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Abstract. Previous works on knowledge graph representation learning
focus on static knowledge graph and get fully developed. However, task
on temporal knowledge graph is far from consummation because of its
late start. Recent researches have shifted to the temporal knowledge
graph relying on the extension of static ones. Most of these methods seek
approaches to incorporate temporal information but neglect the poten-
tial adjacent impact merged in temporal knowledge graphs. Meanwhile,
different temporal information of involved facts evoke impact with dif-
ferent extent on the concerned entity, which is always overlooked in the
previous works. In our paper, we propose a Time-aware Attention Graph
Convolutional Network, named TAGCN, for temporal knowledge graph
completion. Entity completion can be turned into interactions between
entity and associated neighborhood. We utilize a graph convolutional
network with a novel temporal attention layer to obtain neighboring in-
formation at all timestamps to avoid diachronic sparsity. We conduct
extensive experiments on various datasets to evaluate our model perfor-
mance. The results illustrate that our model outperforms the state-of-
the-art baselines on entity prediction.

Keywords: temporal knowledge graph · representation learning · graph
neural networks.

1 Introduction

Temporal Knowledge Graph (TKG) stores structured data in quadruples to
extract interactions between entities on specific timestamps to represent fact,
which is the information of events that have occurred in the reality. Temporal
information is a crucial element in the real world because some facts are only
valid at some timestamps. Due to its capability to contain rich information, TKG
benefits numerous downstream applications, like transaction recommendation,
social relation inferring, and event process prediction, all of which are dependent
on the quality of the knowledge graph. Nonetheless, TKG is inevitably incom-
plete and sparse due to corruption and some other irresistible factors, which will
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Fig. 1: A toy example for entity prediction in TKG, and the deep green can-
didate is the most probable entity for the query (Keanu Reeves, cooperate, ?,
22/12/2021).

undermines the performance of downstream tasks. Therefore, there is a growing
need of valid approaches for completion in TKG.

Recently, more and more works pay attention to TKG completion. Major-
ity of researches, like TTransE [1], TNTComplEx [2], neglect rich information
that is inherent within the vicinity of entities and limit their semantic captur-
ing because they expand to TKG domain through a straightforward extension
from static methods, such as TransE [3], focusing on independent validation of
each quadruple. Taking Fig. 1 as an example, our purpose is to predict who
Keanu Reeves would cooperate with on 22/12/2021. It is obvious that Carrie-
Anne Moss and Halle Berry share the same entity interaction cooperate with
Keanu Reeves. However, the neighborhood of Carrie-Anne Moss is quite dif-
ferent from that of Halle Berry. Characterizing this would provide abundant
information when predicting the missing tail entity in (Keanu Reeves, cooper-
ate, ?, 22/12/2021). To conclude, neighboring information has large impact on
representation learning because learning quadruples independently would lose
the huge amount of interactions among entities from the neighboring structure
of TKG.

Furthermore, fact in TKG relies on long-term dependency which means fact
with long interval may still determine the future prediction. Using the same
query in Fig. 1, although Halle Berry has closer interactive behavior cooperate
with Keanu Reeves than Carrie-Anne Moss, it is not definite that Halle Berry
has a bigger chance to be the correct prediction in the query (Keanu Reeves,
cooperate, ?, 22/12/2021). But due to the difficulty of simulating complex tem-
poral influence in TKG, some of relevant works, like RE-NET [4] and RTFE [5],
only pay more attention to recent fact.
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Considering the aforementioned features, it is prominent to comprehend TKG
both from the neighbor structure and the temporal dependency of TKG. There-
fore, it evokes several challenges when tackling these features. First, how to
extract temporal neighboring information from the neighbor structure of TKG?
The significance of neighborhood encoding has been revealed in several static KG
methods [6], but the extension to TKG is difficult due to the additional time
dimension. Utilizing the Message Passing Process approaches, it is critical to
integrate temporal information with interactions between relations and entities
when encapsulating the neighborhood surrounding entities.

