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Abstract. Deep Neural Networks (DNNs) have become ubiquitous in a
wide range of application domains. Despite their success, training DNNs
is an expensive task which has motivated the use of reduced numerical
precision formats to improve performance and reduce power consump-
tion. Emulation techniques are a good fit to understand the properties
of new numerical formats on a particular workload. However, current
state-of-the-art techniques are not able to perform this tasks quickly and
accurately on a wide variety of workloads.

We propose FASE, a Fast, Accurate and Seamless Emulator that lever-
ages dynamic binary translation to enable emulation of arbitrary nu-
merical formats. FASE is fast; allowing emulation of large unmodified
workloads, accurate; emulating at instruction operand level, and seam-
less; as it does not require any code modifications and works on any ap-
plication or DNN framework without any language, compiler or source
code access restrictions. We evaluate FASE using a wide variety of DNN
frameworks and large-scale workloads. Our evaluation demonstrates that
FASE achieves better accuracy than coarser-grain state-of-the-art ap-
proaches, and shows that it is able to evaluate the fidelity of multiple
numerical formats and extract conclusions on their applicability.
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1 Introduction

Current trends on DNNs indicate that training costs will continue to grow as
state-of-the-art DNNs feature increasingly large parameter counts [3]. There are
already approaches on reducing the training computation costs via mechanisms
that incur accuracy degradations [16,29,32]. Additionally, there are approaches
able to reduce training costs without reducing DNNs accuracy. These approaches
rely on reduced computer number formats [10,11, 33,34]. To decide among all
potential format designs which ones display the best opportunities for efficient
and accurate DNN training, it is critical to empirically evaluate them with as
much fidelity as possible and on as many real neural net topologies and real
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input datasets as possible. The emulation of these reduced precision approaches
becomes one of the most important and costly phases to evaluate the reliability
of new numerical data types. The emulation helps to avoid cost overrun, by
avoiding costly hardware implementations.

TensorQuant [26], proposes two source level approaches, intrinsic and ex-
trinsic, to emulate low precision using Tensorflow. The extrinsic approach is an
approximation where the rounding process is done just on high level operators
like convolutions. This is the mode implemented in QPyTorch [39] to address
the PyTorch framework. The intrinsic approach rounds each individual floating
point operation and displays a latency of 50x with respect to native executions.
It is a source level approach that can be used to evaluate all implementation of
neural network based on Tensorflow. All of these approaches are designed target-
ing specific DNN frameworks and require changes on the framework and model
source code. Other tools like Verificarlo [4] work at the compiler level, and can be
applied to any Python framework; but, they do require complex recompilation.

To overcome these issues we propose FASE: a fast, accurate and seamless
tool that enables the emulation of custom numerical formats on any application.
FASE relies on dynamic binary instrumentation using PIN [27] to perform fine-
grain instruction-level instrumentation. In addition, FASE seamlessly works on
any application or DNN framework without any language, compiler or source
access restrictions. Since no code modification or recompilation steps are nec-
essary, FASE guarantees that the instrumented binary matches the original
one. Therefore, FASE works on all DNN frameworks, such as: Caffe [17], Ten-
sorflow [1] and PyTorch [30]. While fine-grain instrumentation can inject large
latencies, we propose a set of optimizations that enable FASE to emulate un-
modified applications on large input sets with latencies that range from 17x to
39x, which are comparable to other fine-grain state-of-the-art techniques. As a
result, FASE enables hardware architects to understand numerical behaviour
before committing to costly hardware implementations. This paper makes the
following contributions:

— We propose FASE*, an emulation tool for custom numerical formats that
enables accurate emulation of large workloads without requiring any source
code modifications or access to third-party dynamically linked libraries.

— We design performance optimizations that enable accurate emulation with
low overhead to support large-scale experimentation.

— An exhaustive evaluation campaign that demonstrates that FASE achieves
better accuracy with respect to other state-of-the-art coarser-grain approaches,
as well as large-scale experiments using multiple numerical formats that
demonstrate that FASE is able to evaluate the fidelity of numerical formats.

2 Background and Motivation

The increasing demand for computing power in machine learning training mo-
tivates the use of reduced numerical precision formats. It has lead to a myr-

4 Source code is publicily available at https://gitlab.bsc.es/josorio/fase
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Table 1: Comparison of state-of-the-art proposals.

