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Abstract. Shapelets are time series subsequences that effectively dis-
tinguish time series classes. Recently, time series classifiers based on
shapelets have gained interest from the community thanks to their high
accuracy and interpretable results. However, these shapelet-based meth-
ods still have some problems in both shapelet initialization and learning
shapelet phases that limit their performances. In this paper, we propose a
novel shapelet-based classifier, called Perceptual Position-aware Shapelet
Network (PPSN), to effectively discover and optimize the shapelets. Our
method effectively utilizes the perceptually important points to extract
a small number of high-quality shapelet candidates and leverages the
position-aware subsequence distance for evaluating these candidates. In
the learning shapelet phase, our model applied the fixed normalization
on each shapelet’s transformed values to address the negative impact
of their different value ranges. It also uses the stop-gradient connec-
tion in the first few epochs to reduce the unwelcome effect of the non-
optimal weights of the final linear layer. Experimental results on 112
UCR datasets demonstrate that our model is state-of-the-art compared
to existing non-ensemble methods and competitive with the current most
accurate classifier, HIVE-COTE 2.0, while retaining the advantage of low
computational time and the power of interpretation.
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1 Introduction

Time series classification (TSC) has been receiving a great attention from the
research community due to its importance in many real-world applications.
In 2009, Ye et al. [1] introduced a novel concept of shapelets for TSC. In-
tuitively, shapelets are time series subsequences that can effectively discrimi-
nate the classes. It has been demonstrated to be a superb success in leveraging
for TSC tasks since various classes are generally recognized by local patterns
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rather than global structures. Furthermore, shapelet-based approaches can con-
vey interpretable results. Two first shapelet-based classifiers searched all possible
shapelet candidates from the dataset and selected the final shapelets by their in-
formation gain. After that, they build the shapelet decision tree with the optimal
shapelet at each of their nodes [I] or transform a target time series by its distance
to shapelets and then leverage several standard methods to classify transform
values instead of the original time series [6]. On the other hand, shapelets and
learning algorithms have been integrated into recent research [2I3l4] to directly
train shapelets that can identify time series of distinct classes.

In general, almost the shapelet-based classifiers contain two main phases:
(i) shapelet initialization phase that discovers shapelet candidates from training
time series and then selects the final shapelets by using quality evaluations like
information gain, Kruskal-Wallis statistic or F-statistic; (ii) learning shapelet
phase that optimizes shapelets through a gradient descent algorithm with the
neural network model. Nevertheless, there are shortcomings in both phases of
the existing shapelet-based methods.

In the shapelet initialization phase, the first shapelet-based methods [16]
use a so-called Full Extractor to find all possible shapelet candidates and then
utilize the Euclidean Distance to define the distance between the shapelet can-
didates and the target time series, it yields a good performance while suffering
from high computational complexity. To avoid this problem, in [2], the authors
proposed to use the Fixed-Length Extractor that only draws out all the can-
didates of the same length. Then, they apply k-Mean for clustering these can-
didates and use the k-Mean centroids as initial shapelets. However, this means
that the shapelet length must be fixed while there can be shapelets of different
lengths in the dataset. Recently, several attempts have been made to shorten the
time for the process of shapelet extractor and automatically tune cumbersome
parameters (e.g., the number and length of shapelets) by exploiting piecewise
aggregate approximation (PAA), potentially resulting in loss of detailed data
characteristics [7I8I5]. On the other hand, leveraging Euclidean Distance to cal-
culate subsequence distance between shapelet candidates and original long time
series instances takes significant time and inadvertently ignores the position of
shapelets.

In the learning shapelet phase, the previous methods learn directly from
the subsequence distances (transformed values) of shapelets and target time
series. However, this makes the model challenging to train and converge when
some shapelets give an extremely high values, and others provide values that are
considered small. On the other hand, during the first training epochs, the linear
layer in the final network usually generates very unsatisfactory predictions due
to its non-optimal weights. Both problems may limit the model’s performance.