The second challenge is how to encode time to maintain long-term depen-
dency? Encoding time by separating time snapshots and training through the
temporal order may give rise to the same consequence of sequence-based models
mentioned above. It is also difficult to comprehend the influence of all time on
prediction by simply projecting time into the same space of entity and relation.
Therefore, to distinguish different temporal influence on a certain timestamp,
it is needed to implement a specific approach to learn the dependency between
temporal information and the certain timestamp of the concerned query.

To this end, we propose our Time-aware Attention Graph Convolutional Net-
work (TAGCN). We decouple temporal knowledge graph completion into two
phase, neighboring temporal message aggregation and entity temporal focus at-
tachment. To alleviate the above two challenges, TAGCN is used to encode
neighboring information to contextualize the representation of entities. Inspired
by self-attention mechanism [7], we devise a novel temporal self-attention (TeA)
layer to locally extract the temporal influence between timestamps and involved
fact on concerned query. The temporal message aggregation (TMA) module is
used to extract neighborhood structure in TKG. Moreover, a time-aware decoder
is applied and uses a simple way to activate different attention to neighboring
impact regarding to the time of query. Our contributions can be summarized as
follows:

1. We propose TAGCN, which introduces a knowledge graph convolutional net-
work to learn the representation of entity capturing temporal dependency
and complex interactions between entities and temporal facts. We decouple
temporal knowledge graph completion into two phases, neighboring temporal
message aggregation and entity temporal focus attachment.

2. Our work initiates a well-designed temporal self-attention layer, which is
leveraged to encode locally temporal impact between target entity and in-
volved facts. Thus, enhancing the estimation of the temporal influence of
neighborhood.

3. We conduct extensive experiments on several real-world datasets. Experi-
mental results show that the proposed method has achieved the state-of-
the-art results in the task of entity prediction for TKG.
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2 Related Works

2.1 Static KG Completion

There have been a large number of researches giving insight into static knowl-
edge graph completion. Traditional KG completion methods map entities and
relations into a low-dimensional vector with a score function measuring the pos-
sibility of the candidates. They can be classified into three categories in general:
translational models, factorization based models, and convolutional neural net-
work (CNN) models. TransE [3] is the most well-known method usikkng trans-
lation to embed entities and reltions. Following TransE, several methods [8–10]
using different mapping methodology come out in succession and achieve bet-
ter results. Rescal [11] and DistMult [12] are two factorization based models.
Simultaneously, ComplEx [13] also projects entities and relations into different
spaces using the above-mentioned evaluation function. In this way, these mod-
els can further develop the expressiveness beyond the limitation of Euclidean
space and learn more complex interaction between entities and relations. Be-
sides these works, ConvE [14] applies convolutional filters to process the vector
of entity and relation. Its success ignites further application of other neural
networks [15]. However, completion task on TKG reaps poor effect with static
methods because of the lack of temporal information processing.

2.2 Temporal KG Completion

Lots of previous works on TKG mainly pay attention to the independent
validation of quadruples and lay more focus on the incorporation of static meth-
ods and temporal information. The main distinction lies in the representation of
timestamps. As mentioned in the above section, TTransE [1] views time as a new
element and adds timestamp embedding into the relation embedding to fulfill the
conventional score function TransE [3]. HyTE [16] adopts the idea of TransH [8],
viewing different hyperplanes as different temporal spaces. Then it projects enti-
ties and relations to these hyperplanes and uses static score function to measure
the possibility. TA-DistMult [17] learns time embedding by encoding the times-
tamp string sequence while DE-SimplE [18] leverages diachronic embedding by
concatenating it with enduring one. TNTComplEx [2] makes a decomposition
of 4 tensors in complex domain, adding the timestamp representation compared
with ComplEx [13]. Although these methods extend to TKG successfully, none of
them considers the neighborhood information within knowledge graph. RTFE [5]
proposes a new training framework to enhance the further boost of conventional
methods. T-GAP [19] adopts query-relevant temporal displacement to process
the whole TKG, but the time overhead is too high to follow.