Features Emulators

RPE [7] QPyTorch [39] TensorQuant [26]  Verificarlo [4] FASE
Fast X 4 v 4 v
Accurate 4 X 4 v v/
Seamless X X X X(recompilation) v
Dynamic Libraries X X X X(Lib. recompilation) v
Independent X X v X(compiler dep.) v

iad of proposals for custom reduced precision numerical formats, both floating-
point and integer, to improve the large computational and energy costs of train-
ing DNN. These workloads can tolerate well low-precision formats in certain
computations, with proposals that go as low as 4-bit numerical representa-
tions [10, 11, 34].

Machine learning and DNN workloads in particular heavily rely on linear
algebra kernels that can greatly benefit from low-precision formats in order
to reduce memory bandwidth and storage usage, as well as improve compute
throughput by leveraging vectorisation or accelerators that can fit more ele-
ments per instruction. An example is the adoption of the new Brain Float 16-bit
(BF16) numerical format, extensively used in DNN workloads, by most hard-
ware vendors [2,28,31]; which may be used to substitute the IEEE 754 32-bit
floating-point typically employed.

In order to evaluate new numerical formats without available hardware sup-
port, several tools and methodologies to emulate low-precision numerical formats
have been proposed. Table 1 qualitatively compares multiple state-of-the-art pro-
posals on a number of key features. We consider a proposal is fast if it is feasible
to emulate unmodified applications on large input sets, i.e., if the workload does
not need to be scaled down to have feasible emulation times. Accurate means
that the emulation is done at a fine-grain granularity (e.g., per instruction),
rather than at coarse-grain granularity (e.g., per function) which may lead to
results that are more accurate than actual computations at low precision. Seam-
less means that the emulated code does not need to be modified while dynamic
libraries means that the tool is able to emulate code from dynamically linked
libraries which may not always be open source. Finally, Independent is for tools
that can work on any programming language and are also compiler independent.

The Reduced Precision Emulator (rpe) [7] is an emulator which supports
reduced precision that can be computed on the available hardware format and
rounding. The tool operates in a fine-grain manner. They report overheads from
10-70x on small emulated workloads. However, like all other source level ap-
proaches, code modification interfere with compiler optimizations impacting nu-
merical accuracy [8]. Furthermore, it is currently restricted to Fortran applica-
tions. Verificarlo-Vprec [4,8] propose an LLVM compiler pass, at the end of
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the optimization passes, replacing all floating-point operations by user defined
ones. Vprec enables emulating reduced precision formats like BF16. It allows ac-
curate per operation rounding, with a latency from 3 to 17x according to their
experiments [4]. It handles all programming languages supported by LLVM.
However it does require the recompilation of all the application and its static
and dynamic dependencies. Which is a tedious process, and not always possi-
ble for closed source libraries. However, they support Python environment by
proposing a prebuild linux docker image.

There are two main tools that focus specifically on DNN workloads, Ten-
sorQuant [26] and QPyTorch [39]. TensorQuant is a quantization toolbox for the
Tensorflow framework that provides multiple methods to apply reduced precision
formats. They propose a coarse-grain method that applies the rounding processes
at the end of each DNN layer, all intermediate computations inside a layer are
not altered. TensorQuant also has a fine-grain operation-by-operation method
that enables accurate emulation with a reported latency increase of around 20x.
Using the fine-grain method is complex, as the user needs to re-implement each
composite operation using C++ calls. It only works on Tensorflow, requires code
modifications on each workload and does not instrument dynamically linked li-
braries. Some low-precision DNN training schemes like [10,11] use QPyTorch [39]
as reduced precision framework. QPyTorch is a fast reduced-precision emulation
framework for PyTorch. QPyTorch first represents the low precision numbers as
their corresponding floating point number, then operates using single-precision
floating point computation and then removes the extra precision through a final
quantization step. While it is a fast methodology, the reduced-precision trans-
formations are done at coarse-grain level; it may not capture the real effects of
using reduced precision; it requires code modifications on each workload; it does
not instrument dynamically linked libraries.