In this paper, we propose a novel method called the Perceptual Position-
aware Shapelets Network (PPSN) for time series classification in order to tackle
the aforementioned issues. In the shapelet initialization phase, we construct
a perceptual shapelet extractor that automatically extracts a few prominent
shapelet candidates by using three consecutive important points. Next, we use
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position-aware subsequence distance for shapelet evaluation, which calculates the
distance of the shapelet candidate and its corresponding time series by leverag-
ing its position information rather than comparing it with the entire original
time series, leading to both achieving better performance and reducing the com-
putation time. Finally, high-quality shapelets with various lengths are retained
effectively. In the learning shapelet phase, our model applied the fixed normal-
ization on each shapelet’s transformed values to address the negative impact of
their different value ranges. Furthermore, the proposed method uses the stop-
gradient connection in the first few epochs (stop-gradient epochs) to reduce the
unwelcome effect of the non-optimal weights of the final linear layer.

Our contributions can be summarized as follows: (i) We propose the novel
shapelet-based approach, PPSN, that combines the effective shapelet extractor
and effectively applies position information to calculate subsequence distance;
(ii) We also introduce the fixed normalization and stop-gradient epochs tech-
niques that increase the model’s accuracy; (iii) Extensive experiments on 112
UCR datasets show that our PPSN achieves state-of-the-art performance to
non-ensemble methods while still having the power of interpretation and low
computational time.

2 Relative works

2.1 State-Of-The-Art Time Series Classifiers

During the late decades, numerous algorithms have been developed for TSC,
among them the ensemble-based and feature-based methods are currently the
state-of-the-art. Some popular ensemble-based methods include HIVE-COTE
[13] and the most accurate TSC model, HIVE-COTE 2.0 [12], that combine
four highly different classifiers, each of which is designed to capture a separate
discriminatory feature. InceptionTime [I7] is the best deep learning model for
TSC. It is proposed to reduce the variance of the sub-model by using an ensem-
ble of five Inception-based convolutional neural networks. On the other hand,
many feature-based methods have been demonstrated to be successful in the
task. Specifically, ROCKET [15] feeds the target time series into convolutional
kernels and then classifies their transformed features by a simple linear classi-
fier, e.g ridge regression. MiniRocket [I4] is a reformulated version of ROCKET,
which makes a few adjustments in their kernels and highly optimizes the con-
volutional process. Thus, MiniROCKET achieves the state-of-the-art compared
to non-ensemble classifiers. Shapelet-based classifiers [1l6] are also the feature-
based approaches. However, since essential local patterns (shapelets) obtained
from original time series are employed to designate their class, shapelet-based
approaches can deliver more interpretable decisions.

2.2 Perceptually Important Points

Perceptually Important Points (PIPs) method was first proposed [9] in order
to extract important points from a price series. PIPs are then mainly used in
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Fig. 1: The process of extracting first 6 PIPs. In that, PD is calculated by Eq.

time series data mining for many tasks such as data representation or dimension
reduction. Assume we have a time series T = [t1, ..., t,], where k is the number
of salient points to be extracted. To begin, we create a list of PIPs (PIPs =
[1,n]) with the first and last indexes of T'. The maximum Perpendicular Distance
(PD) from the line created from two preceding elements added to PIPs is then
determined by recursively finding the index in T" with the highest PD. Eq. [1] is
used to compute the PD between one position pos and PIPs.

a* Ppos — Tpos + ¢
a?+1

PD(pos, PIPs) = (1)

where, a = ge:% ,¢c=T.—axP, and P = z_norm([1, ...,n]) is a z-normalized list

of positions. Tn \;vhich, given g where 1 < g < k and PIPs, < pos < PIPsg1,
define s = PIPs,; and e = PIPsg 1. The Fig. [1| shows an example of finding
the first six PIPs from the target time series.

3 Preliminaries

In this section, we provide all of the essential definitions and notations.

Definition 1. Time Series. A time series T is a sequence of real numbers col-
lected at regular intervals over a period of time: T = [t1,..,t,], where n € N is
length of T'.

