is the expectation of Yu∗,i∗ , formulated as k=E(Yu∗,i∗), which means
that the model does not accept user/item feature as input. The overall algorithm
is provided in Algorithm 1.

3 Experiments

In this section, we conduct experiments to evaluate the effectiveness of the pro-
posed CIDR framework by answering the following three research questions:

– RQ1: Does CIDR outperform state-of-the-art methods?
– RQ2: How do the different components (i.e., user bran-ch, item branch) and

hyper-parameters affect the performance of CIDR?
– RQ3: Does CIDR handle the confounder problems universally?

Table 1. Statistics of three different datasets.

Dataset #Users #Items #Interactions #Sparsity #Likes

Adressa 31,123 4,895 1,437,540 0.00944 998,612

Tiktok 18,855 34,756 1,493,532 0.00228 589,008

Coat 290 300 6960 0.08 1905

3.1 Experimental Settings

Datasets. We use three real-world datasets for evaluation, with their statistics
shown in Table 1. Tiktok [29] is a micro-video dataset released by ByteDance.
Notably, actions of favorite and finish are used as the positive post-click feedback.
Adressa [10] is a news reading dataset from Adressavisen. We use the pre-
trained Bert [6] to derive the textual features. It should be noted that the dwell
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Table 2. Performance comparison between CIDR and the baselines for the two real-
world datasets (* indicate p < 0.05 in t-test). The best results are highlighted in bold,
and underlined values denote the best results of baseline methods.

Method Adressa Tiktok

P@10 P@20 R@10 R@20 N@10 N@20 P@10 P@20 R@10 R@20 N@10 N@20

BPRMF 0.0480 0.0401 0.0941 0.1503 0.0781 0.0992 0.0206 0.0203 0.0314 0.0606 0.0311 0.0399
MMGCN 0.0501 0.0415 0.0975 0.1612 0.0817 0.1059 0.0256 0.0231 0.0357 0.0635 0.0333 0.0430
CT 0.0493 0.0428 0.0951 0.1611 0.0799 0.1051 0.0217 0.0194 0.0295 0.0520 0.0294 0.0372
NR 0.0499 0.0415 0.0970 0.1610 0.0814 0.1058 0.0239 0.0216 0.0346 0.0605 0.0329 0.0424
RR 0.0521 0.0415 0.1007 0.1612 0.0831 0.1059 0.0264 0.0231 0.0383 0.0635 0.0367 0.0430

IPS 0.0419 0.0361 0.0804 0.1378 0.0663 0.0883 0.0230 0.0210 0.0334 0.0582 0.0314 0.0406
MACR 0.0524 0.0432 0.1023 0.1677 0.0863 0.1111 0.0313 0.0277 0.0472 0.0812 0.0443 0.0563
CR 0.0532 0.0439 0.1045 0.1712 0.0878 0.1133 0.0269 0.0242 0.0393 0.0683 0.0376 0.0476
PDA 0.0578 0.0478 0.1057 0.1729 0.0914 0.1167 0.0340 0.0301 0.0466 0.0789 0.0461 0.0573

CIDR* 0.0631 0.0509 0.1280 0.2041 0.1072 0.1362 0.0361 0.0322 0.0526 0.0841 0.0514 0.0628
%Improv. 9.17% 6.49% 21.1% 18.1% 17.3% 16.7% 6.18% 6.98% 11.4% 3.57% 11.5% 9.60%

time>30 seconds reflects the like of users [33]. Coat [25] follows the MNAR and
the MAR assumption for training and test datasets (i.e., uniform test dataset).

For Adressa and Tiktok, we randomly split the interactions into the training,
validation, and testing subsets with a ratio of 80%, 10%, and 10%, respectively.
For each click, we randomly choose an item the user has never interacted with
as the negative sample to create the triples for training.

