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Abstract. Neural networks follow a gradient-based learning scheme,
adapting their mapping parameters by back-propagating the output loss.
Samples unlike the ones seen during training cause a different gradient
distribution. Based on this intuition, we design a novel semi-supervised
anomaly detection method called R2-AD2. By analysing the temporal
distribution of the gradient over multiple training steps, we reliably de-
tect point anomalies in strict semi-supervised settings. Instead of domain
dependent features, we input the raw gradient caused by the sample un-
der test to an end-to-end recurrent neural network architecture. R2-AD2
works in a purely data-driven way, thus is readily applicable in a variety
of important use cases of anomaly detection.

Keywords: Anomaly Detection · Semi-supervised Learning · Deep Learn-
ing · Data Mining · IT Security

1 Introduction

Anomalies are inputs that significantly deviate from the given notion of normal.
Depending on the use case, anomalies may lead to attacks on the infrastructure,
fraudulent transactions or points of interest in general. In recent years, research
on semi-supervised anomaly detection (AD) gained traction (e.g. [31, 28, 37]),
where we leverage prior knowledge about the anomalous distribution to boost the
overall detection performance. This setting is often found in real-world settings,
where a few anomalies have already been detected manually while the rest are
unknown. Unlike classification tasks, a semi-supervised AD method should not
just differentiate between normal inputs and known anomalies, but also reveal
yet unseen types of anomalies.

The lack of absolute training data modelling all types of anomalies compli-
cates the use of machine learning algorithms with an automatic feature selection,
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e.g. deep learning (DL) methods. In our research, we alleviate this problem by
analysing an abstract representation of the input: its temporal gradient distribu-
tion. Intuitively, a neural network (NN) trained only on the known normal data
will fail to process anomalies in the same manner. We analyse this discrepancy
with the help of an auxiliary NN. To reduce the manual work and domain expert
knowledge required, we designed our AD method to be purely data-driven. In-
stead of hand-crafted features, we analyse the raw gradient caused by individual
inputs for anomalous patterns. In our thorough empirical study, we show that
our method generalises to several use cases and data types. Based on this prin-
ciple, we call our novel AD method R2-AD2, raw gradient anomaly detection.
In summary, our contributions to AD research are:

– We introduce a novel data-driven end-to-end neural architecture to analyse
the temporal distribution of the gradient to detect point anomalies.

– To the best of our knowledge, R2-AD2 is the first semi-supervised AD
method based on the analysis of gradients.

– We thoroughly analyse the performance gain by R2-AD2 on ten data sets
against five baseline methods.

– To support future research, we open-sourced4 our code.

1.1 Related Work

R2-AD2 is a DL-based, semi-supervised AD method building on the analysis of
the input’s gradient space. In the following, we discuss related work from all of
the three categories. For a broader overview on AD, we recommend the surveys
of Pang et al. [27] and Ruff et al. [30].

Anomaly Detection based on Deep Learning Methods DL methods deliver high
performance even on complex inputs, but are data-demanding. Due to the inher-
ent class imbalance of AD, it is challenging to apply DL methods. Over the past
years, a variety of solutions arose, which we loosely group in three categories:
methods based on 1) the reconstruction error, 2) the distance to the training
data and 3) end-to-end architectures. Reconstruction-based methods use a rep-
resentation or distribution estimation method, e.g. autoencoders (AEs) [5, 40, 2]
or generative adversarial nets (GANs) [33, 22, 1]. Intuitively, when the network
is fitted on the normal data, there is a measurable difference between the recon-
structed and the input sample when an anomaly is processed. The main problems
are noisy data sets, causing a low reconstruction error for some anomalies, and
anomalies close to normal samples, which are easy to reconstruct. Distance-based
methods, e.g. one-class classifiers [6, 31, 36], introduce a transformer network. Us-
ing a suitable metric, the transformer network maps normal samples close to each
other, but anomalies far away. Problems may arise when the data set contains
multiple notions of normal, which cannot be mapped to the very same centre
of normality. R2-AD2 uses an end-to-end neural architecture, directly mapping

4 https://github.com/Fraunhofer-AISEC/R2-AD2
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Table 1: Work across different detection domains analysing the gradient space.