In contrast, FASE seamlessly works on any ML framework and is able to
emulate code in dynamically linked libraries. This is crucial in DNN training
workloads as most low level compute kernels are implemented in highly opti-
mized external libraries. In addition, we make FASE accurate by operating at
fine-grain. To reduce the latency of having accurate emulation we implement
multiple optimizations that enable FASE to emulate large workloads with over-
heads that are competitive with other state-of-the-art proposals. We detail our
design choices in Section 3, the implementation and performance optimization
in Section 4, the strategy we apply to evaluate the tool on machine learning
frameworks in Section 5 and evaluate accuracy and performance in Section 6.

3 FASE Design

Our goal is to design FASE with simplicity in mind by enabling fast, accurate
and seamless emulation of reduced precision formats. In addition, we want our
tool to be able to emulate code of external dynamically linked libraries, as many
applications rely on such libraries which contain key optimized routines.
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Fig. 1: Steps for coarse-grain emulation on a convolutional layer.

Figure 1 shows a forward pass example to demonstrate the operations of ex-
trinsic coarse-grain reduced precision emulation. In this example, a convolution
layer performs a dot product using a 3x3 filter to compute each element of the
output layer L+1. These low level compute kernel implementations are typically
found in optimized external libraries such as Intel oneDNN [19]. On the left side,
the application needs to be modified to indicate where the conversion (quantiza-
tion) takes place prior to the kernel. After the output layer L+1 computation,
a quantization and rounding step is performed over each element to obtain the
desired reduced precision representation. This is a simple and fast methodology
that allows to use well-known optimized libraries to compute the convolution.
However, this method is not accurate as all operations within the layer employ
the original single-precision format, leading to optimistic results not as accurate
than using a fine-grain approach or real hardware.

FASE aims to provide an accurate and seamless method. To achieve this fine
grain emulation, we propose to leave the target application unmodified and oper-
ate at binary level intercepting the executed machine instruction. By identifying
key floating-point instructions, for which we can modify the input and output
operands, FASE can seamlessly work on any application and DNN framework
including dynamically linked external libraries.

4 FASE Implementation

4.1 Overview

In order to provide a fast, accurate and seamless experience; FASE relies on
Dynamic Binary Translation (DBT). DBT enables modifications in the dynamic
instruction flow of any application binary, as well as on any dynamically linked
libraries the binary invokes. These modifications are done during the instrumen-
tation step, which is executed only once.
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Fig. 2: FASE Implementation Overview

Figure 2 shows an overview of the DBT instrumentation step on FASE.
FASE can be attached to any binary, and is configured through a simple con-
figuration file that specifies the desired instrumentation parameters in terms of
routines and instructions to be instrumented as well as the emulated reduced
precision format and rounding method. The DBT step which performs the in-
strumentation goes through each statically defined basic block once, and for each
instruction it can insert instrumentation code. In our context, for each instruc-
tion of interest, we want to perform up to three code insertions:

1. Before: Insert code that converts the source registers of the instruction to
the desired reduced precision format and applies the desired rounding.

2. Instruction: In most cases the instruction can be executed as is with the
modified source registers. In some cases, when the numerical format will
not execute as expected on the existing instruction or available hardware,
the instruction needs to be replaced by equivalent code that emulates the
intended behaviour. For example, when employing compound data types
or custom formats that cannot be represented with the original numeric
representation.

3. After: Insert code that converts the output to the desired reduced precision
format and applies the rounding mechanism.

Once the code has been instrumented at basic block level, the next step is
analysis. During the analysis step the instrumented dynamic instruction flow,
which includes any external libraries, is executed. Analysis is the most compute
expensive step as the modified instruction flow with code insertions is executed.

4.2 Features and Configuration Options

FASE has a number of built-in features and configuration options that simplify
the use of the tool and enable fine tuning of the emulation process.

Filters: There are two main types of filters: routine names and instruction
types. Users can specify routines that should not be instrumented, i.e., routines
that require high precision or that are not of interest for the target application.
In terms of instruction types, FASE provides easy tags to identify most types,
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Listing 1.1: Basic block optimization on a ResNet50 basic block. Only operands
in bold need to be converted. Underlined operands are source and destination
and need to be converted twice.

vimadd213ps zmmd4, zmm2, zmmword ptr [rax-+r9*4]
vimadd231ps zmmb5, zmm4, zmm3

vimadd231ps zmm6, zmm5, zmmO

vimadd213ps zmm?7, zmm2, zmmword ptr [rax+r9*440x20]
vimadd231ps zmm8, zmm?7, zmm3

vimadd231ps zmm9, zmm8, zmm0

for example, all floating-point instructions or just specific instruction types like
FMAs. Different instruction types can be defined to use different reduced preci-
sion numerical formats or rounding methods.