Since the original observational data are biased by the confounders [5], in
this work, we treat the post-click feedback data (i.e., like) as the evaluation tool.
For Coat, we use the original uniform test data as the test set (i.e., uniform data
for evaluation). The motivation for using different test set settings is to check
the performance of CIDR on multiple tasks.
Baselines. Due to the need for item multi-model data, we implemented our
CIDR with the SOTA multi-modal recommender model MMGCN [29], and com-
pared CIDR with various SOTA methods. In consideration of fairness, all meth-
ods are instantiated on MMGCN or add pre-trained side embeddings. BPRMF
[13] is the classical MF model with BPR loss. MMGCN [29] is the normal train
of MMGCN. CT We train the MMGCN with a clean train (CT) setting [24],
where only items of user like are treated as positive samples. NR [30] adopt
the Negative feedback Re-weighting (NR) to reweight the samples. RR [16] re-
rank the top 20 items recommended by MMGCN. Besides, we also compared
four SOTA causal inference models. IPS [21] adds the Inverse Propensity Score
to reweight samples. CR [24] leverages counterfactual reasoning to alleviate
the clickbait issue. PDA [34] performs deconfounded training with causally in-
tervenes the popularity bias. MACR [28] utilizes counterfactual reasoning to
eliminate the popularity bias.
Evaluation Metrics and Hyper-parameters. We adopt three popular met-
rics including Precision(P@K), Recall(R@K), and NDCG@K (N@K) to evaluate
the performance of the recommendation models.
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Table 3. Performance comparison over coat dataset (* indicate p < 0.05 in t-test).
The best results are highlighted in bold, and underlined values denote the best results
of baseline methods.

Method Coat

P@10 P@20 R@10 R@20 N@10 N@20

BPRMF 0.0497 0.0515 0.0320 0.0604 0.0507 0.0591
MMGCN 0.0505 0.0520 0.0327 0.0620 0.0531 0.0599
CT 0.0488 0.0499 0.0317 0.0600 0.0493 0.0570
NR 0.0511 0.0533 0.0330 0.0622 0.0528 0.0601
RR 0.0523 0.0558 0.0329 0.0611 0.0541 0.0619

IPS 0.0494 0.0506 0.0301 0.0609 0.0502 0.0588
MACR 0.0596 0.0580 0.0372 0.0650 0.0611 0.0658
CR 0.0535 0.0561 0.0344 0.0630 0.0547 0.0621
PDA 0.0589 0.0577 0.0369 0.0661 0.0604 0.0631

CIDR* 0.0629 0.0617 0.0415 0.0685 0.0691 0.0707
%Improv. 5.54% 6.38% 11.6% 3.63% 13.1% 7.45%

For a fair comparison, all methods are optimized by BPR loss. We optimize
all models with the Adam optimizer with a batch size of 1,024 and default choice
of learning rate (i.e., 0.001). For our CIDR framework, the multi-task trade-off
parameters α and β in Eq. (8) are tuned in {0, 1, 2, 3, 4, 5, 6} and set to 2
and 1 through extensive experiments. Other hyper-parameters for our method
and baselines are tuned by grid search. Furthermore, we use the early stopping
strategy that stops training if Recall@10 on the validation data does not increase
for 10 epochs. The L2 regularization coefficient is set to 0.001 by default.

3.2 Performance Comparison (RQ1)

Table 2 and 3 presents the overall performance comparison of the baseline models
on three datasets. From the table we can conclude the following:

– RR can achieve a better result than MF and other conventional methods,
which validates the effectiveness of leveraging post-click feedback data to
alleviate the effect of confounders. Although post-click feedback data are
introduced into both NR and CT, they perform worse than RR, e.g., the
P@10 and N@10 of NR decrease by 10.5% and 6.94% on Adressa dataset,
which can be explained by the sparsity of post-click feedback. Due to the
lack of training interactions, it is hard to generalize better user and item
representations through such models.

– In most cases, there is a gap between the performance of conventional meth-
ods and causal inference approaches. For example, CR, PDA, and MACR
outperform conventional methods. The performance gain indicates that the
theory of causality has huge improvements on debias recommendation. How-
ever, IPS produces the worst result compared to all baseline methods on the
Adressa dataset and attains a second-to-last result on the Tiktok dataset.
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We ascribe such inferior performance to the inaccurate estimation and high
variance of propensity scores, and the lack of stability on different datasets.
PDA achieves the best results over other baseline models due to the lever-
aging of popularity bias, which improves the probability of recommend an
item that has the potential to be popular (i.e., desired popularity bias).

