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Abstract. In computer-aided design (CAD), software tools support de-
sign engineers during the modeling of assemblies, i.e., products that con-
sist of multiple components. Selecting the right components is a cumber-
some task for design engineers as they have to pick from a large number
of possibilities. Therefore, we propose to analyze a data set of past as-
semblies composed of components from the same component catalog,
represented as connected, undirected graphs of components, in order to
suggest the next needed component. In terms of graph machine learning,
we formulate this as graph classification problem where each class cor-
responds to a component ID from a catalog and the models are trained
to predict the next required component. In addition to pretraining of
component embeddings, we recursively decompose the graphs to obtain
data instances in a self-supervised fashion without imposing any node
insertion order. Our results indicate that models based on graph con-
volution networks and graph attention networks achieve high predictive
performance, reducing the cognitive load of choosing among 2,000 and
3,000 components by recommending the ten most likely components with
82–92% accuracy, depending on the chosen catalog.

Keywords: Graph Machine Learning · Recommendation · Computer-
Aided Design · AI-Aided Design.

1 Recommending Components in Assembly Modeling

Computer-aided design (CAD) most generally refers to using computers to sup-
port the creation, modification, analysis, or optimization of three-dimensional
mechanical designs [15]. More specifically, we consider the problem of recom-
mending existing CAD components to design engineers during assembly model-
ing, i.e., the design of new assemblies composed of those components. Consider,
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cooperation with Cadenas GmbH.
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Fig. 1: Our overall approach: CAD assemblies are converted to graphs which are
enriched by component representations obtained from a variation of word2vec
[14]. Data instances for component recommendation are derived from CAD as-
semblies to train GNNs to predict the next required components during con-
struction. Best viewed in color on screen.

as a simplified example, a cabinet that consists of five plates, a hinge, a han-
dle, screws, etc. A governing assumption of our approach is that components
that are used together frequently have a causal relationship that is captured in
the data. For example, a heavy hinge might often be combined with a heavy
door and similarly for lighter components. Such information could lead to rec-
ommendations regarding the next component to be inserted. Rather than having
design engineers (i.e., CAD system users) manually maintain such logical and
domain-specific rules (a tedious task that is likely to be neglected in practice), we
strive for a data-driven solution that adapts to the sets of assemblies on which
it is trained – even if that entails imperfect recommendations in some cases.
That way, experienced designers’ knowledge could be extracted from existing
assemblies and speed up the design process.

Unfortunately, assumptions made for standard recommendation systems (col-
laborative or content-based filtering) do not hold in this use case. First, person-
alized information about the design engineers (e.g., their typical area of work,
their recent designs, or even their current intention) that would be necessary
for collaborative filtering is typically not available. Second, what constitutes a
good recommendation for the next component depends on the intended design
as opposed to simply going for a rather static “liking” of elements.

Therefore, we treat mechanical designs as undirected graphs, where nodes
correspond to CAD components and edges denote connections between them.
Edges can result from so-called “mating” conditions3 in CAD systems or can
be read off by geometric proximity. Even though a graph can be thought of
as being generated by a sequence of node and edge insertions (and therefore be

3 Mating conditions define relative positions of components to each other.
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amenable to recurrent models), such sequential information is not stored in CAD
designs. Moreover, an assembly can emerge in any order – also depending on the
designer’s preferences – which is why we prefer a model that is invariant to per-
mutations. Therefore, we propose the following approach, as shown in Figure 1:

1. Extract only components and connections as connected, undirected graphs
from CAD assembly models – ignoring other metadata

2. Pretrain to get low-dimensional component embeddings using a technique
based on word2vec [14], choosing an appropriate context size instead of ran-
dom walks like in node2vec [5]

3. Generate data instances for graph neural networks (GNN) by means of
“cutting off” nodes in a self-supervised fashion, resulting in pairs consist-
ing of partial graph and the cut-off node

4. Train GNNs to predict the next component given a partial graph, i.e., learn
a discriminative model p(next node | partial graph) that is part of an au-
toregessive model which, when unrolled, leads to a generative process [9]

5. Evaluate the performance of GNNs by the top-10 rate on an unseen test set

Our approach contributes to the ongoing trend of extending CAx (computer-
aided processes like design, engineering and manufacturing) to AIAx (artificial
intelligence-aided processes) [3,7,20,24]. In particular, it falls into the realm of
AI-aided design that supports design engineers in a data-driven fashion. Whereas
most existing AIAD approaches are concerned with adequately modeling the 3D
geometry [3,24], our model is only concerned with components and connections
found in assemblies and deriving useful recommendations only from their usage
patterns in shared component catalogs.