Dynamically changing precision during analysis step: FASE supports
an inter-process communication (IPC) method that enables signaling FASE from
the emulated application to dynamically change emulation behaviour. This does
require modifications to the emulated application, in the form of simple function
calls, to signal FASE to change its operation mode.

Numerical formats and rounding methods: FASE can support any
custom low precision numerical format and rounding method. If the format is
compatible with the original instruction binary size of exponent and mantissa,
then the inserted code in the instrumentation phase is simpler, as it just has to
convert the source and destination registers. If the format cannot be operated by
the original instruction, it is replaced by code that can perform the operation.

4.3 Optimizations

In this section we explain the different optimizations we apply to FASE to match
state-of-the-art proposals while achieving high emulation accuracy. For all op-
timizations, FASE is performing as much work as possible in the instrumenta-
tion step to lower analysis overheads, as instrumentation is performed only once
statically per basic block. Therefore, we apply all the filters during the instru-
mentation step and only insert the necessary code for the selected instructions
and routines, which will run in the analysis step.

We started from a straight forward implementation where each FP instruc-
tion is instrumented and the computation in the analysis phase in FASE is not
optimized. This unopt version will be our upper bound for performance against
which the following optimization will be evaluated in Section 6. On the other
end, the fully optimized version will be referred as full opt.

Basic-block level optimization: During the instrumentation step we per-
form a basic-block level optimization that enables a substantial reduction of
inserted code. We keep track of all source and destination register names that
will be converted and rounded, if one of these registers is used as source in a
subsequent instruction within the basic-block, it is safe to skip the conversion
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Listing 1.2: Vectorized BF16 with RNE conversion
nline __m512 ToBFloatRNEVec (__m512* input)

i -
{

__mb12i MSB_mask = _mmb512_setl_epi32(0x80000000);
__m512i LSB_mask = _mm512_setl_epi32(1);

__mb12i mask = _mmb512_setl_epi32 (0xFFFF0000);
__mb12i gnan_mask = _mmb512_setl_epi32(0x7FC00000);

__mb512i rounding_mask = _mmb512_setl_epi32 (0x7FFF);

__mb12i tmp = _mmb512_srli_epi32(*x(__m512i*)input, 16);
tmp = _mm512_and_si512(tmp, LSB_mask);

__m512i rounding_bias = _mm512_add_epi32(tmp, rounding_mask);

__m512i MSB_set = _mmb512_and_sib12(*(__m512ix*)input, MSB_mask);

tmp = _mmb512_xor_si512(*x(__mb512i*)input, MSB_set);
tmp = _mm512_add_epi32(tmp, rounding_bias);
tmp = _mmb512_or_si512(tmp, MSB_set);

__mmask16 not_nan_mask = _mm512_cmp_ps_mask(*input, *input, _CMP_EQ_0Q);

tmp = _mmb512_mask_and_epi32(qnan_mask, not_nan_mask, tmp,
*input = *(__mb12*)&tmp;

return *input;

}

and rounding of that register as it is already in the desired target numerical for-
mat. Since it is quite common for destination and source registers to be reused
in subsequent instructions, this optimization is very effective at reducing the
overheads during the analysis step, as no work needs to be done for many source
operands. Listing 1.1 shows an example of the traces generated by DNN frame-
works. Only the highlighted operands need to be converted (underlined need to
be converted twice as they are source and destination registers), saving 29.2%
of the time in this particular basic block. In Figure 2 and Section 6.2 we refer
to this optimization as Opt1.

Vectorization: When instrumenting vectorized code, which is common in
HPC and DNN low-level optimized kernels, FASE has support to do the nu-
merical conversions and rounding methods also in a vectorized manner. This
optimization greatly reduces the latency of instrumented vector instructions.