Unsupervised Semi-supervised Supervised

Anomaly Det. [18, 17] R2-AD2 –
Out-of-Distr. Det. [15, 38] [20] –
Adversarial Det. – – [7, 23, 34, 21]

the input to an anomaly score. Usually, end-to-end architectures [26, 28, 37] re-
quire normal as well as anomalous training samples. However, manually finding
anomalies is a time-consuming and error-prone process. Research on substituting
real anomalies by artificially created ones, e.g. geometric transformations [8, 3] or
out-of-distribution (OOD) samples [12], tries to solve this issue. These methods
need careful adaptations to the respective data set. In R2-AD2, we mitigate the
problem by using a simple source for trivial anomalies: a Gaussian distribution
as done in A3 [37]. Our evaluation motivates that our analysis in the gradient
space of NNs allows to find a suitable boundary between real normal and real
anomalous samples even with this simple source for counterexamples.

Semi-supervised Anomaly Detection In the past years, research about semi-
supervised AD has gained traction. In real-world scenarios, a few known anoma-
lies – much less than the normal samples – may already be available. These
known anomalies may have been found manually or by an unsupervised AD
method. Semi-supervised AD methods use this kind of prior knowledge to boost
the overall detection performance. DeepSAD [31] is a semi-supervised extension
of one-class classifiers. Deviation Networks (DevNet) [28] is based on distance
metrics. The authors of A3 [37] analyse the hidden activations of NNs for anoma-
lous patterns. Reconstruction errors are evaluated in ABC [44] and ESAD [14].
Expanding the view to OOD detection, DROCC [9] uses generated counterexam-
ples based on the prior knowledge about real anomalies. For semi-supervised AD
methods, the distribution of the known anomalies may severely impact the gen-
eralisation performance [45]. Thus, a main challenge is the detection of unknown
anomalies, i.e. anomalies, which have not yet been detected manually.

Gradient-based Detection of Anomalous Instances R2-AD2 analyses the gradient
space of NNs. Despite the variety of AD research, this idea has barely been cov-
ered by previous work. We give an overview in Table 1. Kwon et al. [18] propose
using the l2-norm of an AE’s gradient. The same authors refine the idea in their
AD method GradCon [17]. Here, they measure the cosine similarity between
past normal gradients and the current input. Expanding the view to research
topics related to AD, we see applications in OOD and adversarial detection.
In OOD detection, multi-class data and thus known class labels are assumed,
which is not applicable to AD, where we merely distinguish between monolithic
sets of normal and anomalous data. Sun et al. detect OOD samples by measur-
ing the Mahalanobis distance of the gradient. In GradNorm [15], the authors
used the Kullback-Leibler divergence on the l1-norm of the gradient. Similarly,
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Lee et al. [20] use the l1-norm, but also incorporate some known OOD samples.
In adversarial detection, samples, which have been specifically generated to al-
ter the decision of a NN, are detected. In contrast to AD and OOD detection,
adversarial detection is usually considered a supervised problem because coun-
terexamples can be easily generated. In GraN [23], the authors used the l1-norm
of the gradient, whereas in Gradient Similarity [7] the authors took the l2-norm
of the gradient along the cosine similarity to distinguish between benign and
adversarial samples. Lee et al. [21] train a classifier on the layer-wise l2-norm.
In DA3G [34], the authors analyse the raw gradient of the last two layers of
classifiers. In R2-AD2, we refrain from using hand-crafted features or manually
selecting points of interest as each choice incorporates prior knowledge from the
algorithm designer, which may not be backed by the training data. Instead, we
analyse the temporal distribution of the entire raw gradient by our end-to-end
DL-based architecture. Our evaluation shows that R2-AD2 outperforms past AD
methods on a variety of use cases and data types.