3 Proposed Model

3.1 Problem Definition

Temporal knowledge graph G is composed of quadruples G = {(h, r, t, τ) |
h, t ∈ E , r ∈ R, τ ∈ T }, where h refers to head entity, r denotes the relation, t is
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Fig. 2: Overview of our work. Arrows in gray refer to inverse directions, and self
loop is omitted for clarity. All entities in E are considered as candidates.

the tail entity, and τ is the timestamp. E , R represent the entity set and relation
set contained in G, and T stands for the known timestamps. To distinguish
different concept, we use lower-case letters to represent object in dataset, e to
represent specific entity in TKG, such as e1, e2 ∈ E in Fig. 2, z to represent
embedding of each object, like zr, zh ∈ Rd where d is the embedding dimension,
and zτx to represent entity embedding zx under timestamp τ .

The aim of TKGC is to find the missing entity of an incomplete query. Given
a query lacking in tail entity, such as (h, r, ?, τ) where τ is within the observed
set T , we hope to learn a mapping function fmap: e → Rd, where e ∈ E and d
represents the dimension of embedding d � |E| and a score function fscore to
infer the most probable t ∈ E to fulfill the missing component in the query based
on the known information of G. What’s more, the mapping function fmap not
only needs to consider the temporal information of each fact but also consolidate
neighbor structure.

3.2 Model Overview

In this section, we describe our proposed model TAGCN, which can simul-
taneously extracts structural information and temporal dependency. Our model
is in the architecture of encoder-decoder, and the framework is shown in Fig. 2.
Quadruple sets in TKG are mapped into low-dimensional spaces at the begin-
ning. Then, two stages are entailed for entity prediction. With the novel temporal
attention layer (TeA), we capture the temporal dependency of the neighboring
fact locally and dispose with temporal message aggregation (TMA) to increase
the expressiveness of entities. Last, the time-aware decoder integrates temporal
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information to model the temporal impact on entity and gives the probability
of candidates.

3.3 TAGCN

Preprocess To best improve the connectivity and information transmission
efficiency, we allow information in TKG flows along three directions: original,
inverse, and self-loop. Among which, self-loop loope is constructed for each entity
e ∈ E , quadruple with self-loop is extended with a self-loop relevant timestamp
τloop. Therefore, TKG G grows into G′,

G′ = G ∪ {(t, r−1, h, τ) | (h, r, t, τ) ∈ G} ∪ {(e, loope, e, τloop) | e ∈ E}. (1)

R and T are also extended to R′ = R ∪ Rinv ∪ {loope}, T ′ = T ∪ {τloop}.
Meanwhile, since d(rel) short for the direction of relations is divided into three
types, we adopt three different filters, and the relational direction filter is defined
as follows:

Wd(rel) =


Wori rel ∈ R,
Winv rel ∈ Rinv,
Wloop rel ∈ {loope}.

(2)

Temporal Attention Layer Attention is of great importance in nowadays
researches. In order to encode temporal dependency between entity and fact,
we utilize self-attention layer for better usage of adequate information among
available edge attributes. We compute the implicit attention score when an entity
concerns its surrounding neighborhood. We treat neighboring messages as two
part for decoupling the structural and temporal information. For a corresponding
fact (h, r, t, τ), we use a linear layer to combine the representations of head entity
and relation for semantic information ms

h,r of the fact:

ms
h,r = Ws([zh|zr]), (3)

where [·|·] denotes concatenate operation, and Ws is to project the embedding
size to the standard dimension space.

Then we use two weight matrices to get the query and key of ms and zτ . The
intermediate representation m̂ refers to the combination of temporal information
τ and semantic information of the fact, which could be explored in the following
step. Following previous work [7], the scaling operation is employed to alleviate
the over inflation of dot products, thus avoiding the extremely small gradient:

m̂τ
h,r =

WK(zτ )⊗WQ(ms
h,r)√

d
, (4)

where WK , WQ are weight matrices. m̂τ
h,r is an implicit temporal representa-

tion of neighborhood. Thus we get the temporal fact attention generated from
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temporal and semantic representation after softmax. To strengthen the potential
impact of fact on specific timestamp, we model the temporal attention by using
temporal information and the fact temporal representation:

mτ
h,r = softmax(m̂τ

h,r)WV (zτ ). (5)

Up to now, we obtain the temporal mτ
h,r information of neighboring fact.