Listing 1.2 presents the vectorized optimization FASE implements to boost
the performance, reducing the emulation latency as Section 6.2 shows. In this
example, we implement the rounding process using AVX512 Intel Intrinsics, but
256bit, 128bit and scalar implementations are also available. This allows us to

mask) ;
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round the elements in the AVX vector register in a data parallel manner. Lines
3-7 define the whole set of masks we need to do the rounding. Lines 9-11 compute
the rounding bias. Then, we need to do an unsigned integer addition between
the rounding bias and the input, however AVX512 does not support it. Due to
this issue FASE uses a few additional instructions to achieve it: we save the
MSB bits of each element of the AVX512 vector (line 13), then we set all MSB
of the input to zero in line 15, then compute a signed integer addition (line 16)
and finally reset the MSB bits to its original value in line 17. Finally, FASE just
needs to check for NaN values and return the AVX512 vector. In Figure 2 and
6.2 section we refer to this optimization as Opt2.

5 Applying FASE to DNN Training Workloads

In this paper, the main use case for FASE is its applicability to DNN training
workloads. These workloads have high computational cost while tolerating re-
duced precision formats that FASE can emulate accurately. Multiple proposals
to employ reduced precision training methodologies for DNN workloads exist.
Some are based on emulation [21], while others target existing hardware [28].

5.1 Reduced precision formats

The need for reduced precision formats for DNN training has lead to numerous
proposals. The most prominent to date, which is being adopted by most hardware
vendors, BF16 format. BF16 retains the same dynamic range as FP32 as it has
the same number of exponent bits (8), but has a shorter mantissa of just 7
bits. The use of a 16-bit format can alleviate memory storage and bandwidth
requirements as well as increase computational throughput.

With FASE we can emulate multiple numerical formats to understand the
behaviour of DNN training. For example:

— Floating-point and integer formats: FASE can easily support emulation
of BF16, FP8, or other FP layouts by converting the necessary source and
destination registers of floating-point instructions to these formats. Similarly,
integer formats such as INTS8 can also be emulated.

— Compound numerical formats: Compound datatypes based on the BF16
format have been proposed recently [14]. These formats link several (two or
three) BF16 literals to increase precision while just operating using BF16
arithmetic. With FASE we can also emulate the use of these compound
datatypes, as it is possible to change the semantics of the instrumented
instruction to perform the necessary computation required. However the final
result cannot always be stored in memory with the compound datatype and
must be converted to the original type. This could be alleviated by using a
shadow memory mechanism in future works [6].
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5.2 DNN training strategies

FASE enables the implementation of popular DNN training approaches as well
as experimenting with new methodologies.

Static strategies: For example, one can test the accuracy of a DNN model
training when using BF16, FP8 or any other FP representation on the entire
workload. Or emulate the already proposed mixed precision [21, 28] training
technique, which is similar to using BF16 but uses the FP32 representation to
do the accumulation step on FMA instructions.

Using routine filters: Certain functions (or DNN layers) require higher
accuracy than others. For this reason FASE enables applying different numerical
format conversions or avoid emulation altogether of certain routines. In DNN
training, the weight updates and batch normalization layers are known to require
FP32 precision to ensure network convergence. FASE enables this behaviour via
simple configuration options.

Dynamic precision schemes and compound datatypes: FASE also
enables to use of dynamic precision schemes that dynamically adapt to workload
state at runtime. For example, it enables to adapt the numerical precision of the
emulated format depending on how training convergence progresses in order to
achieve the desired result.

6 FASE evaluation

Our experimental methodology considers the evaluation of FASE on several
DNN frameworks. We consider: Caffe, Tensorflow, PyTorch and an additional
test using the C programming language. Our experiments are performed on an
Intel Xeon Platinum 8160 processors. We compile each framework from source
enabling AVX512 Intel optimizations on all of them.

6.1 Emulation accuracy

Methodology: To evaluate emulation accuracy we use a common kernel present
both in DNN training as well as a single precision matrix multiply (SGEMM).
We implement this benchmark that multiplies two matrices using the Intel Math
Kernel Library (oneMKL) [20]. We compiled the source code using GCC 8.1 with
all the AVX512 optimizations active on the platform we use. We use as input
two matrices: A = 20000 x 2000 and B = 2000 x 10000.

