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Abstract. This paper presents a novel state representation for reward-
free Markov decision processes. The idea is to learn, in a self-supervised
manner, an embedding space where distances between pairs of embedded
states correspond to the minimum number of actions needed to transi-
tion between them. Compared to previous methods, our approach does
not require any domain knowledge, learning from offline and unlabeled
data. We show how this representation can be leveraged to learn goal-
conditioned policies, providing a notion of similarity between states and
goals and a useful heuristic distance to guide planning and reinforce-
ment learning algorithms. Finally, we empirically validate our method
in classic control domains and multi-goal environments, demonstrating
that our method can successfully learn representations in large and/or
continuous domains.
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1 Introduction

In reinforcement learning, an agent attempts to learn useful behaviors through
interaction with an unknown environment. By observing the outcome of actions,
the agent has to learn from experience which action to select in each state in
order to maximize the expected cumulative reward.

In many applications of reinforcement learning, it is useful to define a metric
that measures the similarity of two states in the environment. Such a metric can
be used, e.g., to define equivalence classes of states in order to accelerate learning,
or to perform transfer learning in case the domain changes according to some
parameters but retains part of the structure of the original domain. A metric
can also be used as a heuristic in goal-conditioned reinforcement learning, in
which the learning agent has to achieve different goals in the same environment.
A goal-conditioned policy for action selection has to reason not only about the
current state, but also on a known goal state that the agent should reach as
quickly as possible.

In this work, we propose a novel algorithm for computing a metric that esti-
mates the minimum distance between pairs of states in reinforcement learning.
The idea is to compute an embedding of each state into a Euclidean space (see
Fig. 1), and define a distance between pairs of states equivalent to the norm of
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Fig. 1. Top: a simple gridworld where an agent has to pick up a key and open a door
(key and door positions are fixed). Bottom: the learned state embedding φ on R2. The
state is composed of the agent location and whether or not it holds the key.

their difference in the embedded space. We formulate the problem of computing
the embedding as a constrained optimization problem, and relax the constraints
by transforming them into a penalty term of the objective. An embedding that
minimizes the objective can then be estimated via gradient descent.

The proposed metric can be used as a basis for goal-conditioned reinforcement
learning, and has an advantage over other approaches such as generalized value
functions. The domain of a generalized value function includes the goal state
in addition to the current state, which intuitively increases the complexity of
learning and hence the effort necessary to properly estimate a goal-conditioned
policy. In contrast, the domain of the proposed embedding is just the state itself,
and the distance metric is estimated by comparing pairs of embedded states.

In addition to the novel distance metric, we also propose a model-based ap-
proach to reinforcement learning in which we learn a transition model of actions
directly in the embedded space. By estimating how the embedding will change
after taking a certain action, we can predict whether a given action will take
the agent closer to or further from a given target state. We show how to use
the transition model to plan directly in embedded space. As an alternative, we
also show how to use the proposed distance metric as a heuristic in the form of
reward shaping when learning to reach a particular goal state.
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The contributions of this work can be summarized as follows:

1. We propose a self-supervised training scheme to learn a distance function
by embedding the state space into a low-dimensional Euclidean space Re
where a chosen p-norm distance between embedded states approximates the
minimum distance between the actual states.

2. Once an embedding has been computed, we estimate a transition model of
the actions directly in embedded space.

3. We propose a planning method that uses the estimated transition model to
select actions, and a potential-based reward shaping mechanism that uses
the learned distance function to provide immediate reward to the agent in a
reinforcement learning framework.

2 Related Work

Our work relies on self-supervised learning to learn an embedding space useful
for goal-conditioned reinforcement learning (GCRL).

Goal-Conditioned Supervised Learning, or GCSL [4], learns a goal-conditioned
policy using supervised learning. The algorithm iteratively samples a goal from
a given distribution, collects a suboptimal trajectory for reaching the goal, rela-
bels the trajectory to add expert tuples to the dataset, and performs supervised
learning on the dataset to update the policy via maximum likelihood.