To enhance the semantic influence, we utilize the residual network for numerical
stability. The neighboring message of the certain fact is formulated as follows:

mf = FCN(mτ
h,r + ms

h,r), (6)

where FCN denotes the fully connected net with norm and dropout layer to
enhance the generalization. We also use a residual layer to maintain layer wise
fact information to deal with some long maintaining facts.

Temporal Message Aggregation Module With the process of TeA layer, we
obtain the input message by modeling the temporal dependency with semantic
and temporal information when concerning the central entity e. To improve
the representation, we adopt the aggregation and take the relation direction into
account. The new entity feature is computed by combining all incoming messages
to e:

ze =
∑
f∈Ne

Wd(r)mf , (7)

where Ne is the neighboring facts with e as the tail entity, and the facts are all
in the original temporal knowledge graph G.

After conducting TAGCN, we use the output as the ultimate representations
of entities. These representations well integrate the temporal dependency on
certain facts with interactions between entities and the involved facts from the
neighboring structure of the knowledge graph.

3.4 Time-aware Decoder

Using the encoder, we obtain representations with perception of the whole
TKG. When considering one query, the temporal effect on entity should be
activated in decoder for better comprehension. To implement conventional de-
coders, we combine the entity and timestamp embedding with weight matrix
W ∈ R2d×d, which enables the entity embedding to comprehend diversity of
fact influence on different timestamps:

zτh = W[zh|zτ ], (8)

where zh and zt are the embeddings of head entity and timestamp selected from
embedding matrix according to the query.

In our work, we choose ConvE [14] as decoder to estimate probability for
quadruples. ConvE employs convolutional and fully-connected layers to model
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the interactions between entities and relations input. It stacks the embeddings
of head entity and relation, uses convolution operation to acquire the score of
quadruple as follows:

p(h,r,t,τ) = ReLU(vec(ReLU([zτh|zr] ∗ ω))W)ET, (9)

where vec(·) represents flattening tensor into vector, ∗ is the convolution opera-
tion, ω is the convolutional filter, and W denotes a parameter matrix to project
the flattened result to the embedding dimension. E is the entity embedding ma-
trix without temporal embedding, so that all entities are treated as candidates.

The model is trained using standard cross entropy loss:

L = − 1

N

∑
i∈G

(ti · log(pi) + (1− ti) log(1− pi)), (10)

where ti is the gold label of fact i while pi is the inferred probability. At last, we
train our model using the optimizer Adam.

4 Experimental Setup

4.1 Datasets

In our work, we evaluate the proposed model on several public datasets
for TKG completion, namely, ICEWS14, ICEWS05-15, YAGO11k, and Wiki-
data12k. iCEWS14 and ICEWS05-15 both come from the Integrated Crisis Early
Warning System (ICEWS)1. ICEWS14 covers facts occurred in 2014, while
ICEWS05-15 collects facts occurred between 2005 and 2015. ICEWS datasets
are stored in the form of (h, r, t, τ). Wikidata12k and YAGO11k are subsets of
Wikidata2 and YAGO3, formatted as (h, r, t, τstart, τend). Following the same
data splitting strategy in HyTE [16], we discretize them into each snapshot. The
details of above-mentioned datasets are listed in Table 1.

4.2 Evaluation Metrics

Generated from reality, facts may evolve over time. Two quadruples may ap-
pear sharing same factors, like (h, r, t, τ) and (h, r, t′, τ). However, results can be
flawed once one quadruple end up with testing ones, while the other is from the
training set. To avoid the misleading of these corrupted facts, we remove from
the dataset the corrupted facts, corresponding to the former work [18]. Thus
all metrics in our work are filtered ones. Mean reciprocal rank (MRR), Hits@1,
Hits@3, and Hits@10 are formally used in knowledge graph entity prediction
to compare the performance against other baselines. In our work, we evaluate

1 https://dataverse.harvard.edu/dataverse/icews
2 https://www.wikidata.org
3 https://yago-knowledge.org/

https://dataverse.harvard.edu/dataverse/icews
https://www.wikidata.org
https://yago-knowledge.org/


TAGCN 9

Table 1: Statistics of datasets. |E|, |R|, and |T | are the total number of entities,
relations, and timestamps. Meanwhile, #train, #test, and #valid refer to the
quadruple numbers of train, test, and valid set respectively.