2 Prerequisites

In AD, we discover samples that deviate from the training data set Xnorm. Im-
plicitly, we assume all samples in Xnorm to be normal, even when polluted by
unknown anomalies. In literature, there is some ambiguity in the definition of
semi-supervised AD, which is sometimes referred to as supervised AD. In this
regard, we follow the notation of Ruff et al. [31]. In our semi-supervised scenario,
further we have access to a small data set Xanom, containing a few known anoma-
lies, i.e. |Xnorm| � |Xanom|. Note that AD differs from related topics as OOD
detection. In OOD detection, we do have access to an underlying classifier and
its multi-class training data set. Instead, in AD, we consider the entire normal
data set as one class and detect deviations from it. We refer to the survey of
Salehi et al. [32] for an in-depth discussion of AD and its related research topics.

2.1 Activation Anomaly Analysis

Parts of R2-AD2 are inspired by the semi-supervised AD method A3 [37]. Sperl
et al. introduced their so-called target-alarm architecture. The target network,
e.g. an AE, learns the distribution of the normal data. An auxiliary NN, called
the alarm network, analyses the hidden activations of the target network while
processing normal as well as anomalous inputs. As additional source of anoma-
lous patterns, they input synthetic anomalies generated from a Gaussian prior.

In R2-AD2, we extend the target-alarm architecture to analyse the temporal
gradient distribution of AEs. We use a recurrent alarm network to concurrently
analyse the gradient of multiple AEs for anomalous patterns. Each AE reflects
a different training state of the very same architecture. Our evaluation shows
that the temporal gradient distribution allows a more reliable anomaly detection
performance even under severe data pollution and unknown anomalies.
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Fig. 1: Data flow of R2-AD2: we map the input sample x to an anomaly score
ŷ ∈ [0, 1], where 1 is highly anomalous. The input is processed by a family of
AEs, each yielded by successive training on the normal samples. We measure
the discrepancy between the predicted and the original input by calculating the
respective gradient. An auxiliary network, called the alarm network, analyses
this sequence of gradients for anomalous patterns.

3 R2-AD2

R2-AD2 builds upon our main intuition:

Let fAE(x;θ) be an AE trained on the data set Xnorm containing normal
samples. The evolution of the gradient ∇fAE(x) = ∇θL(x, fAE(x;θ)) is
useful to decide if the current input x is normal or anomalous.

Our intuition is a natural extension of the manual analysis of the gradient
as done in past research [18, 17]. Instead of considering certain features, e.g.

magnitudes or directions, we analyse the gradient in its entirety. Let f
(i)
AE(x) =

fAE(x;θ(i)) be the target AE after the i-th training epoch. With each training
step, the mapping parameters θ adapt more to the training data and hence to
the normal samples. Thus, we embed the temporal distribution of the gradient in
R2-AD2. Let gfAE(x) denote the function that extracts the gradients over time
given the target AE fAE(·):

gfAE
(x) = [∇f (i)AE(x)]i=T0+jT,j∈N = [∇f (T0)

AE (x),∇f (T0+T )
AE (x), . . .], (1)

where T is some sampling frequency and T0 an offset.
Given the temporal gradient distribution, an auxiliary NN, called the alarm

network falarm(·), analyses it for anomalous patterns. The alarm network is a
binary classifier outputting an anomaly score, where 1 is highly anomalous. Both
networks are combined to the overall end-to-end architecture of R2-AD2 depicted
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Input: fAE(x;θT0),Dtrain = Xtrain × Ytrain
Result: fR2-AD2

// Retrain the autoencoder on Xnorm ⊂ Xtrain
fAE,0 ← fAE(x;θT0), fAE,1 ← fAE(x;θT0+T ), . . .;
for (x, y) ∈ Xtrain do