Similar to our work, Dadashi et al. [3] learn embeddings and define a pseudo-
metric between two states as the Euclidean distance between their embeddings.
Unlike our work, an embedding is computed both for the state-action space and
the state space. The embeddings are trained using loss functions inspired by
bisimulation.

Tian et al. [12] also learn a predictive model and a distance function from a
given dataset. However, unlike our work, the predictive model is learned for the
original state space rather than the embedded space, and the distance function
is in the form of a universal value function that takes the goal state as input
in addition to the current state-action pair. Moreover, in their work they use
“negative” goals assuming extra domain knowledge in the form of proprioceptive
state information from the agent (e.g. robot joint angles). Schaul et al. [10] also
learn universal value functions by factoring them into two components φ : S → R
and ϕ : G → R, where G is the set of goal states. For a more comprehensive
survey of goal-conditioned reinforcement learning, we refer to Liu et al. [6].

3 Background

In this section we introduce necessary background knowledge and notation.

3.1 Markov Decision Processes

A Markov decision process (MDP) [9] is a tuple M = 〈S,A, P, r〉, where S, A
denote the state space and action space, P : S×A→ ∆(S) is a transition kernel
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and r : S × A → R is a reward function. At time t, the learning agent observes
a state st ∈ S, takes an action at ∈ A, obtains a reward rt with expected value
E[rt] = r(st, at), and transitions to a new state st+1 ∼ P (·|st, at).

A stochastic policy π : S → ∆(A) is a mapping from states to probability
distributions over actions. The aim of reinforcement learning is to compute a
policy π that maximizes some notion of expected future reward.

In this work, we consider the discounted reward criterion, for which the ex-
pected future reward of a policy π can be represented using a value function V π,
defined for each state s ∈ S as

V π(s) = E

[ ∞∑
t=1

γt−1r(St, At)

∣∣∣∣∣S1 = s

]
.

Here, random variables St and At model the state and action at time t, re-
spectively, and the expectation is over the action At ∼ π(·|St) and next state
St+1 ∼ P (·|St, At). The discount factor γ ∈ (0, 1] is used to control the relative
importance of future rewards, and to ensure V π is bounded.

As an alternative to the value function V π, one can instead model expected
future reward using an action-value function Qπ, defined for each state-action
pair (s, a) ∈ S ×A as

Qπ(s, a) = E

[ ∞∑
t=1

γt−1r(St, At)

∣∣∣∣∣S1 = s,A1 = a

]
.

The value function V π and action-value function Qπ are related through the
well-known Bellman equations:

V π(s) =
∑
a∈A

π(a|s)Qπ(s, a),

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)V π(s′).

The aim of learning is to find an optimal policy π∗ that maximizes the value
in each state, i.e. π∗(s) = arg maxπ V

π. The optimal value function V ∗ and
action-value function Q∗ satisfy the Bellman optimality equations:

V ∗(s) = max
a∈A

Q∗(s, a),

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)V ∗(s′).

3.2 Goal-Conditioned Reinforcement Learning

Standard RL only requires the agent to complete one task defined by the reward
function. In Goal-Conditioned Reinforcement Learning (GCRL) the observation
is augmented with an additional goal that the agent is require to achieve when
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taking a decision in an episode [10, 2]. GCRL augments the MDP tupleM with a
set of goal states and a desired goal distributionMG = 〈S,G, pg, A, P, r〉, where
G is a subset of the state space G ⊆ S, pg is the goal distribution and the reward
function r : S × A × G → R is defined on goals G. Therefore the objective of
GCRL is to reach goal states via a goal-conditioned policy π : S×G→ ∆(A) that
maximizes the expectation of the cumulative return over the goal distribution.

Self-Imitation Learning When we consider the goal space to be equal to
the state space G = S we can treat any trajectory t = {s0, a0, ..., an−1, sn}
and any sub-trajectory ti,j ∈ t, as a successful trial for reaching their final
states. Goal Conditioned Supervised Learning (GCSL) [4] iteratively performs
behavioral cloning on sub-trajectories collected in a dataset D by learning a
policy π conditioned on both the goal and the number of timesteps to reach the
goal h.