We execute this benchmark with regular FP32 precision to get the reference
output. We then emulate the use of BF16 with RNE rounding using two ap-
proaches. Firstly, we apply quantization for each element of the output matrix
to represent the numbers using BF16 and RNE rounding (coarse-grain quanti-
zation label) over the reference result. This is akin to the coarse-grain methods
used by QPyTorch [39] and TensorQuant [26]. Secondly, we attach FASE on
top of the benchmark binary, which instruments the code from the dynamically
linked Intel MKL library. This enables to execute the workload using FASE
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Fig. 3: Relative error of fine-grain and coarse-grain emulation methodologies (for
BF16 and RNE rounding) with respect to a native FP32 execution.

fine-grain emulation at instruction level, representing both the input and output
numbers in BF16 with RNE rounding (FASE label). Finally, we compare the
relative error with respect to the FP32 reference of the two emulation strategies.

The following results illustrate that the fine-grain approach is a much more
accurate approach to emulate reduced precision numerical formats.

Results: Figure 3 compares the relative error when employing fine-grain and
coarse-grain emulation on the Intel MKL SGEMM kernel. The z-axis represents
20000 samples (elements) of the result matrix, sorted in terms of the absolute
numerical error for the fine-grain and coarse-grain techniques. The y-azis dis-
plays the magnitude of the relative error with respect to the reference FP32
result. As can be seen in the figure, the relative error with FASE, which is close
to what would be observed on a real hardware implementation, is consistently
one order of magnitude higher than with the coarse-grain approach. Therefore,
using the coarse-grain approach may lead to wrong assumptions about a par-
ticular reduced precision numerical format, as it delivers results that are more
accurate than they should. A coarse-grain method cannot capture the errors
that accumulate per instruction; however, FASE is able to track these errors
and deliver a result that is much closer to reality.

In Section 6.3 we demonstrate FASE on full DNN training workloads and
show that using BF16 exclusively fails to deliver state-of-the-art training ac-
curacy for certain neural networks, demonstrating the importance of fine-grain
accurate emulation of reduced precision formats.

6.2 FASE emulation overhead measurement

Methodology: To evaluate FASE latency overheads, and the impact of our
optimizations, we propose an incremental evaluation process using the different
FASE versions described in section 4.3. For all benchmarks, we compare each
version against a reference native FP32 execution without instrumentation. Ad-
ditionally, we report FASE’s instrumentation overhead, which just increments a
counter per instruction of interest, i.e, without computing any of the conversions
or rounding processes. This instrumentation overhead allows us to get a lower
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Table 2: FASE instrumentation latency and latencies for FASE unoptimized,
after applying each optimization and fully optimized.

‘Workload FASE Latency
(framework) Instr. Opt1 Opt2
Unopt Basic block Vectorization Full Opt

SGEMM (MKL) 15x 1809x  880x% 82x 39x
ResNet50 (Caffe) 11x 1131x  553x 76 % 30x
3DGan (Tensorflow) Tx  Tl4x 340x% 66x 28x
LSTM (PyTorch) 18x  1096x  551x 70x 29x
Transformer (PyTorch) 8x  818x 423 % 36x% 17x

bound of the tool overhead and estimate the cost of the conversion and rounding
process in the fully optimized full opt version.

We evaluate each FASE version on several benchmarks. First we evaluate
the SGEMM computation, as described in Section 6.1. Then we evaluate FASE
on the following machine learning workloads:

— ResNet50 for one batch of size 64, with Intel-Caffe [17] 1.1.6a. We use Intel
MKL-DNN [18] 0.18.0, and Intel MKL [20] 2019.0.3 to run the numerical
kernels. To define and run the experiments we use the pyCaffe Python in-
terface. The learning rate, gamma hyperparameter, momentum value, and
weight decay are set to 0.05, 0.1, 0.9, and 0.0001, respectively.

— CERN 3DGAN 22| with Tensorflow [1] 1.15 and Keras [5] 2. We use the
same MKL and MKLDNN libraries as in the ResNet50 case. The 3DGAN
network is trained for one batch using the Adam optimizer and a batch size
of 128. The training dataset consists of 180,000 25x25x25 three-dimensional
images generated using HPC simulation for high-energy particles [22].