// Sample synthetic anomalies

x̃← N (0.5,1.0);
// Extract the gradients from the retrained autoencoders

g← [∇fAE,0(x),∇fAE,1(x), . . .], g̃← [∇fAE,0(x̃),∇fAE,1(x̃), . . .],
eq. (1);
// Train R2-AD2’s components

argminθbatchnorm. : falarm ← (g, y), eq. (3);
argminθalarm : falarm ← (g, y), (g̃, 1), eq. (2);

end
Algorithm 1: High-level overview about R2-AD2’s training objectives.

in Figure 1 and formally defined as: fR2-AD2(x) = falarm(gfAE
(x)) ∈ [0, 1]. Due

to the sequential nature of the gradient, the alarm network is a recurrent neural
network (RNN). We combine the RNN with a time-distributed batch normal-
isation [16] layer and fully-connected output layers. In our research, we found
the batch normalisation layer to be essential to scale small gradients, especially
after several training epochs of the target network.

Training Objectives AD is characterised by its inherent class imbalance,
where known anomalies are rare and might not cover the entire anomaly distri-
bution. In R2-AD2, we solve this problem by sampling trivial counterexamples
from a Gaussian prior, i.e. x̃ ∼ N (µ, σ2). Even though these synthetic anoma-
lies do not resemble real ones, our analysis in the gradient space results in a
meaningful decision barrier between real normal and real anomalous inputs. As
result, the training objective of R2-AD2 becomes a simple classification using
the binary cross entropy (BXE) as loss:

argmin
θalarm

E[LBXE (y, fR2-AD2 (x)) + LBXE (1, fR2-AD2 (x̃))], (2)

where (x, y) ∼ PD, x̃ ∼ N (0.5,1.0). Our input data is scaled to x ∈ [0, 1]N ,
thus the synthetic anomalies are likely outside this interval, i.e. clearly anoma-
lous. Due to the random nature of the counterexamples, we adapt the batch
normalisation layer on the training data only, i.e.:

argmin
θbatchnorm.

E[LBXE (y, fR2-AD2 (x))]. (3)

In Algorithm 1, we summarise R2-AD2’s training process.
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Table 2: Data sets under evaluation. If multiple anomaly types were available, we
tested R2-AD2 on classes unknown during training in our transfer experiments.

Data Normal Train Ano. ⊆ Test Ano. Encoder

CC [29] Normal Anomalous Anomalous 20, 10, 5
CoverType [4] 1-3 4-5 4-7 40, 20, 10
DarkNet [10] Non-Tor/-VPN Tor Tor, VPN 60, 30, 15

DoH [25] Benign Mal. Mal. 20, 10, 5
FMNIST [43] 0-3 4-6 4-9 8C3-8C3-8

IDS [35] Benign Bot, BF Bot, BF, Infil., Web 60, 40, 20
KDD [39] Normal DoS, Probe DoS, Probe, R2L, U2R 40, 20, 10

MNIST [19] 0-3 4-6 4-9 8C3-8C3-8
Mam. [42] Normal Malignant Malignant 5, 3, 2
URL [24] Benign Def., Mal. Def., Mal., Phi., Spam 60, 30, 15

4 Experimental Setup

We evaluated R2-AD2 in challenging experiments mimicking real-world scenar-
ios. In Table 2, we show the ten data sets under evaluation, ranging from com-
monly used baseline data sets to important applications of AD, e.g. intrusion
or fraud detection. We scaled all numerical values to [0, 1] and 1-Hot encoded
categorical entries. If not given by the data set, 75% were used for the training
split, 5% for validation and 20% for testing. While training R2-AD2’s AE, 25%
of the training data were held back to evaluate the gradient distribution of some
fresh normal samples while training the alarm network.

Baseline Methods R2-AD2 is a deep semi-supervised AD method based on the
analysis of the gradient space of AEs. AEs themselves can be used as AD method
by measuring the reconstruction error, when only trained on the normal data. We
used the mean squared error as anomaly score, i.e. ŷ = ‖fAE(x)− x‖22. GradCon
[17] is a AD method based on the analysis of the gradient space of NNs. We
favoured GradCon over the authors’ initial AD method based on l2-norms [18] as
it generally performed better according to their evaluation. Both aforementioned
baseline methods are unsupervised, thus do not profit from known anomalies.
Expanding our view to deep semi-supervised AD, DeepSAD [31] is a commonly
used baseline. In the same category, DevNet [28] and A3 [37] are currently the
best performing methods.