J(π) = ED[logπ(a | s, g, h)].

3.3 Reward Shaping

An important challenge in reinforcement learning is solving domains with sparse
rewards, i.e. when the immediate reward signal is almost always zero.

Reward Shaping attempts to solve this issue by augmenting a sparse reward
signal r with a reward shaping function F , r = r + F . Based on this idea, Ng
et al. [8] proposed Potential-based reward shaping (PBRS) as an approach to
guarantee policy invariance while reshaping the environment reward r. If the
reward is constructed from a potential function, policy invariance guarantees to
unalter the optimal policy. Formally PBRS defines F as:

F = γΦ(s′)− Φ(s)

where Φ : S → R is a real-valued potential function.

4 Contribution

In this section we present our main contribution, a method for learning a state
representation of an MDP that can be leveraged to learn goal-conditioned poli-
cies. We first introduce notation that will be used throughout, then present
our method for learning an embedding, and finally show how to integrate the
embedding in algorithms for planning and learning.

We first define the Minimum Action Distance (MAD) dMAD(s, s′) as the
minimum number of actions necessary to transition from state s to state s′.

Definition 1. (Minimum Action Distance) Let T (s′ | π, s) be the random vari-
able denoting the first time step in which state s′ is reached in the MDP when
starting from state s and following policy π. Then dMAD(s, s′) is defined as:

dMAD(s, s′) := min
π
min [T (s′ | π, s)] .
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The Minimum Action Distance between states is a priori unknown, and is
not directly observable in continuous and/or noisy state spaces where we cannot
simply enumerate the states and keep statistics about the MAD metric. Instead,
we will approximate an upper bound using the distances between states observed
on trajectories. We introduce the notion of Trajectory Distance (TD) as follows:

Definition 2. (Trajectory Distance) Given any trajectory t = s0, ..., sn ∼ M
collected in an MDPM and given any pair of states along the trajectory (si, sj) ∈
t such that 0 ≤ i ≤ j ≤ n, we define dTD(si, sj | t) as

dTD(si, sj | t) = (j − i),

i.e. the number of decision steps required to reach sj from si on trajectory t.

4.1 State Representation Learning

Our goal is to learn a parametric state embedding φθ : S → Re such that the
distance d between any pair of embedded states approximates the Minimum
Action Distance from state s to state s′ or vice versa.

d(φθ(s), φθ(s
′)) ≈ min(dMAD(s, s′), dMAD(s′, s)). (1)

We favour symmetric embeddings since it allows us to use norms as distance
functions, e.g. the L1 norm d(z, y) = ||z − y||1. Later we discuss possible ways
to extend our work to asymmetric distance functions.

To learn the embedding φθ, we start by observing that given any state trajec-
tory t = {s0, ..., sn}, choosing any pair of states (si, sj) ∈ t with 0 ≤ i ≤ j ≤ n,
their distance along the trajectory represents an upper bound of the MAD.

dMAD(si, sj) ≤ dTD(si, sj | t). (2)

Inequality (2) holds for any trajectory sampled by any policy and allows to
estimate the state embedding φθ offline from a dataset of collected trajectories
T = {t1, ..., tn}. We formulate the problem of learning this embedding as a
constrained optimization problem:

min
θ

∑
t∈T

∑
(s,s′)∈t

(‖φθ(s)− φθ(s′)‖l − dTD(s, s′ | t))2,

s.t. ‖φθ(s)− φθ(s′)‖l ≤ dTD(s, s′ | t) ∀t ∈ T ,∀(s, s′) ∈ t.
(3)

Intuitively, the objective is to make the embedded distance between pairs
of states as close as possible to the observed trajectory distance, while respect-
ing the upper bound constraints. Without constrains, the objective is minimized
when the embedding matches the expected Trajectory Distance E [dTD] between
all pairs of states observed on trajectories in the dataset T . In contrast, con-
straining the solution to match the minimum TD with the upper-bound con-
strains ‖φθ(s)− φθ(s′)‖l ≤ dTD(s, s′ | t) allows us to approximate the MAD.
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Evidently, the precision of this approximation depends to the quality of the
given trajectories.