Definition 2. Time Series Dataset. A time series dataset D consists of m time
series: D = [T, ..., Tr], where T; is the i — th time series in D with Y; is label
of T;. Note that, Y; € Y is label of dataset and |Y| is indicated as number of
classes in dataset D.

Definition 3. Subsequence. Given a time series T of length n, a time series
subsequence T ;411 = [tiy ..., titi—1] 98 a consecutive subsequence of time series
T, where i is a starting position and [ is length of S with I < n.

Definition 4. Time Series Distance Measure. Time series distance measure is
a crucial function for determining the similarity of two time series.
Complexity Invariant Distance. Complexity Invariant Distance (CID) [I8]
is motivated on the notion that complex time series are frequently seen to be
more comparable to simple time series than to other complex time series. The
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complezity-invariant estimate, CI(Q) = \/Z?:_ll(qi_l,_l —¢;)?, is used to calculate
the CID of @ and C as follows:

maz(C1(Q),CI(C)) (2)
min(C1(Q),CI(C)’

CID(Q,C) = ED(Q,C)

where ED s Euclidean Distance:

ED(Q.C) = | Y (4 — ci)? (3)

Definition 5. Subsequence Distance (SubDist). Given a time series T = [t1, ..., tn]
of length n, and a subsequence S* = [si, ..., si] of length I, with | < n, the subse-
quence distance of T and S* (SubDist) is determined as:

) n—Il+1 )
SUbDZSt(T, Sl) = mm (ED(Tj7j+l_1,Sl)) (4)

Jj=1

In this work, we utilize the CID to calculate the SubDist between 7" and S?,
called CID_SubDist, the formulation for determining CID_SubDist is given by:

) n—l+1 X
CID_SubDist(T,S*) = min (CID(Tji1-1,5")) (5)

Jj=1

Definition 6. Information Gain (Infogain). Given a time series dataset D with
two labels A and B, where p(A) and p(B) represent the percentage of instances
in each class. Given a split strategy sp that divides D into two sub-datasets D1
and D2. This splitting’s information gain is determined as follows:

16(sp) = B(D) - ('ﬁ;lE(Dn n 'ﬁ;E(Da) (©)

where |D| denotes the number of instances in dataset D, and E(D) denotes the
entropy of D, which is calculated as follows:

E(D) = —p(A)log(p(A)) — p(B)log(p(B)) (7)

Definition 7. Optimal Split Point (OSP). Give time series dataset D and a
subsequence S*, we first compute SubDist between S and all instances of D,
and then sort the distance collection. For separating D into D1 and Dy, we pick
certain distance thresholds d;. For instance, SubDist(S,T;) < dy if T; € Dy,
while SubDist(S', T;) > d; if T; € Dy. An Optimal Split Point (OSP), OSP(S?),
is a set of thresholds with the best information gain when compared to other
thresholds dj .

IG(S',0SP(S%) > IG(S',d}) (8)
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Fig. 2: General Architecture of Perceptual Position-aware Shapelet Network.

Definition 8. Shapelet. Given a shapelet candidate S* of class Y; with its cor-
responding OSP(S%). It is considered as a shapelet when it has the highest in-
formation gain compared to any other candidates S*.

IG(S',0S8P(S") > IG(S*,08P(5%)) (9)

As a result, it can discriminate a class Y; from other classes Y\{Y;}.

Definition 9. Soft-minimum Function. Arcoding to [2], the minimum functions
in[{] and [5 are not differentiable. We therefore use the soft-minimum function
instead of original minimum function. Given a time series T of length n, and a
shapelet S* of length . The CID_SubDist of T and S* is calculated as Eq. . In
that, when o — oo the soft-minimum approaches the true minimum.

n—Il+1 CID;
3 CID; e“C1Di
CID_SubDist(T, S") = ==L L2
Z?;Jr exCIDi

(10)

where, CIDZ‘J = CID(Ti’iJrl,b SZ)

4 Perceptual Position-aware Shapelet Network

In this section, we propose the novel Perceptual Position-aware Shapelet Net-
work (PPSN). Specifically, our method uses the Perceptually Important Points
to extract the shapelet candidates (Perceptual Shapelet Extractor at Section
and leverages the position information on calculating SubDist (Position-
aware SubDist at Section for evaluating these shapelet candidates. Then, we
also introduce two techniques for better classifying, namely Fixed Normalization
(Section and Stop-Gradient Epochs (Section [4.3). The general architecture
of PPSN is shown in Fig. 2}
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Table 1: Average Information Gains of PSE with different number of continuous
PIPs on 10 first UCR datasets.