Parameter Choices We designed R2-AD2 as a data-driven method, which
readily applies to a diverse set of use cases and data types. Thus, we chose one
common set of hyperparameters for the entire evaluation. Across all data sets,
we analysed a target network trained for T0 = 10 epochs across 2 retraining
steps, each with T = 5 epochs resulting in three models. The alarm network
had the dimensions 1000, 500, 200, 75 except for the small Mammography data
set, where we used 100, 50, 25, 10. LSTM [13] elements were used for the first
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two dimensions, ReLU-activated dense layers else. R2-AD2 was trained for 100
epochs at a learning rate of 0.001 using Adam as optimiser. For a fair comparison,
we chose the same hyperparameters for the other baseline methods if applicable.

5 Evaluation

We carefully followed the best practices introduced by Hendrycks & Gimpel [11]
and report the performance as area under the ROC curve (AUC) and average
precision (AP). Both metrics measure the performance independently of a cho-
sen detection threshold. An ideal AD method scores an AUC and AP of 1. To
measure the significance of our results, we report the p-value of the Wilcoxon
signed-rank test [41]. It evaluates the null hypothesis that a ranked list of mea-
surements was derived from the same distribution.

5.1 Known Anomalies

In our first experiment, we evaluated the performance gain in an ideal semi-
supervised AD setting. We limited the number of known anomalies to 100 ran-
domly chosen samples, i.e. far less than normal samples available. In Table 3,
we summarise the results. R2-AD2 took the lead across all baseline methods,
scoring the best on 7 out of 10 data sets.

As expected, the unsupervised baseline methods could not match the per-
formance of the semi-supervised methods as they do not profit from the known
anomalies. Looking at the AUC, R2-AD2 was 24 % better than the other gradient-
based AD method, GradCon. KDD was the only data set, where the unsuper-
vised methods took the lead. Here, some unknown anomalies are within the
test data set. Similar to the discussion of Ye et al. [45], we believe the semi-
supervised methods overfitted to the known anomalies. Comparing our perfor-
mance to GradCon, we see strong evidence that the analysis of the raw gradient
is favourable over a hand-crafted feature set: GradCon’s analysis of the cosine
similarity works well on some data sets (e.g. MNIST and DarkNet), but does not
generalise to all ten data sets. R2-AD2 had the more consistent performance.

Considering the semi-supervised baselines, the largest margin was on DoH,
where R2-AD2 performed 8 % better than DevNet, and 6 % better on IDS com-
pared to A3. A3 has a similar architecture as R2-AD2, but analyses the hidden
activations of a single AE instead of the temporal gradient distribution. Overall
R2-AD2 performed 8 % better than A3. Only on the image data sets, A3 was
the preferable method. Summarising this section, R2-AD2 clearly profited from
the prior knowledge available in semi-supervised AD and allowed a more reliable
detection performance compared to other state-of-the-art methods.

5.2 Noise Resistance

In real-world settings, it is usually infeasible to guarantee a clean training data
set. We evaluated this scenario by polluting the data with anomalous training
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Table 3: Detection of known anomalies, i.e. the training and test data set con-
tained the same anomaly classes. We limited the number of known anomalies to
100 and show the results after five detection runs.
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10 J.-P. Schulze, P. Sperl, A. Rădut,oiu, C. Sagebiel and K. Böttinger