To make the constrained optimization problem tractable, we relax the hard
constrains in (3) and convert them into a penalty term in order to retrieve a
simple unconstrained formulation that is solvable with gradient descent and fits
within the optimization scheme of neural networks.

min
θ

∑
t∈T

∑
(s,s′)∈t

[
1

dTD(s, s′ | t)2
(‖φθ(s)− φθ(s′)‖l − dTD(s, s′ | t))2

]
+ C, (4)

where C is our penalty term defined as

C =
∑
t∈T

∑
(s,s′)∈t

[
1

dTD(s, s′ | t)2
max (0, ‖φθ(s)− φθ(s′)‖l − dTD(s, s′ | t))2

]
.

The penalty term C introduce a quadratic penalization of the objective for
violating the upper-bound constraints ‖φθ(s)− φθ(s′)‖l <= dTD(s, s′ | t), while
the term 1

dTD(s,s′|t)2 normalizes each sample loss to be in the range [0, 1]. The

normalizing term also has the effect of prioritizing pairs of states that are close
together on a trajectory, while giving less weight to pairs of states that are further
apart. Intuitively, this makes sense since there is more uncertainty regarding the
MAD of pairs of states that are further apart on a trajectory.

4.2 Learning Transition Models

In the previous section we showed how to learn a state representation that en-
codes a distance metric between states. This distance allows us to identify states
st that are close to a given goal state, i.e. d(φθ(st), φθ(sgoal)) < ε, or to measure
how far we are from the goal state, i.e. d(φθ(st), φθ(sgoal)). However, on its own,
the distance metric does not directly give us a policy for reaching the desired
goal state.

In this section we propose a method to learn a transition model of actions,
that combined with our state representation allows us to plan directly in the
embedded space and derive policies to reach any given goal state. Given a dataset
of trajectories T and a state embedding φθ(s), we seek a parametric transition
model ρζ(φθ(s), a) such that for any triple (s, a, s′) ∈ T , ρζ(φθ(s), a) ≈ φθ(s′).

We propose to learn this model simply by minimizing the squared error as

min
ζ

T∑
t

t∑
s,a,s′

[
(ρζ(φθ(s), a)− φθ(s′))2

]
. (5)

Note that in this minimization problem, the parameters θ of our state represen-
tation are fixed, since they are considered known and are thus not optimized at
this stage.
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4.3 Latent space planning

The functions ρζ and φθ together represent an approximate model of the under-
lying MDP.

We propose a Model Predictive Control algorithm that we call Plan-Dist,
which computes a policy to reach a given desired goal state sgoal ∈ S by un-
rolling trajectories for a fixed horizon H in the embedded space. Plan-Dist uses
the negative distance between the actual state st and the goal state sgoal as
the desired reward function to be maximized, i.e. r(s) = −d(φθ(st), φθ(sgoal)).
Our algorithm considers discrete action spaces and discretizes the action space
otherwise. Plan-Dist samples a number N of action trajectories TN,H from the
set of all possible action sequences of length H, TN,H ⊂ AH . The trajectories
are then unrolled recursively in the latent space starting from our actual state
st and using the transition model φθ(st+1) ≈ ρζ(φθ(st), at). At time step t, the
first action of the trajectory that minimizes the distance to the goal is performed
and this process is repeated at each time step until a terminal state is reached
(cf. Algorithm 1).

Algorithm 1 Plan-Dist

1: Input: environment e, state embedding φθ, transition model ρζ , horizon H,
number N of trajectories to evaluate

2: s← initialstate
3: sgoal ← goalstate
4: zgoal ← φθ(sgoal)
5: while within budget do
6: TN,H ← sample N action sequences of length H
7: tMaxReward ← None
8: rmax ←MinReward
9: for ta ∈ TN,H do

10: z = φθ(s)
11: r = r − d(z, zgoal)
12: for at ∈ ta do
13: zt+1 = ρζ(z, at)
14: r = r − d(zt+1, zgoal)
15: end for
16: if r > rmax then
17: rmax = r
18: tMaxReward ← ta
19: end if
20: end for
21: s′ ← apply action tMaxReward[0] in state s
22: s = s′

23: end while
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4.4 Reward Shaping

Our last contribution is to show how to combine prior knowledge in the form
of goal states and our learned distance function to guide existing reinforcement
learning algorithms.