Number of continuous PIPs| 2 (3 (Default)| 4 5 |Full Extractor
Avg. Information Gain 0.501 0.631 0.601]0.581 0.652

4.1 Perceptual Shapelet Extractor

Extracting shapelet candidates is the most critical component of shapelet-based
classifiers. From that, the high-quality shapelets can increase the model’s perfor-
mance [7J5]. However, the current extractors have their own problems. The Full
Extractor used in [16], for instance, draws out all possible candidates from the
dataset that can provide the highest quality after evaluation, but its complex-
ity is the significant problem. To avoid the problem, Fixed-Length Extractor [2]
draws out the same length [ candidates. However, the method requires the length
of shapelet as its parameter, while finding the optimal fixed length is challenging.
Furthermore, time series often has shapelets with various lengths; therefore, con-
straining shapelets’ length can hurt the accuracy. For instance, the most infogain
Fixed-Length Extractor (with ! = 52) cannot draw out the shapelets that per-
fectly cover the second ground truth of length 37. Note that, the ground truths
are the most infogain shapelets extracted by Full Extractor. [S[75] proposed to
use the PAA-based extractor to reduce the complexity. However, this may make
the methods suffer from the loss of detailed data characteristics. In Fig. [3(c) the
extracted shapelet is bigger on both sides compared to the ground truths since
they only use the reduced-information segments.

We propose to use Perceptual Shapelet Extractor (PSE), which leverages
the PIPs to efficiently pick out the high-quality shapelet candidates of various
lengths. We conduct the experiment in Table [I] to show that 3 continuous PIPs
provide the highest infogain which is close to Full Extractor’s score (0.631 com-
pared to 0.652). The Algorithm 1 shows the pseudo-code of PSE. Specifically,
with each new extracted PIPs, p, three new possible candidates are checked and
added into the candidate pool if they exist (Line 9 — 15). Fig. [3[(d) demonstrates
that our PSE can extract perfectly similar shapelets with ground truths.
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Algorithm 1 Perceptual Shapelet Extractor

Input: Time series data set: D = [T1, ..., T}, ], number of important points: k, and
n is length of all time series in D

Output: Shapelet candidates set SC's, candidates’ start position set SC_start_pos,

and candidates’ end position set SC_end_pos
01: SCs = SCs_start_pos = SCs_end_pos = ||
02: for i = 1 to |D| do

03: PIPs = [1, n]

04: forj=1tok-2do

05: Find p from 1 to n with max PD(T;[pos], PIPs) where p ¢ PIPs
06: PIPs.append(p)

07: PIPs.sort()

08: for z=0to 2 do

09: # Check if the candidate is valid, if yes add it into SCs

10: if p—z>1and p+2— 2z <|PIPs| then

11: start_pos = PIPs[p — z], end_pos = PIPs[p+ 2 — z]
12: SC's.append(T;[start_pos : end_pos])

13: SC's_start_pos.append(start_pos)

14: SC's_end_pos.append(end_pos)

15: return SCs, SCs_start_pos, SCs_end_pos

4.2 Position-aware Sub-Distance for Shapelet Evaluating

Position-aware Sub-Distance (PSD). Subsequence distance (SubDist) is the
distance of shapelet and the best matching location in the time series instance.
Typically, ED is used to calculate the SubDist of the shapelet candidate to the
entire target time series, which ignores the position information of the shapelet.
As a result, it significantly elevates their computing cost and renders them sus-
ceptible when the major difference between time series of various classes is the
location of the shapelet. In Fig. [4] two first time series belong to the same class
A, and two last ones come to class B. Obviously, four time series share a similar
subsequence, but differ in their occurrence position. To address this issue, we
use a Position-aware SubDist (PSD), which only computes the SubDist between
the shapelet and the subsequence in target time series with the original position
of the shapelet, but enlarges on both sides with a window size w. Given time
series T of length n, shapelet S* with its start position s; and end position e;,
and window size w. The Position-aware SubDist (PSD) of 7" and S° is calculated
as Eq. Note that, instead of ED, we use the CID for the SubDist (as Eq. .