Related Work The cognitive load imposed onto design engineers working with
a complex CAD system has already been recognized [11]. The authors apply col-
laborative filtering to suggest useful software commands to improve the workflow.
Our approach is based on the same motivation but focuses on components that
are likely to be inserted into the current assembly instead of commands. Apply-
ing principles of search engines and information retrieval to support CAD design
engineers is called assembly retrieval [13]. There, different notions of similarity
(usage similarity, component overlaps, etc.) are considered to enable queries for
similar assembly designs, instead of suggesting how to extend an assembly like
in our approach. Recently, transformer-based generative models have been ap-
plied to CAD models by generating sequences of CAD-typical geometrical oper-
ations such as “sketching”, “extruding”, “boolean subtracting” [17]. While this
method addresses component design tasks, our method focuses on usage simi-
larity of components reoccurring in assemblies, abstracts away from geometrical
features, and – most notably – does not require a linear order of operations.

Deep learning on non-Euclidean domains such as graphs or manifolds is often
referred to as geometric deep learning [2]. This is not limited to the geometry in
the sense of a 3D (mesh) model but stems from the fact that certain equivariances
or invariances are derived from the symmetry properties prevalent in the data –
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such as permutation equivariance for the neighboring nodes in a graph. In that
sense, our approach belongs to geometric deep learning: a component graph that
we extract from a CAD model should lead to the same hidden representation,
regardless of how the components are (arbitrarily) ordered, a property that is
found in graph neural networks as well as in deep sets [22].

The applicability of graph neural networks to recommendation systems has
also been recognized [18], essentially since the domain of many recommendation
tasks (e.g., movies to users, products to customers, etc.) can be formalized as a
(hyper)graph consisting of all users and items, connecting users with their liked
or purchased items. However, the goal here is to predict new connections, i.e.,
to recommend items to users, rather than adding new nodes to the graph.

The task of predicting the next component for an assembly can be seen as a
generative model for graphs, if rolled out step by step. Existing approaches to
generative deep graph models, however, tend to learn the probability distribution
of the observed graphs at once, called “one-shot generating” in [6], using varia-
tional autoencoders, generative adversarial networks, or normalizing flows. The
authors of [12] propose to learn a sequence of node and edge insertions (called
structure building actions). Their approach, in particular the neural network
architecture that they use to map an intermediate graph to the next insertion
action, bears similarities in terms of the architecture we use in our approach.
However, the edges can appear in any order which may lead to graphs that are
not connected – which we want to explicitly exclude. Our focus on individual
component insertion steps also removes the need for recurrent structures that
[12] employs. Moreover, training general generative graph models is reported to
be more difficult to balance which is why we focus on the discriminative task of
predicting p(next node | partial graph) but manage the generation of appropri-
ate data via self-supervision outside the training loop (cf. Figure 1).

2 Graph Neural Networks

In our approach, we use undirected graphs to represent assemblies. A graph
G = (N , E) consists of a set of nodes N and a set of edges E ⊆ N × N where
an edge e = (i, j) ∈ E denotes that nodes i and j are connected. For undirected
graphs, all edges are bidirectional, i.e., (i, j) ∈ E implies (j, i) ∈ E . The neigh-
bors N(i) ⊆ N of a node i are given by the set of nodes adjacent to it, i.e.,
N(i) = {j ∈ N | (i, j) ∈ E}. A node i is called a leaf node if it has exactly one
neighbor, i.e., if |N(i)| = 1. We define the removal G \ {i} of a node i as the
graph that results from removing i from N and, consequently, removing all edges
involving i from E . We call a node cohesive if its removal would result in a graph
composed of multiple connected components.