We assume that a goal state is given and we augment the environment re-
ward r(s, a) observed by the reinforcement learning agent with Potential-based
Reward Shaping [8] of the form:

r(s, a) = r(s, a) + F (s, γ, s′), (6)

where F is our potential-based reward:

F (s, γ, s′) = −γd(φθ(s
′), φθ(sgoal)) + d(φθ(s), φθ(sgoal)).

Here, d(φθ(·), φθ(sgoal)) represents our estimated Minimum Action Distance to
the goal sgoal. Note that for a fixed goal state sgoal, −d(φθ(·), φθ(sgoal)) is a
real-valued function of states which is maximized when d = 0.

Intuitively our reward shaping schema is forcing the agent to reach the goal
state as soon as possible while maximizing the environment reward r(s, a). By
using potential-based reward shaping F (s, γ, s′) we are ensuring that the optimal
policy will be invariant [8].

5 Experimental Results

In this section we present results from experiments where we learn a state em-
bedding and transition model offline from a given dataset of trajectories1. We
then use the learned models to perform experiments in two settings:

1. Offline goal-conditioned policy learning: Here we evaluate the performance
of our Plan-Dist algorithm against GCSL [4].

2. Reward Shaping: In this setting we use the learned MAD distance to reshape
the reward of a DDQN[13] agent (DDQN-PR) for discrete action environ-
ments and DDPG[5] for continuos action environment (DDPG-PR), and we
compare it to their original versions.

1 The code to reproduce the experimental results is available at:
https://github.com/lorenzosteccanella/SRL.
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Fig. 2. Evaluation Tasks. Top row: MountainCar-v0, CartPole-v0, AcroBot-v1 and
Pendulum-v0. Bottom row: GridWorld and SawyerReachXYZEnv-v1.

5.1 Dataset Collection and Domain Description

We test our algorithms on the classic RL control suite (cf. Figure 2). Even
though termination is often defined for a range of states, we fix a single goal
state among the termination states. These domains have complex dynamics and
random initial states, making it difficult to reach the goal state without dedicated
exploration. The goal state selected for each domain is:

– MountainCar-v0: [0.50427865, 0.02712902]
– CartPole-v0: [0, 0, 0, 0]
– AcroBot-v1: [-0.9661, 0.2581, 0.8875, 0.4607, -1.8354, -5.0000]
– Pendulum-v0: [1, 0, 0]

Additionally, we test our model-based algorithm Plan-Dist in two multi-goal
domains(see. Fig. 2):

– A 40x40 GridWorld.
– The multiworld domain SawyerReachXYZEnv-v1, where a multi-jointed robotic

arm has to reach a given goal position.

In each episode, a new goal sgoal is sampled at random, so the set of possible
goal states G equals the entire state space S. These domains are challenging for
reinforcement learning algorithms, and even previous work on goal-conditioned
reinforcement learning usually considers a small fixed subset of goal states.

In each of these domains we collect a dataset that approximately covers the
state space, since we want to be able to use any state as a goal state. Collecting
these datasets is not trivial. As an example, consider the MountainCar domain
where a car is on a one-dimensional track, positioned between two mountains.
A simple random trajectory will not be enough to cover all the state space
since it will get stuck in the valley without being able to move the cart on
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top of the mountains. Every domain in the classic control suite presents this
exploration difficulty and for these environments we rely on collecting trajectories
performed by the algorithms DDQN[13] and DDPG[5] while learning a policy
for these domains. Note that we use DDPG only in the Pendulum domain, which
is characterized by a continuous action space.