– Without any doubt, in all cases, our CIDR framework consistently outper-
forms all baselines across all datasets and metrics. Specifically, CIDR makes
over 10% relative improvements with respect to R@10 and N@10 over three
datasets. This verifies that our CIDR can learn better debias configurations
and user preferences than the others, which is attributed to the effectiveness
of our multi-task learning, causal effect analysis of confounders, and counter-
factual inference. In particular, CIDR outperforms SOTA causal inference
method CR, PDA, and MACR. This can be explained by the idea of captur-
ing the causal effect of substitute confounders on rating predictions and the
use of side information, which can better capture the users and items rep-
resentations, thereby improving the effectiveness of counterfactual inference
to eliminate the effect of confounders.

Fig. 2. Effect of Hyper-parameters α and β.

3.3 Case Study (RQ2)

We further evaluate the performance of CIDR on Adressa dataset as an example.
Effect of Hyper-parameters. To explore the influence of these two side losses,
we conduct experiments with the value of α, β within {0, 1, 2, 3, 4, 5, 6}. It should
be noted that while varying one parameter, the other one is set as constant 1.
The effect of α and β on the performance is visualized in Figure 2. Analyzing
this figure from top to bottom, we can observe that:

– The performance of CIDR enhances with the increase of α from 0 to 2, which
demonstrates the importance of capturing the effect of confounders over user
side. Similarly, while varying β from 0 to 1, the performance improves, which
means that the benefit of capturing the item side substitute confounders.
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– However, when α and β surpasses a threshold (2 or 1), the performance dete-
riorates with the increase of these parameters. We ascribe such inferior per-
formance to the overthinking of confounders affecting the user and item rep-
resentation. Therefore, we need to control α and β within a certain threshold.

Table 4. Comparison for different model variants on Adressa.

Method P@20 R@20 NDCG@20

CIDR 0.0509 0.2041 0.1362
CIDR w/o inference 0.0435 0.1704 0.1197
CIDR w/o user branch 0.0459 0.1792 0.1202
CIDR w/o item branch 0.0479 0.1856 0.1268
CIDR w/o side information 0.0477 0.1866 0.1247

Effect of Inference Strategy and User/Item Branch. We first attempt
to answer the two following questions: Is it necessary to conduct the inference
strategy? How do user branch and item branch affect the performance of our
CIDR? To this end, five variants are given: “CIDR w/o inference”, where we re-
move the inference of counterfactual reasoning and predict the ratings via TE of
L=l, C=c, M=m; “CIDR w/o user branch” and “CIDR w/o item branch”, where
we remove the process of capturing user (or item) confounded representations
for evaluation (i.e., remove the confounded causal effect for inference); “CIDR
w/o side information”, where we simply remove the task of Lu,i on training but
retain its effect on prediction. Table 4 shows the performance comparison of
these variants. We can observe that CIDR w/o inference outperforms MMGCN,
which can be explained by the effectiveness of calculating the prediction from a
causality view (i.e., TE). Meanwhile, both user and item inference improve the
performance, which indicates that eliminating the direct effect of confounders
indeed helps the RS models to perform better. Moreover, incorporating side in-
formation does provide a more accurate representation of user preference and
item content features, but its generalization ability is obviously insufficient, re-
sulting in poor results (same for CT). This may result in a lack of diversity in
the recommendation results.

3.4 Deconfounding Capability (RQ3)

Here, we thoroughly investigate the capability of CIDR for eliminating the con-
founding bias issue. Specifically, we discuss the capability of CIDR with respect
to the following two tasks:

– Does CIDR achieve a satisfying recommendation?
Following [24], we use likes/clicks ratios to express the user satisfying. In Fig-
ure 3, we present the comparison on Adressa dataset, where we abstract top-20
items in the recommended lists and measure the frequency of recommended.
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We observed that CIDR achieves the best performance, where items with ra-
tios lower than 0.4 are seldom recommended to the user, and CIDR more likely
to give recommendations with ratio higher than 0.6. These enhancements will
be more significant in real-world massive data scenarios.