Graph neural networks (GNN) operate on graphs to perform tasks such as
graph classification, node classification, or link prediction [19]. Each node i ∈ N
is described by a feature vector xi of dimension d (e.g., one-hot encodings of
numeric indices, pretrained embeddings, or other features describing i). Stacking
the feature vectors of all nodes in a graph gives rise to an input matrix X with
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dimensions |N |×d. The edges E are represented by an |N |×|N |-adjacency matrix
A where Ai,j = 1 ⇔ (i, j) ∈ E . In addition, features can be assigned to edges,
for example, to describe different relations between users of a social network.

The representation of N and E as matrices X and A is useful due to the
efficient interoperability with existing deep learning frameworks but it enforces
the set N to be ordered. Therefore, graph neural networks require functions f
that are applied to any matrix representation of the same graph to be either
permutation equivariant or permutation invariant. Equivariance is used for node
classification and states that permuting the output of f is the same as applying f
to the permuted input, i.e., f(PX) = Pf(X) for a permutation matrix P. In
contrast, invariance is used for graph classification and describes that permuting
the input does not affect the output, i.e., f(PX) = f(X). In our use case, permu-
tation invariance is crucial as the CAD components have no inherent order and
their insertion sequence is not given. In a GNN layer, the node representations
hi are updated by a function over their neighbors’ features. From the perspective
of a node i, the update in layer l + 1 (called message-passing) is given by

h
(l+1)
i = φ

h
(l)
i ,

⊕
j∈N(i)

ψ

(
h
(l)
j

) (1)

where φ and ψ are parameterized (i.e., trainable) mappings, e.g., fully connected
layers followed by a nonlinearity [19]. Permutation equivariance is obtained by
having ψ depend only on a single node, i.e., it is applied node-wise, and permu-
tation invariance results from using a commutative and associative operation ⊕
such as the sum, the average, or the maximum. Since the features of each node
are processed with the same transformation ψ (parameter sharing) and the ag-
gregation can be performed with any number of elements, GNNs can handle
graphs with different structures and even different sizes.

Stacking multiple GNN layers enables propagating node features to more
distant nodes. Thus, a single node can contain information of all adjacent nodes
within a range of l hops after l layers. In addition to message-passing layers,
so-called readout layers combine node representations resulting from a message-
passing layer into a representation on graph-level. Hence, with a subsequent
fully connected layer and Softmax activation, a graph can be classified. The
literature provides different forms of GNN layers, which can be divided into three
flavors: convolutional, attentional, and generic message-passing [2]. The latter is
a generalization of the first two, where edge features are incorporated in addition
to node features. Since assemblies are represented by graphs with only one edge
type and no additional edge features, we consider only the first two forms:

Graph Convolutional Layer (GCN) The node-wise update rule of a graph
convolutional layer [10] is given by

h
(l+1)
i = σ

 ∑
j∈N(i)

1

cij
W(l)h

(l)
j

 (2)
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where σ(·) denotes a nonlinear activation function such as ReLU and W(l) is
the weight matrix of the fully connected layer transforming the node represen-
tations. The normalization constant cij =

√
|N(i)|

√
|N(j)| is derived from the

nodes’ degrees only and thus heavily depends on the structure of the graph.
Consequently, all neighbor nodes are weighted equally for aggregation. It can be
interpreted as the importance of node j to the representation of i.

Graph Attention Layer (GAT) In our use case, some components of the
current assembly may be more important for recommending next components
than others. For this reason, we also investigate GATs [16] that individually
weight neighbor nodes according to an attention mechanism:

h
(l+1)
i = σ

 ∑
j∈N(i)

α
(l)
ij W

(l)h
(l)
j

 (3)

The attention weights α
(l)
ij result from a learned function over the node features of

i andN(i) and serve as coefficients of an convex combination of transformed node
features. Thus, graphs of the same structure but with different node features
will typically lead to different attention weights. As with other attention-based
architectures, multiple independent attention mechanisms can be used to extend
the learning process (multi-head attention).