In Table 1 we report the size, the algorithm/policy used to collect the tra-
jectories, the average reward and the maximum reward of each dataset. Note
that the average reward is far from optimal and that both Plan-Dist (our offline
algorithm) and GCSL improve over the dataset performance (cf. Figure 3).

Table 1. Dataset description.

Environments
# Trajectories
Dataset

Algorithm to
Collect Trajectories

Avg Reward
Dataset

Max Reward
Dataset

MountainCar-v0 100 DDQN -164.26 -112

CartPole-v0 200 DDQN +89.42 +172

AcroBot-v1 100 DDQN -158.28 -92.0

Pendulum-v0 100 DDPG -1380.39 -564.90

GridWorld 100 RandomPolicy – –

SawyerReach-
XYZEnv-v1

100 RandomPolicy – –

5.2 Learning a State Embedding

The first step of our procedure consists in learning a state embedding φθ from
a given dataset of trajectories T . From each trajectory ti = {s0, ..., sn} ∈ T we
collect all samples (si|ti , sj|ti , dTD(si|ti , sj|ti | ti)), 0 ≤ i ≤ j ≤ n, and populate
a Prioritized Experience Replay (PER) memory [11]. We use PER to prioritize
the samples based on how much they violate our penalty function in (4).

We used mini-batches B of size 512 with the AdamW optimizer [7] and
a learning rate of 5 ∗ 10−4 for 100,000 steps to train a neural network φθ by
minimizing the following loss derived from (4):

L(B) =
∑

(s,s′,dTD)∈B

[
1

d2TD
(‖φθ(s)− φθ(s′)‖1 − dTD)2

]
+ C,

where C is the penalty term defined as:

C =
∑

(s,s′,dTD)∈B

[
1

d2TD
max(0, ‖φθ(s)− φθ(s′)‖1 − dTD)2

]
We use an embedding dimension of size 64 with an L1 norm as the metric to

approximate the MAD distance. Empirically, the L1 norm turns out to perform
better than the L2 norm in high-dimensional embedding spaces. These findings
are in accordance with theory [1].
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Fig. 3. Results in the classic RL control suite.

5.3 Learning Dynamics

We use the same dataset of trajectories T to learn a transition model. We collect
all the samples (s, a, s′) in a dataset D and train a neural network ρζ using mini-
batches B of size 512 with the AdamW optimizer [7] and a learning rate of
5 ∗ 10−4 for 10,000 steps by mimizing the following loss derived from (5):

L(B) =

B∑
s,s′,dTD

[
(ρζ(φθ(s), a)− φθ(s′))2

]

5.4 Experiments

We compare our algorithm Plan-Dist against an offline variant of GCSL, where
GCSL is trained from the same dataset of trajectories as our models φθ and ρζ .
The GCSL policy and the models φθ and ρζ are all learned offline and frozen at
test time.

Ghosh et al. [4] propose two variants of the GCSL algorithm, a Time-Varying
Policy where the policy is conditioned on the remaining horizon π(a|s, g, h)
(in our experiments we refer to this as GCSL-TVP) and a horizon-less policy
π(a|s, g) (we refer to this as GCSL).
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Fig. 4. Results in multi-goal environments.

We refer to our reward shaping algorithms as DDQN-PR/DDPG-PR and
their original counterpart without reward shaping as DDQN/DDPG. DDQN is
used in domains in which the action space is discrete, while DDPG is used for
continuous action domains.

For all the experiments we report results averaged over 10 seeds where the
shaded area represents the standard deviation and the results are smoothed
using an average window of length 100. All the hyper-parameters used for each
algorithm are reported in the appendix.

In the multi-goal environments in Figure 4 we report two metrics: the distance
to the goal with respect to the state reached at the end of the episode, and the
length of the performed trajectory. In both domains, the episode terminates
either when we reach the goal state or when we reach the maximum number of
steps (50 steps for GridWorld, and 200 steps for SawyerReachXYZEnv-v1). We
evaluate the algorithms for 100,000 environment steps.

We can observe that Plan-Dist is able to outperform GCSL, being able to
reach the desired goal state with better precision and by using shorter paths.
We do not compare to reinforcement learning algorithms in these domains since
they struggle to generalize when the goal changes so frequently.