PSD(T, S%) = CID_SubDist(T[s_pos; : e_pos;], S?), (11)

{si—w—kl, si—w+1>1 {ei—i—w, e;, +tw<n
§-pos; = ; epos; =

1, otherwise n, otherwise
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Shapelet Evaluating with PSD. Given the shapelet candidates set SC's =
[S1,...,5¢, we find OSP of them with PSD between each S* and all instances
of D. Then, the top highest infogain g shapelet candidates are considered as
selected shapelets S = [S7, ..., 59]. Given S* is any instance in SCs\S.

IG(S',0SP(S") > IG(S*,0SP(S*))

4.3 Learning Shapelet Network

The ground truth shapelets have better discriminant capabilities that may not
occur in the training time series instance. In this module, we use the set of se-
lected shapelets as the learnable parameters and try to optimize it by the learn-
ing shapelet network. The model includes four modules: Position-aware Shapelet
Transform, Fixed Normalization, Classification Head, and Stop-Gradient Epochs.

Position-aware Shapelet Transform. With the utility of PSD mentioned at
Section our method transforms the time series by the PSD (Eq. instead
of original SubDist. Given the set of shapelet S = [S?, ..., 59] and the input time
series T'. The transformed vector, Z = [Z;, ..., Z,] of T is computed as follows:

Z; = PSD(T,S%), Yi€ll,.,qg (12)

Fixed Normalization. Each shapelet has a different OSP to classify its class
and others. This makes the shapelet generate the different ranges of SubDist val-
ues. Consequently, it makes the model challenging to train and converge when
some shapelets generate extremely high SubDist values, and others provide sig-
nificantly small values. We proposed the fixed normalization on each shapelet’s
transformed values to address this problem. Given the vector of transformed
Position-ware SubDist of Shapelet S* over a mini-batch: B = [Z}, ..., Z!] with
b is number of time series instances in the batch. The normalization vector
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B=[Z},.., 7 of Z; is calculated as follows:

_ 77

Zl=1- 71, Vi e[l,.., b (13)
where o = max (o, max(Z;)) is the learned parameter. Unlike batch normaliza-
tion, o is only updated on the first epoch. In Fig. |5 by stopping the ¢ update, the
shapelets of PPSN with fixed normalization are not changing excessively, while
its accuracies are higher than that of batch normalization. It demonstrates the
utility of fixed normalization.

Classification Head. After normalizing the transform value, we use the sim-
ple neural network containing a ReLLU activation and a single Linear Layer to
optimize the shapelets. Softmax function is then used for calculating the pre-
dicted label. Given the normalization vector V = [V1, ..., V], the predicted label
9 = [91,..,J)y|] is predicted as follows:

g
hi=Wio+ Y Wi;ReLU(V;), Vie[l,.,|Y]] (14)
j=1
1, 7] (15)
Gi=——\ Yie[l,.|V 15
Z‘j};h ehi

where W; ; and W; o denote the weights and bias of Linear Layer respectively, and
ReLU is the activation function computed as follows: ReLU (V;) = max(0,V}).
We use the cross-entropy loss function for this model:

Y]
Loss = — 3 ys +log(s:) (16)

i=1

Stop-Gradient Epochs. Our Perceptual Shapelet Extractor provides very
high-quality shapelets for classifying time series. However, during the first train-
ing epochs, the linear layer in the final network usually generates very unsat-
isfactory predictions due to its non-optimal weights. Therefore, we apply the
stop-gradient epochs for our model in which the shapelet is not updated. As can
be seen in Fig. [f] PPSN without SGE has a significant drop in validation accu-
racies in the first few epochs, it makes the gap of the model far bigger than that
of PPSN with SGE. That demonstrates the negative impact on the accuracy of
non-optimal weights and the benefit of stop-gradient epochs.