Finally, we consider two natural language processing models, for which we
use a source-compiled version of PyTorch [30] version 1.8.0, Intel MKL-DNN [1§]
version 1.22.0, and Intel MKL library [20] version 2019.4.

— LSTMx2 model [38] on the PTB dataset. Following Zaremba et al. [38] we
train one batch of the medium-sized model using the associated source code
in [9] with a batch size of 20, an initial learning rate of 1, 2 LSTM layers, a
hidden size of 650, a sequence length of 35, and a dropout value of 0.5.

— A transformer-based model [37] applied to the IWSLT16 dataset to trans-
late between Dutch and English. We train for a batch size of 12000 using
the Adam Optimizer with 31 = 0.9, 8, = 0.98, and ¢ = 107%. We use the
available code [12] and follow the author’s additional instructions [12,37].

Results: Table 2 shows the emulation latencies introduced by FASE when
converting in a fine-grain manner the input and output operands to BF16 with
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RNE rounding. We show the latency introduced by the instrumentation step of
FASE in the "FASE Instrum." column, which on average is of 12x. This is the
latency introduced just by counting the number of instructions of interest, and
is therefore a lower bound of the overhead imposed by Intel Pin dynamic binary
translation in FASE.

Regarding the latencies that include the emulation of the reduced precision
format, we first show the latencies for an unoptimized version of FASE (Unopt.).
This approach leads to latencies of up-to 1809, which may deem the execution
of large workloads unfeasible in a reasonable amount of time.

The Basic-block optimization, which refers to the Opt! version that avoids
redundant rounding of registers, reduces FASE overhead by around half ranging
from 340x to 880x. The observed latency reductions are inline with the amount
of operands that need to be modified, as this optimization reduces by 50.89%
the number of operands that FASE needs to convert in ResNet50.

The Opt2 version in the Vectorization column is measuring the improvement
we propose with custom AVX512 conversion and rounding process at analysis
level using Intel Intrinsics. It results in a substantial speed up reducing FASE
overhead latencies to the 36x to 82x range, emphasizing the importance of
vectorizing the code on modern wide vector architectures.

Finally, we apply both the basic block Opt1 and vectorization Opt2 optimiza-
tions to our final Full Opt FASE version. It further reduces the final overhead
down to 17x to 39x. It makes our fine-grain approaches very competitive to the
state-of-the-art without any language, compiler or source access restrictions and
the guarantee that the instrumented binary matches the original one.

6.3 Large-scale experiments

Methodology: To show FASE supports real workloads we perform a set of
large-scale experiments. These tests consider the use of several DNN models,
datasets and numerical datatypes. We report the validation accuracy after train-
ing, BLEU Score, or perplexity depending on the workload type. We compare
the obtained accuracies against the reference implementation using FP32. We
use FASE to emulate three different numerical formats in order to demonstrate
the versatility of our tool:

— BF16 with RNE rounding used until now.

— The mixed-precision (MP) [21,28] approach that employs FP32 precision in
batch normalization and weight update layers. And performs FMA instruc-
tions using BF16 source inputs for the multiplication and an FP32 input for
the accumulator, returning an FP32 value as output.

— A compound datatype that represents FP32 values using a tuple of BF16
values (BF16x2) [14]. Note that this format requires changing the original
instruction with ad-hoc code that performs the operation using BF16x2.

We consider the following object classification models: ResNet18, ResNet34,
ResNet50, ResNet101 [13], and MobilenetV2 [32] on CIFAR100 datasets [25].
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Table 3: Large-scale experiments using FASE

Accuracy

Model Dataset ppsy Brig MP BFl6x2
ResNet18 CIFARI100 71.91% 71.46% 71.89% 71.95%
ResNet34 CIFARI100 73.21% 72.83% 73.86% 72.66%
ResNet50 CIFARI100 74.78% 69.24% 74.25% 72.57%
ResNet101 CIFARI100 75.93% 67.10% 75.65% 76.00%
MobileNetV2 CIFARI100 75.04% 73.92% 75.16% 74.82%

AlexNet ImageNet 60.79% 57.80% 60.18% N/A

Inception ImageNet 74.01% 72.03% 73.73% N/A

LSTMx2 (Perplexity) PTB 86.86 137.69 87.09 86.90
Transformers (BLEU) IWSLT16 34.53 34.86 34.66 34.65

FASE attaches to Caffe framework to train AlexNet [24] and InceptionV2 [35]
models, we use the same versions of tools as with the ResNet50 test on Sec-
tion 6.2. Finally, we consider a full test on the same two natural language pro-
cessing models as in Section 6.2. The whole set of hyper-parameters to train all
of the models are detailed in the Supplementary Material.