3 Graph-Based Recommendations for Assemblies using
Pretrained Embeddings

In our proposed approach (depicted in Figure 1), we represent CAD assemblies
as undirected graphs with component embeddings as node features and train
GNNs for recommending the next required components during construction. We
model this learning problem as a graph classification problem where the classes
correspond to component IDs – one graph is mapped to the ID of the next needed
component. By using Softmax as activation function in a final fully connected
layer, we get normalized scores over all components that can be interpreted as
a ranking of the components’ recommendations.

Since embeddings are used to represent in the input graph’s components, one
may intuitively be inclined to use the same representation in the output, i.e., to
predict component embeddings. However, this modeling has some disadvantages:

a) For component recommendations, the predicted embedding must always be
assigned to a component. It may happen that there is no corresponding
component in the proximity of the prediction in the embedding space because
no component satisfies the desired properties – which component should be
taken in this case?

b) The number of desired recommendations determines the architecture of the
model (k · embedding size output neurons for k recommendations), so if more
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recommendations are desired, the model must be re-built and re-trained. In
our modeling, we can simply determine the desired number of most likely
elements from the distribution.

The GNNs presented in this paper do not employ edge features due to the
fact that the given assemblies only specify which components are connected but
do not describe the nature of this connection in more detail. Furthermore, we
assume all possible component IDs to be included in the training data - we do
not yet consider new or updated components in this paper.

3.1 Pretraining of Component Embeddings (comp2vec)

In some machine learning domains such as natural language processing (NLP),
representing discrete objects as continuous vectors, so-called embeddings, instead
of one-hot vectors has proven to be advantageous [14]. Since assembly modeling
has many parallels to NLP, we investigate whether using component embeddings
as node features contributes to the performance of our recommendation models:
Just as documents are composed of words or letters, assemblies consist of com-
ponents. Moreover, neighboring words (predecessor and successor) correspond
to the possibly larger set of adjacent nodes in a graph (see Section 1 for repre-
senting assemblies as graphs). Due to the heterogeneity of available attributes of
components in catalogs, our approach uses the only information that is always
available: a unique component identifier. However, the approach is sufficiently
generic in that the resulting node features can be embedding vectors combined
with additional, problem-specific features. This also applies to the inclusion of
the 3D geometry of components, which we decided to exclude in our approach.

word2vec[14] is a popular method for word embeddings, since only plain text
without annotations is needed for training. The basic idea is that the meaning of
a word is defined by its context words. Transferring this to assemblies, connected
components define the purpose of a component – this information stored in em-
beddings could be very helpful for component recommendations. node2vec[5]
is a modification of word2vec for network graphs based on the homophily as-
sumption, i.e., that connected components are similar, such as friends in a social
network. However, this assumption is clearly violated in our case: Two compo-
nents serving different purposes are most likely connected in mechanical designs.
Therefore, we generalized word2vec from sequences to graphs with a small modi-
fication in creating instances, and refer to the resulting model as comp2vec in the
following. Word2vec (in the Skip-gram variant) trains a mapping from words to
their context words within a defined context window. Its architecture is similar
to an autoencoder with two layers, encoding each word in a small internal vector
representation. The last layer is only used in training and truncated for inference
as the embeddings are calculated in the hidden layer – whose dimension (a hy-
perparameter) determines the compression of the representation. The equivalent
to n-distant words of a center word are n-hop distant nodes of a center node
in a graph. For a graph, this approach may result in more generated instances.
However, the training process itself remains the same as in word2vec.
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Because representation learning is a subdomain of unsupervised learning, the
difficulty is that the model cannot be evaluated directly due to the lack of labels.
In this case, a downstream model (extrinsic evaluation) or domain knowledge
(intrinsic evaluation) is used instead. In NLP, for example, pairs of synonym
terms [1] are used for that purpose. This is, in principle, transferable to CAD
assembly modeling, but requires high manual effort from design experts, since
such intrinsic evaluations have to be created individually for each component
catalog. Fortunately, in word2vec the embeddings are learned by solving a su-
pervised task (predicting context words from a word), which allows to directly
evaluate by loss. We assume that the unsupervised task is well solved if the
corresponding supervised task is well solved, which is why we optimize for loss.
As a consequence, different embedding sizes can be compared, since the output
dimension is defined by the task and thus does not depend on hyperparameters.