Fig. 3. Visualization of the averaged recommendation rate (RR) and the relative
improvement (RI) of CIDR over CR for item groups with different likes/clicks ratios.

(a) Recommendation Rate (RR) (b) Average Recall over groups

Fig. 4. Average item Recall and RR over groups on Adressa.

– If confounding bias is the collection of various biases, does CIDR
eliminate these biases such as popularity bias? We report the relative
recommendation rate (RR) of different groups in Figure 4 (a), and we conduct
in Figure 4 (b) an experiment to show the average recall over groups. We
divided items into five groups according to their popularity, and recommend
20 items for each user to calculate the average item recall over the groups.
As shown in Figure 4 (b),
our CIDR has higher recall on each group than MMGCN and CR, which
indicates the superiority of our method. However, the relative recommendation
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rate of our CIDR model on the last group is reduced, which can be explained
by the fact that our model mitigates the problem of over-exposure of popular
items and makes more recommendations based on user preferences and item
attributions rather than the popularity.

4 Related Work

In this section, we explore existing works that are highly relevant to our paper,
which can be summarized to three topics: confounders and bias problem in the
recommender system, and causal recommendation.

4.1 Debiasing in Recommender Systems

In order to bridge the gap between observation data and actual user preferences,
previous researchers focused on eliminating the effect of various biases. A line of
existing works mainly study the effects of bias from the aspect of data. For ex-
ample, the causal embedding-based methods [2] utilize a small unbiased data by
intervention to eliminate popularity bias. Data distribution aspect method [22]
focused on solving the data miss-not-at-random problem to eliminating selection
bias and exposure bias. Besides, meta-learning [4] and knowledge distillation [15]
also achieve state-of-the-art debias performance. Another line of research pays
attention to removing the influence of such bias on rating prediction, where two
type of methods are mostly used: IPS based methods [35] aim to re-weight each
instance as the inverse of corresponding item bias (e.g., popularity, position,
exposure) score, and re-rank methods utilize regularization [30].

4.2 Deconfounded in Recommender Systems

In recent years, many researches have explored the confounding bias problem [27]
from various perspectives; some attributed the problem of confounders to the
recommendation model and algorithm [3]. Other studies [27,32] tried to learn a
substitute of confounders by a factor model. Different from these approaches, we
explored the confounders issues from a novel causal view and leveraged counter-
factual inference to eliminate the negative causal-effect of such confounders.

4.3 Causal Recommendation

The theory of causality has been used in various domains, as for its application
for RS [8, 14, 31, 32], most studies are paid attention to debias such as position
bias [11], conformity bias [35], and popularity bias [28, 34]. The most popular
methods can be divided into three types: The first comprises the aforementioned
IPS based methods. The second includes causal intervention methods that cut
the influence of prior biases from prediction score. However, because the sample
space is too large, their approximation of scores over the intervention terms is
subject to large variance and lacks stability. The last method is counterfactual



Counterfactual Inference for Deconfounded Recommendation 15

inference that adjusts the rating prediction by reducing the effect of confounder
or bias [7]. Another line of works are dedicated to using causality to improve
the interpretability of the recommender system [23]. However, the current causal
recommendation seldom leverages the causal effect of both user side and item side
information, and simply treats the observational data as the true representation
of user preference and item attribution. Moreover, they ignore how confounded
observations influence the recommendation effectiveness.

5 Conclusion and Future Work

In this work, we attribute the root reason of bias problem to a causal concept,
namely, confounders. We further present the CIDR framework that first cap-
tures substitute confounders represented both on user side and item side from
click data, and then leverages the theory about causality to measure the effect
of confounders in the recommendation model. Finally, we boost counterfactual
inference to eliminate such effects from the prediction score.
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