5 Experimental Results

In this work, we follow to [12] perform experiments on 112 datasets UCR Time
Series Archive [I0] in the original train/test split (which does not include unequal
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Fig.7: Critical different diagram shows the average ranks of PPSN and 6
shapelet-based methods on 85 UCR Dataset. Solid lines indicate the group in
which there is no significant difference (p-value > 0.05)

length and missing values datasets). They vary by the dataset types, number of
classes, number of instances, and time series lengths.

To compare multiple classifiers on multiple datasets, we follow the recommen-
dation in [I1] and report the result on a critical different diagram that contains
average ranks instead of error rates. A black horizontal line connects methods
whose pairwise classification accuracy difference is not statistically significant
using a two-sided Wilcoxon signed-rank test (a« = 5%). Holm correction is used
as the post-hoc test to the Friedman test [II] for all comparison.

In order to reproduce our experiments, we built a website E| containing all
results on 112 UCR datasets and the source code.

5.1 Hyperparameter Setting

The number of Stop-Gradient Epochs and PIPs are fixed at 1 and 0.3 of time se-
ries length, respectively. The number of shapelets g is searched over {0.1,0.2, 0.5,
1,2,5,10} of time series length. We use the simple heuristic approach for search-
ing the window size w from {5, 10, 20, 30, 50, 100, 200}. In that, with each num-
ber of shapelets g, we calculate information gain for shapelet candidates for all
w € {5,10, 20, 30,50, 100,200}. We then choose the window size w, which has the
highest average information gain of top g selected shapelets. From that, PPSN
has only one parameter g that needs to tune.

We conduct the experiments on Pytorch and use the AdamW optimizer with
learning rate at 0.01 and momentum at 0.9. For all datasets, we use the Smooth-
ing Label at 0.1, and the Batch size depends on the size of datasets. Specifically,
the batch size is chosen from {16, 32, 64,128,256} if the number of training in-
stances is higher than {0,100, 200,400,800}, respectively. For example, if the
number of training instances is 500, the batch size is then set at 128.

5.2 Compared with Shapelet Methods

In this section, we conduct the experiment to compare our PPSN with 6 state-
of-the-art shapelet-based classifiers, including Learning Time Series Shapelet
(LTS) [2], Shapelet Transform (ST) [6], Fast Shapelet (FS) [8], BSPCOVER [1],

3 https://github.com/xuanmay2701/ppsn
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Fig. 8: Scatter charts compare the accuracy of our PPSN and ADSN, ELIS++,
and MiniRocket. Each point represents the accuracy over dataset. We only con-
duct the comparison on the datasets they reported (85, 35, and 109 datasets for
ADSN, ELIS++, and MiniRocket, respectively)

Triple-Shapelet Network (TSN) [3] and Adversarial Dynamic Shapelet Network
(ADSN) [4]. We follow the protocol in [4J37], we only report the result on 85 UCR
datasets. We do not compare to ELIS++ [5] since they only provide the results
on 35/85 datasets. Fig. m shows the critical different diagram for comparing our
model and baseline classifiers. It is clear that our PPSN achieves the highest
rank and significantly outperforms all other shapelet-based classifiers. We also
provide a pair-wise comparison with ADSN in Fig. [§|(a) and the ELIS++ [5] in
Fig. b). The charts show that PPSN is superior (including equal) to ADSN
and ELIS++ in most datasets (64/85 and 29/35 datasets, respectively).