3.2 Generating Data Instances for Component Recommendation

For the component recommendation task, we need the intermediate states of the
assemblies during construction, hereafter referred to as partial assembly or par-
tial graph, as well as the components that were directly assembled to them. As we
do not know the original sequence of node and edge insertions that led to the final
design and, even if we did, the order can still depend on the designer’s prefer-
ences, we create instances for every possible creation sequence in a self-supervised
fashion by Algorithm 1: Starting from a complete assembly (graph G), we itera-
tively cut off non-cohesivenodes until the remaining graph contains a minimum
number of nodes min nodes. The partial graphs together with the correspond-
ing cut-off components form the data instances stored in the multiset D. Finally,
in order to process them with GNNs, component embeddings are used as node
features of the graphs and the target component is replaced by its ID.

Algorithm 1 Decomposition of Graphs into Instances

1: procedure DecomposeGraph(G = (N , E), D)
2: if |N | > min nodes then . domain-specific hyperparameter
3: for every non-cohesivenode n ∈ N do . see Section 2
4: add (G \ {n}, n) to D . see Section 2
5: DecomposeGraph(G \ {n}, D)

6: remove duplicate instances from D

Regarding complexity, the decomposition produces O(|N |!) graph-node in-
stances which is prohibitive for large assemblies. The designs we considered in
our experiments (composed of up to 70 components, cf. Table 1) were highly
sequential, i.e. each individual (partial) assembly contained sufficiently few leaf
nodes, so that this was not an issue. To scale up the approach, we would expect
a sampling-based approach that only performs a subset of the removals or a
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random walk-based approach like used for large network graphs [8] to work well.
This remains to be tested in future work.

3.3 Frequency-Based Baseline Model

The task of component recommendation for assembly modeling bears some sim-
ilarity to market basket analysis in that we want to recommend additional can-
didates for a given collection of elements in both cases. Most market basket
analysis approaches search for frequent itemsets and corresponding associative
rules via counting. However, elements in a market basket are not related per se,
whereas components of an assembly are explicitly connected. To the best of our
knowledge, no suitable established technique taking into account such relations
(and thus, the graph structure) exists in literature.

Therefore, we developed an instance-based model inspired by market basket
analysis as a baseline: It stores a relative frequency distribution over the assem-
bled components for each partial assembly of the training set. During inference
for a given query graph, it looks up which components were most frequently
attached to it. If the graph has not been seen in the training data, it looks
for previously seen subgraphs that together form the query graph. These sub-
graphs should be as large as possible to most widely cover the context of the
assembly and consequently provide good component recommendations. To ex-
clude redundant subgraphs, the model determines the minimal set of its largest
seen subgraphs subsuming the query graph. Thereafter, the relative frequency
distributions over components for the subgraphs are aggregated to an overall
distribution by determining the component-wise maximum. Finally, the k most
frequent components are identified from the distribution.

4 Experiments

To test the applicability of our approach, we performed separate experiments on
each of three different catalogs corresponding to different manufacturers. Each
catalog contains nearly 12,000 assemblies. The catalogs differ in the number
of unique components as well as the designs in the number components per
assembly and graph diameters, as shown in Table 1. The assemblies of each cat-
alog were split 60:20:20 into training, validation, and test graphs and afterwards
transformed into instances consisting of partial graphs and expected component
ID (see Section 3.2). We set out to answer the following research questions:

1. Are GNNs better at predicting the next component needed than the frequency-
based baseline model?

2. Does pretraining of embeddings using comp2vec increase accuracy, or are
GNNs with one-hot encodings as node features just as accurate?