Results: Table 3 shows the results of using FASE for several full DNN
training workloads. We compare the accuracy of each network using our tool
emulating different numerical formats (BF16, MP and BF16x2), and FP32.

With FASE we can determine if a reduced precision format is able to achieve
the desired level of accuracy. When training object classification models on CI-
FAR100 with the BF16 numerical datatype, we observe significant drops in ac-
curacy because the reduced number of mantissa bits in the BF16 numerical
format fails to capture important information, especially on accumulations be-
tween distant numbers [15]. These drops are even higher on deeper models, for
example, in ResNet101 there is an accuracy loss of 8.82% with respect to FP32.
However, when FASE emulates MP using BF16 inputs and FP32 accumulators,
these drops disappear, keeping the same levels of accuracy as FP32. The col-
umn BF16x2 shows results for a new compound datatype proposed by Henry et
al. [14] that we emulate using FASE;, it enables computing using BF16 arithmetic
exclusively. In this case, we also observe good accuracy, on par with FP32.

Additionally, we emulate AlexNet and Inception training processes, FASE’s
results again show that using the BF16 numerical datatype is not enough to
achieve comparable accuracy with respect to FP32. For AlexNet we measure an
accuracy drop of 2.99%, while Inception model loses 1.98%. When emulating MP
using FASE, we measure a boost on the accuracy reaching similar levels as FP32
for AlexNet and Inception, having drops of just 0.61% and 0.2% respectively.

Finally, FASE emulates the training of two natural language processing mod-
els. For the Transformer model we measure the BLEU score, higher is better. We
observe that all the emulated numerical formats lead to accurate BLEU scores
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when compared to FP32. Transformer-based models are known to display robust
numerical properties and are resilient to numerical noise [36]; therefore, we can
obtain state-of-the-art results using BF16. For the LSTMx2 model we measure
perplezity (lower is better); the BF16 approach stops converging after 13 epochs
giving NaN as result, we register the last perplexity value of 137.69, this confirms
that LSTM models are not good candidates to use BF16 exclusively.

However, when we emulate approaches such as MP or BF16x2, we again ob-
tain results comparable with FP32. These set of results on large-scale workloads
illustrates the potential of FASE to emulate different numerical formats and to
extract conclusions on their applicability. FASE can also be employed to study
scenarios where numerical precision is changed at runtime depending on applica-
tion progress, and to study other custom floating-point representations; making
it a compelling fast, accurate and seamless tool.

7 Conclusions

The use of reduced precision numerical formats to lower computational costs
and increase compute throughput has shown good results in the context of HPC
workloads. More recently, the same principle is leading to a myriad of proposals
for custom reduced precision numerical formats, both floating-point and integer,
to improve the large computational and energy costs of training DNN.

Prior tools and methodologies to emulate reduced precision formats cannot
deliver a fast, accurate and seamless experience when training DNN workloads.
In this paper we propose FASE, an emulation tool for custom numerical for-
mats. FASE is: (i) accurate by leveraging DBT techniques to emulate formats
at instruction operand level; (ii) fast as it enables emulation of unmodified ap-
plications on large input sets thanks to a set of optimizations that lower its
overheads significantly; and (iii) seamless as it works on any application or DNN
framework without any language, compiler or source access restrictions and the
guarantee that the instrumented binary matches the original one.

Our evaluation demonstrates that FASE is more accurate than other state-
of-the-art proposals that employ coarse-grain emulation, uncovering relative er-
rors that appear only in fine-grain emulation. We demonstrate that by applying
both the basic block and wvectorization optimizations, FASE latency overheads
are manageable, ranging between 17X to 39x for a wide variety of workloads.
These latencies enable the evaluation of large-scale unmodified workloads, which
illustrate the potential of FASE to emulate different numerical formats and to
extract conclusions on their applicability.
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