On the classic RL control suite in Figure 3 we report the results showing the
total reward achieved at the end of each episode. Here we compare both goal-
conditioned algorithms and state-of-the-art reinforcement learning algorithms for
200,000 environment steps. Plan-Dist is still able to outperform GCSL in almost
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all domains, while performing slightly worse than GCSL-TVP in CartPole-v0.
Compared to DDQN-PR/DDPG-PR, Plan-Dist is able to reach similar total
reward, but in MountainCar-v0, DDQN-PR is eventually able to achieve higher
reward.

The reward shaping mechanism of DDQN-PR/DDPG-PR is not helping in
the domains CartPole-v0, Pendulum-v0 and Acrobot-v0. In these domains, it is
hard to define a single state as the goal to reach in each episode. As an example,
in CartPole-v0 we defined the state [0, 0, 0, 0] as our goal state and we reshape
the reward accordingly, but this is not in line with the environment reward that
instead cares only about balancing the pole regardless of the position of the
cart. While in these domains we do not observe an improvement in performance,
it is worth noticing that our reward shaping scheme is not adversely affecting
DDQN-PR/DDPG-PR, and they are able to achieve results that are similar to
those of their original counterparts.

Conversely, in MountainCar-v0 where the environment reward resembles a
goal reaching objective, since the goal is to reach the peak of the mountain as
fast as possible, our reward shaping scheme is aligned with the environment
objective and DDQN-PR outperforms DDQN in terms of learning speed and
total reward on the fixed evaluation time of 200,000 steps.

6 Discussion and Future Work

We propose a novel method for learning a parametric state embedding φθ where
the distance between any pair of states (s, s′) in embedded space approximates
the Minimum Action Distance, d(φθ(s), φθ(s

′)) ≈ dMAD(s, s′). One limitation of
our approach is that we consider symmetric distance functions, while in general
the MAD in an MDP could be asymmetric, dMAD(s, s′) 6= dMAD(s′, s). Schaul et
al. [10] raise a similar issue in the context of learning Universal Value Functions,
and propose an asymmetric distance function on the following form:

dA(s, s′) = ‖σ(ψ1(s′))(φ(s)− ψ2(s′))‖l,

where σ is a the logistic function and ψ1 and ψ2 are two halves of the same em-
bedding vector. In their work they show similar performance using the symmetric
and asymmetric distance functions. Still, an interesting future direction would
be to use this asymmetric distance function in the context of our self-supervised
training scheme.

While our work focuses on estimating the MAD between states and empiri-
cally shows the utility of the resulting metric for goal-conditioned reinforcement
learning, the distance measure could be uninformative in highly stochastic en-
vironment where the expected shortest path distance better measures the dis-
tance between states. One possible way to approximate this measure using our
self-supervised training scheme would be to minimize a weighted version of our
objective in (3):
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min
θ

∑
t∈T

∑
(s,s′)∈t

1/dαTD(‖φθ(s)− φθ(s′)‖l − dTD(s, s′ | t))2.

Here, the term 1/dTD is exponentiated by a factor α which decides whether to
favour the regression over shorter or longer Trajectory Distances. Concretely,
when α < 1 we favour the regression over shorter Trajectory Distances, approx-
imating a Shortest Path Distance.

In our work we learn a distance function offline from a given dataset of tra-
jectories, and one possible line of future research would be to collect trajectories
while simultaneously exploring the environment in order to learn the distance
function.

In this work we focus on single goal reaching tasks, in order to have a fair
comparison with goal-conditioned reinforcement learning agents in the literature.
However, the use of our learned distance function is not limited to this setting
and we can consider multi-goal tasks, such as reaching a goal while maximizing
the distance to forbidden (obstacle) states, reaching the nearest of two goals,
and in general any linear and non-linear combination of distances to states given
as input.

Lastly, it would be interesting to use this work in the contest of Hierarchical
Reinforcement Learning, in which a manager could suggest subgoals to our Plan-
Dist algorithm.
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