3. Are GATs or GCNs better suited for the task? By what margin?
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Table 1: Key facts of the three used component catalogs. For each metric column,
the front part indicates the range of values and the back part the corresponding
average.

catalog #graphs #comp. node degrees #nodes #edges graph diameter

A 11,826 1,930 1 - 9; ∅ 1.7 4 - 33; ∅ 6.1 3 - 32; ∅ 5.1 2 - 32; ∅ 4.45
B 11,895 3,099 1 - 13; ∅ 1.9 4 - 69; ∅ 18.2 3 - 68; ∅ 17.2 2 - 38; ∅ 10.06
C 11,943 1,924 1 - 16; ∅ 1.7 4 - 20; ∅ 6.7 3 - 19; ∅ 5.7 2 - 6; ∅ 2.94

4.1 Experimental Setup

In a preliminary study, we investigated suitable embedding sizes for the three
component catalogs. First, the assemblies were divided 80:20 into training and
validation sets and afterwards transformed into instances (see Section 3.1). To
rate the models, we computed the sum of training loss and gap between training
and validation loss [4, p. 425]. In comparison, different embedding sizes behaved
the same for each catalog: Sizes between 20 and 90 as well as from 100 upwards
each led to the same error level, consequently, we chose the minimum per range
(20 and 100, respectively) as fixed embedding sizes for each catalog. In order
to investigate the influence of pretrained embeddings on the performance of the
task, we additionally generated an one-hot encoding of the components.

Based on the preliminary study, we examined seven models per catalog: the
frequency-based baseline model as well as the two flavors of GNN presented
in Section 2, each based on the three types of component representation. Both
models were implemented using the respective layers in DGL4, the precise hy-
perparameters were determined using hyperparameter search and can be found
in a publicly available repository5.

4.2 How well can GNNs learn the task at hand?

The main evaluation metric is the top-k rate, referring to the percentage of the
true component ID (i.e., the target) being in the top-k predictions of a model.
We are especially interested in k = 10, as this number of recommendations can
be well integrated into a CAD system and offers a wide choice of components
for designers. Since we are dealing with a task and data that has been little
researched, we would like to be able to better assess the results of the models by
estimating their performance from above and below. If we take a closer look at
Algorithm 1 for generating the recommendation instances (in particular, lines
3 and 4), it is apparent that there can be several target components for one
partial graph (e.g., by removing two nodes in both orders). This implies that
a model (without being an oracle) cannot reach 100% at the top-1 rate, and
depending on the number of different targets for the same input, this may even

4 Deep Graph Library https://www.dgl.ai/
5 https://github.com/isse-augsburg/ecml22-grape

https://www.dgl.ai/
https://github.com/isse-augsburg/ecml22-grape
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affect higher values of k. Therefore, for each catalog we determine the upper
bound of the top-k rate a perfect, but non-oracle, model could reach for all k.
Furthermore, a very simple model called evergreen serves as lower bound: This
model predicts the k most common labels seen during training (based on a
frequency distribution of the labels from the training set), independent of the
specific input. The comparison with this model is to show whether the GNNs
are capable of processing contextual information from the input graph and to
prove that the prediction task is indeed non-trivial.

Table 2: Summary of results for component recommendation per catalog: Top-k
rate on the test set for k = 1, . . . , 20 recommendations. The identifier following
the GNN model architecture indicates the component representation.

catalog model \ k 1 2 3 5 10 15 20

A Upper Bound 94.1% 99.8% 99.9% 99.9% 100% 100% 100%
GAT-100 46.7% 71.4% 79.7% 85.2% 90.0% 92.2% 93.3%
GAT-20 47.9% 72.2% 80.4% 85.5% 89.8% 91.5% 92.5%
GAT-one-hot 46.0% 70.3% 79.0% 84.6% 89.6% 91.5% 92.6%
GCN-100 47.4% 71.0% 79.3% 84.9% 89.6% 91.5% 92.7%
GCN-20 46.6% 70.9% 79.5% 84.8% 89.4% 91.3% 92.4%
GCN-one-hot 45.4% 69.3% 78.1% 83.8% 88.6% 90.7% 92.0%
Baseline 57.5% 64.3% 66.9% 69.0% 70.2% 70.7% 70.8%
Evergreen 4.5% 6.3% 8.1% 11.3% 15.9% 19.6% 22.2%