5.3 Compared with Current State-Of-The-Art Methods

PPSN is compared with 7 SOTA methods including: (i) 4 ensemble-based meth-
ods HIVE-COTE (HC1) [13], HIVE-COTE 2.0 (HC2) [12], TS-CHIEF [16], In-
ceptionTime [I7]; (ii) 2 feature-based methods Rocket [15], MiniRocket [14]; (iii)
interval-based algorithms DrCIF [12]. They are chosen since they are currently
the most accurate approaches for time series classification.

We conduct the experiment on all 112 datasets but only report the results
of 109 datasets to follow the protocol at [I4]. The average rank of our model
(PPSN) and other state-of-the-art classifiers is shown in Fig. @ PPSN is more
accurate than MiniRocket, InceptionTime on average, and comparatively less ac-
curate than the most accurate existing ensemble classifiers, especially TSCHIEF,
HIVE-COTE, and HIVE-COTE 2.0, although the differences are not statistically
significant. However, please note that InceptionTime, HIVE-COTE, TS-CHIEF
and HIVE-COTE 2.0 are ensemble methods that combime many different mod-
els including several shapelet-based classifiers. Furthermore, our model is con-
siderably faster than those ensemble methods in terms of computational time.
We also provide the scatter chart to pair-wise compare our PPSN and the best
non-ensemble methods MiniRocket (see Fig. [8[c)). The chart demonstrates that
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Fig.9: Critical different diagram shows the average ranks of PPSN and 7 SOTA
methods on 109 UCR datasets. Note that InceptionTime, HIVE-COTE, TS-
CHIEF and HIVE-COTE 2.0 are ensemble methods that combime many different
models including several shapelet-based classifiers.

Table 2: Run time (in hours) to train 109 UCR datasets. We run the shapelet
initialization phase on the single thread on a cluster using AMD EPYC 7H12
2.6GHz CPU and learning shapelet phase threads on NVIDIA A40 GPU.
Methods MiniRocket|Rocket | DrCIF |InceptionTime| HC1 | HC2 |TS-CHIEF
Total train time 0.25 2.85 | 454 86.58 340.21(427.18| 1016.87

Our Methods PPSN (1 thread) PPSN (32 threads) | PPSN (64 threads)

Shapelet |Learning| Shapelet |Learning| Shapelet |Learning
Initialization | Shapelet |Initialization | Shapelet |Initialization | Shapelet

Total train time 13.73 0.62 4.23 0.62 2.47 0.62

our PPSN is superior (including equal) to MiniRocket on most datasets (68/109
datasets) with p-value at 0.10334.

5.4 Computation Time Comparison

As shown in Table[2] PPSN takes 14.35 hours to train all 109 UCR datasets, it is
far faster than all of the state-of-the-art methods except Rocket and MiniRocket.
Especially, PPSN is two order of magnitude faster than TS-CHIEF and 34 times
faster than HC2. In addition, executing PPSN with multiple threads significantly
speeds up the computational time. For instance, if we train PPSN on 32 threads
and 64 threads, the running time is reduced to only 4.23 and 2.47 hours, respec-
tively. Note that, almost of PPSN’s running is taken by the shapelet initialization
phase, 13.73 hours compared to only 0.62 hours of the learning shapelet phase
(on single threads). This also means that the testing time of our PPSN is really
fast, approximately 10 minutes for all 109 UCR datasets. The results indicate
the advantage of our proposed method in terms of computational time.

5.5 Ablation Study and Sensitivity Study

We conduct several experiments on the first 30 UCR datasets to evaluate the
effect of proposed components and the key parameter choice for PPSN.



14 Xuan-May Le, Minh-Tuan Tran, and Van-Nam Huynh
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LTS (Baseline) J L PSE+PSD+FN+SGE (Default)
PSE —M L——————— PSE+PSD+FN
PSE+PSD

Fig. 10: Average ranks for 4 ablation versions of PPSN and LTS baseline.

8 7 6 5 4 3 2 1
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sge=1000 sge=10
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Fig. 11: Average ranks for PPSN with different number of Stop-Gradient Epochs.