Dataset |E| |R| |T | #train #test #valid granularity

ICEWS14 7,128 230 365 72,826 8,941 8,963 1 day
ICEWS05-15 10,488 251 4,017 368,962 46,275 46,092 1 day

YAGO11k 10,623 10 60 203,858 21,763 21,159 1 year
Wikidata12k 12,254 24 77 239,928 18,633 17,616 1 year

TAGCN in tail and head entity prediction respectively. The test set is repre-
sented by stest, MRR is defined as MRRx = 1

|stest|
∑

(h,r,t,τ)∈stest
1

rankx
, where

x ∈ {h, t}, and we calculate both rankings of head entity rankh and tail en-
tity rankt, consisting with the evaluation method of previous work. Meanwhile,
Hits@n, n = 1, 3, 10, is defined as Hits@nx = 1

|stest|
∑

(h,r,t,τ)∈stest I(rankx ≤ n),

where I(·) is an indicator function equaling to one if the condition holds, and
zero otherwise.

4.3 Baselines

To show the competitiveness of our model, we make a comparison with num-
bers of temporal and static KG completion models. In order to meet the re-
quirements of static models, we ignore the time information when training these
models. T-GAP [19] is not set as our baseline because of the high time overhead,
and it only uses tail prediction as its results in the paper, while the tail predic-
tion performance is usually better than the head one. Sequence-based models
like RE-NET [4] and RE-GCN [20] are excluded because they are assigned for
extrapolation task.

Static baselines are listed as follows:

– TransE [3]. In TransE, entities and relations are mapped into the same
embedding space, and use translation method to infer the tuples.

– DistMult [12]. With the same projection as TransE, this work uses factor-
ization method to calculate the score of each tuple.

– ComplEx [13]. ComplEx proposes a method based on complex representa-
tion. It divides the embeddings of entities and relations into real and imag-
inary parts. Lastly it adopts a complex multiplication, and maintains the
real part as the final score.

– ConvE [14]. This method construct the score function with the same pro-
jection as TransE, and uses convolution operation to obtain the interactions
between entities and relations.

Temporal baselines are listed as follows:

– TTransE [1]. TTransE is an extension of TransE with an additional dimen-
sion of timestamp, it uses a linear add operation to encode the temporal
information into relation.
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– HyTE [16]. Using the same projection as TTransE, but HyTE projects all
entities and relations to the space of timestamps by linear transition associ-
ated with timestamps.

– TA-DistMult [17]. TA-DistMult treats timestamp as a string, and maps each
character to a vector. When dealing with a tuple, the temporal relation
embedding zr,τ is generated by feeding r and characters in τ as a sequence
into a LSTM to encode temporal information.

– DE-SimplE [18]. Focusing on temporal encoding, DE-SimplE puts forward
a novel entity embedding function by considering that entities are combined
with temporal and static features, using diachronic embeddings to estimate
the probability of the incomplete tuples.

– TNTComplEx [2]. This work focuses on the integration of timestamp with
ComplEx, and projects timestamps the same way as other objects in Com-
plEx. To be more clear, TNTComplEx embeds temporal features through
linear representation in complex space.

– RTFE [5]. RTFE is a framework to enhance the performance of existing

methods. It chooses a method f̂ , and trains along time after pretraining with
setting the embedding of former snapshot Gn−1 as the initial embedding of
the latter one Gn, where snapshots are separated on account of timestamps.

4.4 Implementation Details

We conduct all experiments of our model and baselines using Pytorch on
a Intel(R) Xeon(R) Gold 5117 CPU, Tesla V100 GPUs, and 250GB Memory
server. The software of experiment environment is Ubuntu 18.04 with CUDA
11.4. We evaluate our model with setting the learning rate of Adam as 0.001,
batch size as 512 in ICEWS05-15 and 128 in other datasets. Moreover, the initiate
embedding dimension is set as 100 for both entities and timestamps while output
dimension is set as 200, label smooth in two datasets of ICEWS is set as 0
and 0.01 in the other datasets. We use the released code of baselines and the
parameters in baselines are set as their default settings.

4.5 Results and Comparison

In this part, we show our performance against other baselines and make an
analysis on the results.