B Upper Bound 63.5% 81.5% 92.5% 99.4% 99.99% 100% 100%
GAT-100 30.8% 50.6% 63.1% 73.8% 82.1% 86.1% 88.4%
GAT-20 30.0% 50.1% 62.6% 73.4% 82.0% 85.9% 88.0%
GAT-one-hot 30.2% 49.5% 61.8% 72.5% 80.7% 84.6% 86.6%
GCN-100 30.5% 49.2% 61.2% 72.4% 81.8% 85.9% 88.0%
GCN-20 28.0% 46.4% 58.8% 71.4% 81.3% 85.6% 88.1%
GCN-one-hot 27.8% 45.1% 56.8% 69.2% 79.8% 84.3% 86.7%
Baseline 24.5% 32.9% 39.1% 46.6% 52.8% 53.7% 53.8%
Evergreen 13.3% 15.5% 18.4% 22.2% 30.0% 36.2% 41.7%

C Upper Bound 74.0% 91.1% 98.0% 99.9% 100% 100% 100%
GAT-100 28.5% 49.3% 65.0% 81.8% 92.8% 95.8% 96.9%
GAT-20 27.9% 48.5% 64.0% 80.7% 91.9% 95.1% 96.3%
GAT-one-hot 27.5% 48.4% 64.0% 80.6% 91.2% 94.0% 95.2%
GCN-100 27.9% 48.3% 63.8% 80.5% 92.0% 95.5% 97.1%
GCN-20 27.5% 48.4% 64.2% 81.2% 92.5% 95.8% 97.1%
GCN-one-hot 27.0% 47.1% 62.4% 79.2% 90.8% 94.2% 95.7%
Baseline 30.1% 42.1% 50.9% 60.2% 63.9% 64.2% 64.2%
Evergreen 14.4% 19.9% 23.3% 27.8% 37.0% 44.6% 48.1%

Table 2 presents an overview of the performance of the models as well as
the upper and lower bounds for the top-k rate. Additionally, Figure 2 visualizes
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Fig. 2: Visual comparison of component prediction models: For GCN and GAT,
the best models (embedding size 100) were used for each catalog.

the performance of the best models and bounds on catalog A and B. Both the
baseline and the GNN models stand out clearly from the simple ever-green model
for each catalog, with the latter performing considerably better. When evaluating
the baseline model, a direct lookup of the input graph could only rarely be
performed, on catalog B only for 1% of the test instances. Thus, in most cases
subgraphs had to be found, which together form the input graph. In contrast to
GNNs, the baseline model does not scale in terms of the size of the catalogs or
the size of assemblies, making GNN models more suitable for larger data sets.

In all but the case of only one recommendation (k = 1), the GNN models
outperform the baseline by a large margin, demonstrating that they are capable
of generalizing beyond exact subgraph pattern-matching. Since our application
scenario focuses on presenting the design engineers with more than one recom-
mendation, the case k = 1 is negligible. Furthermore, the performance of the
GNN models increases significantly more with growing number of recommen-
dations k. Regarding the top-10 rate, the best performing model (GAT-100)
achieved over 90% on catalogs A and C, and still 82.1% for catalog B despite
the fact that this catalog is more ambiguous than the other two since it com-
prises more components – which is also reflected in the lower and upper bound
rates. This demonstrates that the GNN models can reliably cut down the can-
didates for needed components from 1,930 (catalog A), 3,099 (catalog B), and
1,924 (catalog C) to 10, providing a useful preselection for design engineers.

4.3 Are component embeddings better than one-hot node features?

Regarding the used representation of the components, the results show that
pretraining embeddings pays off compared to starting with one-hot node fea-
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Fig. 3: Effects of the three component representations on the performance (top-
k-rate) of both GNN models for catalog A. k = 1, 2 omitted due to scaling.

tures. In particular, the GNNs based on 100-dimensional embeddings perform
slightly better than those using 20-dimensional ones, respectively. The improve-
ments with increasing embedding dimensions is consistent for both GCNs and
GATs, as visualized in Figure 3. This suggests that an even higher embedding
dimension would lead to a further performance improvement, but the prelimi-
nary study did not show any improvement in the pretraining task with higher
embedding dimensions. Therefore, we decided not to investigate them further in
the component prediction task.