0.0% 2.5% 5.0% 7.5% 10.0%

0.7

0.8

0.9

1
M

ea
n

A
U

C

a) DoH

0.0% 2.5% 5.0% 7.5% 10.0%

b) DarkNet

0.0% 2.5% 5.0% 7.5% 10.0%

0.7

0.8

0.9

1

M
ea

n
A

U
C

c) MNIST

0.0% 2.5% 5.0% 7.5% 10.0%

d) KDD

0.0% 2.5% 5.0% 7.5% 10.0%

0.7

0.8

0.9

1

Pollution of the Training Data

M
ea

n
A

U
C

e) Mean Performance Across All Data Sets Except CC and Mam.
R2-AD2 AE GradCon

DeepSAD DevNet A3

Fig. 2: Detection performance depending on the training data pollution. All semi-
supervised methods had access to 100 known anomalies. Note that CC and
Mammography did not contain enough anomalies, thus were excluded.

samples labelled as normal. All semi-supervised methods still had access to 100
known anomalies. We summarise the performance in Figure 2 for DoH and Dark-
Net, where R2-AD2 took the lead in our first experiment, and MNIST and KDD,
where the baseline methods performed better. Additionally, we show the mean
performance across all data sets, which scaled to this experiment.

Looking at the mean performance, R2-AD2 took the lead across all pollu-
tion levels. The performance dropped only by −6 % , when every tenth training
sample was an anomaly labelled as normal. For the unsupervised baselines, the
performance drop was considerably larger, e.g. −13 % for the AE. The known
anomalies seemed to stabilise the performance. Across the data sets, the general
ranking between the baseline methods did not change: AD methods that per-
formed well on cleaner data sets also performed well on polluted data sets. Our
evaluation showed that R2-AD2 is resistant to noisy training data sets as often
found in real-world settings.
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Fig. 3: Detection performance depending on the number of known anomalies
during training. The training data was not polluted by unknown anomalies.

5.3 Number of Known Anomalies

In our next experiment, we evaluated the impact of the number of known anoma-
lies available during training. We gradually decreased the amount towards un-
supervised regimes shown in Figure 3. As the known anomalies were randomly
selected among all anomaly classes, some classes might have been excluded dur-
ing training.

As expected, the unsupervised methods remained at their initial performance
as they do not incorporate known anomalies. R2-AD2 exceeded the performance
of the AE with as little as ten known anomalies. Looking at the mean perfor-
mance, R2-AD2 was better than the semi-supervised methods across all anomaly
counts. Interestingly, R2-AD2 took the lead on MNIST for small amounts of prior
knowledge, i.e. less than 50 anomalies. In this experiment, we saw R2-AD2 to
perform well even with little prior knowledge about known anomalies.
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Table 4: Detection of unknown anomalies, i.e. there are more anomaly classes
in the test set than there were in the training data. We limited the number of
known anomalies to 100 and show the results after five detection runs.

Ours Unsupervised Baselines Semi-supervised Baselines
R2-AD2 AE GradCon DeepSAD DevNet A3

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

CT .64± .02 .21± .01 .76± .02 .25± .03 .70± .05 .21± .06 .51± .07 .12± .05 .63± .05 .16± .02 .38± .07 .07± .02
DN .86± .02 .65± .02 .54± .01 .23± .01 .62± .09 .24± .04 .51± .05 .29± .03 .62± .05 .28± .03 .56± .07 .23± .03

FMN. .92± .02 .95± .01 .86± .00 .92± .00 .82± .02 .88± .03 .69± .02 .77± .03 .94± .01 .96± .01 .92± .02 .95± .01
IDS .92± .01 .89± .01 .84± .01 .52± .04 .45± .10 .19± .06 .62± .25 .42± .25 .87± .01 .66± .05 .86± .03 .64± .13

KDD .87± .04 .90± .03 .95± .00 .95± .00 .74± .04 .83± .01 .86± .03 .90± .01 .91± .01 .93± .01 .91± .03 .93± .02
MN. .93± .01 .96± .01 .75± .01 .79± .01 .82± .04 .84± .04 .69± .02 .75± .01 .93± .01 .95± .00 .94± .01 .96± .01
URL .94± .01 .99± .00 .92± .00 .98± .00 .90± .01 .97± .00 .92± .01 .98± .00 .92± .02 .98± .00 .92± .02 .98± .01
mean .87 .79 .80 .66 .72 .59 .69 .60 .83 .70 .78 .68
p-val - - .47 .30 .05 .03 .02 .03 .47 .30 .30 .30

Table 5: Mean performance depending on the number of retraining steps of
the target network. We evaluated the detection of known anomalies given 100
anomalous training samples and show the results after five detection runs.