Table 2 demonstrates entity prediction results comparing with other models
on the popular datasets for TKG completion task. Different from previous works,
we use respective head and tail entity prediction to evaluate for rigorous compar-
ison. For saving space, H@1, H@3, and H@10 are used to replace Hits@1, Hits@3,
Hits@10 in this section. Our work shows outstanding performance against other
baselines on ICEWS14 and ICEWS05-15. TAGCN delivers an increment of 2%
on MRR on these two datasets. Although we still observe that TAGCN does
not always achieve the best results from Table 2 on YAGO11k, we achieve the
best results in mean metrics. Further analysis shows that this attributes to the



TAGCN 11

Table 2: Entity prediction results on several popular datasets. The best results
of each metric are in bold, and the scond ones are underlined. The percent sign
is omitted for all data.

Metrics MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
t h t h t h t h t h t h t h tail head

ICEWS14 ICEWS05-15

TransE 33.4 29.4 17.2 12.0 45.3 38.1 67.2 61.0 34.2 30.8 17.5 13.3 45.7 40.3 68.4 62.6
DistMult 50.7 37.1 36.4 28.6 52.1 46.5 73.1 59.9 47.1 44.1 36.9 30.7 55.1 47.9 71.9 66.3
ComplEx 50.7 37.7 42.4 37.6 45.7 40.1 68.9 64.1 49.5 42.9 36.8 32.2 54.9 49.7 72.7 66.1
ConvE 51.2 40.8 37.2 31.0 54.2 49.4 74.1 65.7 48.9 44.5 37.3 31.1 56.2 49.6 73.1 68.1

TTransE 27.2 23.8 11.1 3.7 43.7 37.2 62.1 57.9 32.0 22.2 10.0 6.8 42.8 38.6 64.1 59.1
HyTE 30.5 25.7 12.8 7.3 45.1 36.7 65.4 63.5 33.9 28.1 15.2 8.1 46.9 40.5 70.5 65.8
TA-DistMult 49.1 46.3 38.4 34.2 46.7 40.9 71.1 66.1 50.2 44.6 38.3 30.9 50.1 44.9 75.8 69.8
DE-SimplE 52.1 47.5 40.1 37.3 59.7 52.9 75.5 66.9 54.3 48.7 43.2 37.8 60.3 56.5 74.2 69.8
TNTComplEx 59.1 53.9 54.1 40.1 66.1 57.7 78.1 69.9 62.1 58.3 54.7 45.9 66.8 59.2 77.3 70.7
RTFE 62.1 56.5 56.8 43.8 68.4 58.8 78.9 70.0 64.2 61.2 56.7 53.1 70.4 61.0 81.7 76.9

TAGCN 63.7 59.1 58.3 49.9 70.4 61.8 80.1 71.9 66.3 62.0 57.2 53.4 71.2 65.7 85.1 77.3

Wikidata12k YAGO11k

TransE 21.1 17.3 12.4 8.2 21.2 17.0 42.4 25.2 14.2 6.4 1.9 0.7 18.2 9.2 36.2 13.4
DistMult 24.1 20.1 13.8 10.1 27.1 20.3 48.1 44.3 17.2 13.4 12.4 8.8 19.7 12.7 33.3 20.1
ComplEx 25.6 21.2 14.9 10.0 28.3 22.1 47.7 39.3 18.1 14.5 12.8 8.2 17.5 13.5 34.4 21.8
ConvE 24.3 20.7 14.8 10.6 25.9 18.7 42.1 39.7 15.8 11.8 10.1 7.3 15.4 11.6 33.2 17.4

TTransE 21.1 13.3 11.4 7.8 22.8 14.0 40.9 24.9 14.0 7.1 3.2 0.8 22.3 7.7 34.6 15.6
HyTE 21.2 15.1 11.5 7.7 24.1 13.5 40.9 27.1 14.0 6.5 2.8 0.7 21.5 8.0 35.2 11.7
TA-DistMult 24.5 18.9 14.1 10.3 25.7 20.7 47.1 42.7 18.4 14.2 13.1 9.5 22.9 10.5 39.7 19.3
DE-SimplE 31.3 19.7 17.9 11.7 27.4 22.8 55.6 42.6 17.3 13.5 10.1 6.5 31.9 14.0 33.8 19.6
TNTComplEx 45.1 26.7 28.7 24.3 57.2 30.0 66.9 49.6 31.7 18.3 21.9 11.8 34.5 16.3 50.9 26.8
RTFE 52.5 37.3 41.9 29.3 58.7 41.8 68.3 54.8 32.5 18.3 23.4 14.2 35.3 16.9 51.9 27.6