Thinking of the recommendation models as extrinsic evaluation for the com-
ponent embeddings, i.e., using the downstream supervised model to evaluate
the embeddings, the representation in 100 dimensions is preferable. Since in the
preliminary study sizes of 100 and above resulted in lower loss values than only
20 dimensions, this confirms our assumption from Section 3.1 that we can mea-
sure the quality of an embedding by the associated supervised task of comp2vec.
Concluding, pretraining turned out to be advantageous for the recommendation
task, although one-hot-based GNNs also performed well which could be relevant
for practical purposes (e.g., lack of time for setting up a pretraining pipeline).

4.4 Comparing GAT and GCN

In a direct comparison of the GNNs, the GAT models yield slightly better re-
sults based on the same embedding, as shown in Figure 4. This makes the GAT
with embedding size 100 the overall winner. The difference between the two
models lies in the weighting of the neighbors: while in GCN all neighbors are
weighted with the same constant factor depending on the graph structure (cf.
Equation (2)), in GAT an individual weight for each neighbor node is determined
based on the node features, i.e., the attention scores (cf. Equation (3)). Whether
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Fig. 4: Comparison of the performance of GCN and GAT trained on the same
component representation for catalog A. k = 1, 2 omitted due to scaling.

a GAT indeed weights certain neighbor nodes higher (i.e., makes use of the at-
tention mechanism) can be investigated by comparing the attention distribution
to the uniform distribution, as suggested in [23]. For each graph instance and
each of its nodes, the attention distribution over the neighbor nodes as well as
the corresponding uniform distribution is determined. Subsequently, the Shan-
non entropy is calculated for both distributions. Figure 5 shows a histogram of
the calculated entropy values (attention distribution and uniform distribution),
excluding nodes with exactly one neighbor node (i.e., leaf nodes), since for those
the learned attention distribution always corresponds to the uniform distribu-
tion. Since the characteristics were similar for all GAT models, the figure visu-
alizes only one particular model (GAT-100 for catalog B). The high prevalence
of entropy 0 scores indicates that for many neighborhoods in the assemblies, the
attention scores tend to focus all attention on a single (or very few) neighbors –
which result in a very different distribution from the uniform one, and explains
why GATs are superior to GCNs on these data sets.

Finally, we want to stress that the GATs behaved more robustly in our ex-
periments: Slight changes in the hyperparameters led to strong fluctuations in
performance for GCNs, while this phenomenon was much less noticeable for
GATs. In summary, after analyzing the resulting attention scores and evaluat-
ing the performance, we favor GATs over GCNs for our recommendation task.

5 Conclusion and Future Work

We proposed a recommendation system based on Graph Neural Networks for
assembly modelling that recommends next required components during con-
struction. For this purpose, we developed an approach to construct instances in
a self-supervised fashion by recursively cutting off nodes from assembly graphs
which then serve as target for the resulting partial graph instance. Our exper-
iments on three different data sets proved that graph neural networks are well
suited for this task, outperforming a self-developed frequency-based baseline
model. Further, pretraining low-dimensional representations of components as
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Fig. 5: Histogram of calculated Shannon-Entropy of the attention distribution
and the corresponding uniform distribution evaluated on the test set. The at-
tention values originate from an arbitrarily selected head of the last GAT layer
from GAT-100 trained on catalog B. Nodes with only one neighbor were ex-
cluded, since their distribution equals the uniform distribution.

node features turned out to be beneficial for recommendation, although one-hot
encoded node features also led to satisfying results.

In the presented approach, the components are recommended without lo-
cating which node of the current assembly they should be attached to. While
this is acceptable for small assemblies, for designing larger ones conveniently,
it is mandatory to highlight the node where a component should be attached.
In future work, we want to integrate these connection components into the rec-
ommendation. Moreover, as the catalogs get updated over time, the models are
likely to be confronted with new, unknown components during inference – here a
suitable representation of the new components has to be found. Literature pro-
vides several other models, e.g., [21] and [22], to process graph-like data, each of
them having a different inductive bias. We plan to further investigated them in
terms of their applicability for our use case.
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