Component Evaluation. We first evaluate the impact of four proposed compo-
nents of our PPSN: Perceptual Shaplet Extractor at Section [4.1] (PSE), Position-
aware SubDist at Section (PSD), Fixed Normalization at Section (FN),
and Stop-Gradient Epochs at Section (SGE). In that, the components are
added one-by-one to measure their effect on final accuracy. As can be seen in
Fig. all four components have a positive impact on increasing the results of
the final proposed model.

Without Norm (Baseline) ——— L Fixed Norm (Default)
Batch Noom —MMM——

Fig. 12: Average ranks for our Fixed Normalization and Batch Normalization.

Number of Perceptually Important Points. We conduct experiments to
execute our PPSN with different number of PIPs values and measure the average
information gain (Eq. of selected shapelets. We use the parameter related
to the length of time series. This means that given n is length of time series, so
k = nxnpips. As shown in Table[3] the average of information gain of PPSN with
npips = 0.3 (our default parameter) is approximately equal to npips = 0.4 and
npips = 0.5, while the number of extracted candidates is considerably smaller.
In addition, the information gain from our PPSN with npips = 0.3 is very close
to that of Full Extractor, at 0.633 and 0.652, respectively, while only extracting
280 candidates compared to 102380 candidates of Full Extractor.
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Table 3: The comparison of our PPSN with different number of PIPs.

Number of PIPs (npips) 0.1 | 0.2 |0.3 (Default)| 0.4 | 0.5 |Full Extractor
Avg. Information Gain 0.592(0.611 0.631 0.633]0.635 0.652
Avg. No. Extracted Candidates|100.1|195.2 280.2 370.5|475.5|  102380.9

Number of Stop-Gradient Epochs. Fig. shows the effect of our PPSN
model with different numbers of Stop-Gradient Epochs (SGE), ranging from 1
to 1000. While all PPSN with different number of SGE outperforms the baseline,
there is almost no benefit for increasing the number of SGE. Finally, PPSN with
SGE at 1 gains the most performance.

— Time series Top 2 Shapelets
(a) Instance 1 (b) Instance 2 (c) Instance 1 (d) Instance 2

Fig. 13: Selected shapelets by PPSN for ECGFiveDays dataset.

Normalization. Fig. indicates the comparison of our proposed Fixed Nor-
malization, Batch Normalization, and Baseline (without Norm). It is clear that
while there are improvements when applied normalization for PPSN, Fixed Nor-
malization shows a significantly superior result to its counterparts.

5.6 Experiments on Interpretability

One of the great capabilities of shapelets is the power of interpretability, which
can effectively provide data comprehension. Fig. 13 illustrates that the shapelets
can discriminate between two classes of the ECGFiveDays dataset [10]. Electro-
cardiography (ECG) is a term that refers to the study of the heart. Two time
series instances in Fig.[13|(a) (b) come from Class A, and those of Fig.[13|(c) (d)
come from Class B. It is clear that selected shapelets by PPSN (orange lines)
indicate the major differences between segments in the two classes. Specifically,
the first shapelet presents a QRS complex, while the second one is a T wave of
ECG. Intuitively, the T wave gained a larger peak compared to the QRS com-
plex in Class A. In medicine, it is known as a hyperacute T wave when it occurs
as a result of certain diseases such as ischemia or hyperkalemia.
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6 Conclusion

This paper has proposed a novel Perceptual Position-aware Shapelet Network
for time series classification, namely PPSN; including two phases. For shapelet
initialization phase, we introduce an effective shapelet candidates extractor using
perceptually important points and evaluate them based on position-aware subse-
quence distance. For learning shapelet phase, we introduce two techniques called
fixed normalization and stop-gradient epochs in order to mitigate the detrimen-
tal impact of various subsequence distance ranges and diminish the unpleasant
effect of the final linear layer’s non-optimal weights, respectively. Our experi-
ments show that PPSN is a state-of-the-art method compared to non-ensemble
approaches. In addition, its accuracy is comparable to the current most accurate
classifier, HIVE-COTE 2.0, while maintaining the benefits of low computational
time and interpretive power. In future work, we intend to investigate PPSN to
other time series problems such as multivariate time series classification.
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