TAGCN 53.4 37.3 43.2 29.5 59.5 41.9 70.3 55.4 33.4 18.5 23.7 14.3 35.7 17.1 53.1 27.4

continuity of these two datasets. YAGO11k contains facts with their starting
and ending time. This characteristic accommodates for the snapshot separation
of RTFE. To be more specific, the continuity makes the timestamps between
the time span have a better understanding of the maintaining facts. While our
model only aggregate the temporal information after the preprocessing of tem-
poral data, our training strategy brings out the fluctuations. To conclude, the
properties of dataset have a large impact on the processing procedure.

Meanwhile, it is also interesting to find that methods for static knowledge
graph are better than the previous temporal knowledge graph [1, 16]. From our
analysis, it is explicit that encoding temporal information into the same space of
entities with linear function cannot help the integration. It is crucial to improve
the expressiveness, and the temporal effect should be emphasized.
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Table 3: Ablation experiments on ICEWS14. TAGCN is implemented with TeA
layer, 1-layer GCN, and temporal modified decoder.

Method MRR H@1 H@3 H@10

TMA + time-aware decoder 56.0 43.1 61.3 72.6
Only time-aware decoder 54.8 42.8 60.7 71.3
TAGCN with conventional decoder 48.1 37.8 55.7 70.7
TAGCN 61.8 54.1 66.1 76.0

4.6 Ablation Study

To examine the effect of our model, we further conduct ablation study on
each module. The results are displayed in Table 3. For saving place, we use mean
metrics of head and tail entity predictions as the final results in the further
experiments. Consisted of encoder-decoder framework shown in the Fig. 2, we
assign the ablation study as follows:

Firstly, we hide the TeA layer and only use a linear function to integrate
timestamp, relation, and head entity embeddings as the neighbor message to
update all representations of entities, it is obvious that performance on ICEWS14
degrades about 10% in H@1. The result attests that our proposed temporal
information integration method has a better comprehension on facts impact and
encodes temporal dependency more effectively.

Secondly, we construct a model only utilizing the time-aware decoder to train
for representation learning. From Table 3, we can find that the performance
is behind the best performance of TAGCN, which denotes that the temporal
encoder could definitely capture neighboring structure information and lift the
expressive capability. Meanwhile, the accuracy reduces slightly comparing with
the former study, we can interpret that temporal dependency in TKG has greater
impact than adjacent information.

Lastly, to analyse the importance of our decoder, we resort to a new structure
of TAGCN with a conventional decoder. In other words, we use the original
ConvE [14] as the decoder, thus overlooking the temporal impact on entity.
The result in Tabel 3 implies that the modification on decoder helps the entity
concentrates on the within-time facts impact and chooses the most appropriate
candidate.

4.7 Parameter Analysis

Besides, to evaluate our model, we analyze important parameters in TAGCN:
number of aggregation layers l, the embedding dimension d, and temporal inte-
gration variant operation ope. We conduct these experiments on ICEWS14 and
ICEWS05-15.

Number of Layers l. Considering multi-hop neighbors could enhance full
graph perception and increase the global understanding. The results are shown
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Fig. 3: Experimental results of influence with layer numbers, we conduct this
experiment on ICEWS14(a) and ICEWS05-15(b). The X-axis represents epochs,
while the Y-axis is the MRR of entity prediction on each dataset.

in Fig. 3. We show how the layer of aggregation can influence TAGCN. Exper-
imental results in Fig. 3 indicate that training with two layers undermines the
accuracy in both datasets. More training layers only bring little gain at the cost
of time overhead and mainly accelerate the convergence in the early stage of the
model.

The Embedding Dimension d. It is obvious that the expressiveness is related
to the embedding dimension d. As shown in Fig. 4(a), TAGCN does not need too
little or too superfluous embedding dimension to capture the features in TKG.
Therefore, the proper size of embedding dimension is around 200.