Number of AEs 1 2 3 4

Metric AUC AP AUC AP AUC AP AUC AP

Mean Performance .87 .77 .93 .83 .93 .84 .92 .84

5.4 Unknown Anomalies

In our final experiment, we evaluated the transfer performance, i.e. how well
the knowledge about known anomalies transfers to unknown ones. In real-world
setting, the known anomalies often cover only a small part of all possible anoma-
lies. Semi-supervised AD methods are expected to use the prior knowledge about
known anomalies to detect unknown ones. We simulate this setting by limiting
the training anomaly classes. Also in this experiment, R2-AD2 took the lead with
a mean AUC of 87% as shown in Table 4. R2-AD2 was 5 % better compared to
the next best baseline, DevNet. Except for CoverType and KDD, R2-AD2 was
better than the unsupervised methods. This experiment suggested that the raw
gradient contains features that generalise across anomaly types.

Throughout our evaluation, we have seen R2-AD2 to deliver superior anomaly
detection performance under common limitations in AD. R2-AD2 reliably de-
tected known anomalies, yet generalised to unknown ones. Moreover, the detec-
tion performance remained at a high level even under polluted data sets and
little prior knowledge about potential anomalies. With R2-AD2 we provide a
reliable AD method applicable to a variety of important applications of AD.
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5.5 Ablation Study

In our ablation study, we took a critical look on the temporal component of
R2-AD2. We analysed the gradient of multiple training states of the target AE
for anomalous patterns. Would it have been sufficient to consider a single time
step only? In Table 5, we evaluated the gradient of 1, 2, 3 and 4 time steps. For
the single time step case, we replaced the LSTM elements by dense layers. The
mean performance considerably decreased when only evaluating a single time
step. In comparison to three time steps, the AUC dropped by −6 % . A single
extra time step improved the performance. Expanding the number of time steps
did not result in further improvements. We conclude that the temporal gradient
distribution contains features important to AD, which are not present in a static
one-step analysis.

Discussion and Future Work

In R2-AD2, we expanded the analysis of the gradient space of NNs – to the
best of our knowledge – the first time to semi-supervised AD. Based on our
evaluation, we have seen that the temporal gradient distribution allows to reli-
ably detect anomalous inputs under diverse extents of prior knowledge on several
important fields of application. Due to the end-to-end nature of R2-AD2, it read-
ily integrates in other application areas. We hope to spark interest in porting
our framework to sequential inputs like sensor measurements or video streams.
Moreover, as we have seen related work in other detection areas, e.g. OOD or ad-
versarial detection, we see potential to apply a gradient-based analysis to other
important data mining and IT security applications e.g. deepfake detection.

Summary

In this paper, we introduced R2-AD2: a semi-supervised AD method based on
the analysis of the temporal gradient distribution of NNs. R2-AD2 showed supe-
rior performance in a purely data-driven way, generalising to several important
applications of AD. Our evaluation motivated that R2-AD2 is less susceptible
to noisy training data than other state-of-the-art AD methods and requires less
known anomalies for reliable detection performance. With R2-AD2, we extend
the analysis of the NN’s gradient the first time to semi-supervised AD, providing
a reliable AD method to researchers and practitioners.
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Ethical Implications

Data-driven AD reveals data points that differ from the training data distri-
bution. Underrepresented groups in the training data may cause a bias in the
detection results. In example of the census data set, which we analysed during
our evaluation, e.g. the origin of the citizens could be used for the anomaly deci-
sion leading to ethical implications. To this end, we encourage users of R2-AD2
and AD in general to thoroughly evaluate potential biases in the data.
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