Temporal Integration Operation ope. Further, we evaluate the effectiveness
of TAGCN with different operations, such as linear calculations and convolution
operation, to integrate timestamp and entity embeddings in the decoder. The
experimental results are listed in Fig. 4(b), Sum and Mult have better perfor-
mance than Conv, which denotes that too complex approach will sabotage the
representation and integration. To balance the performance and the complexity,
we use MLP as temporal integration operation.

4.8 Further Analysis

As mentioned in the former section, we hypothesize that the temporal change
in the relation is too small. Considering the example mentioned in Section 1, the
meaning and usage of relation cooperate has been maintained for a long time.
However, the characteristics of figures change with time. It is obvious that Keanu
Reeves was the actor in different movie in 31/3/1999 and 17/5/2019. So the
temporal change in entity is explicitly more significant than that in relation. To
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Fig. 4: Comparison of different parameters: the embedding dimension(a), tem-
poral integration operation(b). The X-axis represents different datasets, while
the Y-axis is the MRR of entity prediction.

Table 4: Further analysis of temporal embedding
Method MRR H@1 H@3 H@10

Temporal embedding on both relations and entities 60.0 52.1 64.3 74.6
Temporal embedding on relations only 59.8 51.8 64.7 73.3
Temporal embedding on entities only 61.8 54.1 66.1 76.0

verify this point, we employ the temporal embedding in three approaches re-
spectively to compare the accuracy. This experiment is conducted on ICEWS14.
The result is shown in Table 4.

From Table 4, we can confirm that decoder with only temporal embedding
on entities outperforms the other approaches. Temporal embedding only on en-
tities is 2% ahead of that on relations. Temporal embeddings on both entities
and relations is 1.8% behind because the temporal changes in relations mislead
the representation learning for entity prediction. This experiment corroborates
the hypothesis we suggest: entity is more sensitive to temporal impact while
relation may evolve at a very low rate, and forcing relations to give reflect to
temporal information will only degrade the performance. Thus only using static
representations to model relations is more sufficient.

4.9 Time Prediction

The visualization of time prediction on three facts is shown in Table 5. For all
timestamps in the time set T , we calculate the probability of the object entity
among all candidates. For a more intuitive comparison, we reserve the non-zero
position in the same order of magnitude. We only pick the top three scores for
display to save place.

From Table 5, it is explicit that the true timestamp has the highest score
in the second fact and among the top three scores in the other two facts.
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Table 5: Case study of three time prediction on ICEWS14
Gold Facts Timestamps Scores

(Merkel,Intent to cooperate,Obama,19/03/2014)
03/07/2014 5.1949
19/03/2014 4.6959
09/08/2014 3.6903

(Portugal,Consult,European Central Bank,24/10/2014)
24/10/2014 3.9880
21/10/2014 1.7212
21/02/2014 1.0325

(Juan Carlos I,Make statement,Felipe de Borbon,03/06/2014)
03/06/2014 3.6341
03/06/2014 2.5742
11/02/2014 1.3227

We collate the dataset and find that in ICEWS14, some facts appear in dif-
ferent timestamps, which is consistent with our results. For example, the fact
(Angela Merkel, Express intent to cooperate,Barack Obama) occurred three
times corresponding to listed timestamps in ICEWS14 and same for the other
facts. So our model can obviously focus on the appropriate timestamps and
improve the decoder performance.

5 Conclusion

In this paper, we propose a time-aware attention graph convolutional net-
work TAGCN for link prediction in TKG. Inspired by self-attention layer in
Transformer, we bring out a novel message generator for neighboring tempo-
ral message. To accomplish entity prediction in temporal knowledge graph, we
decouple this task into two phases, using the encoder to aggregate neighbor-
ing semantic and temporal information, and acquire different temporal impact
in decoding phase on account of the query. The proposed TeA layer is used to
capture the neighboring information of all involved facts when considering the
central entity. We conduct abundant experiments on real-world datasets, and
the results show that TAGCN achieves best performance. In the future, we will
investigate the better approach to encode potential temporal information from
a novel angle.
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