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Abstract. Many algorithms have been proposed to learn local graphical
structures around target variables of interest from observational data.
The Markov boundary (MB) provides a complete picture of the local
causal structure around a variable and is a theoretically optimal solution
for the feature selection problem. Available algorithms for MB discovery
have focused on various challenges such as scalability and data-efficiency.
However, current approaches do not provide guarantees in terms of false
discoveries in the MB.

In this paper we introduce a novel algorithm for the MB discovery prob-
lem with rigorous guarantees on the Family-Wise Error Rate (FWER),
that is, the probability of reporting any false positive. Our algorithm uses
Rademacher averages, a key concept from statistical learning theory, to
properly account for the multiple-hypothesis testing problem arising in
MB discovery. Our evaluation on simulated data shows that our algo-
rithm properly controls for the FWER, while widely used algorithms
do not provide guarantees on false discoveries even when correcting for
multiple-hypothesis testing. Our experiments also show that our algo-
rithm identifies meaningful relations in real-world data.

Keywords: Local causal discovery - Markov boundary - Rademacher
averages - FWER

1 Introduction

One of the most fundamental and challenging problems in science is the dis-
covery of causal relations from observational data [20]. Bayesian networks are a
type of graphical models that are widely used to represent causal relations and
have been the focus of a large amount of research in data mining and machine
learning. Bayesian networks represent random variables or events as vertices of
graphical models, and encode conditional-independence relationships according
to the (directed) Markov property among the variables or events as directed
acyclic graphs (DAGs). They are a fundamental tool to represent causality re-
lations among variables and events, and have been used to analyze data from
several domains, including biology [21, 27|, medicine [36], and others [37,13].
One of the core tasks in learning Bayesian networks from observational data
is the identification of local causal structures around a target variable 7'. In
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this work we focus on two related local structures. The first one is the set of
parents and children (i.e., the neighbours) of T in the DAG, denoted as the
parent-children set PC(T"). PC(T') has a natural causal interpretation as the set
of direct causes and effects of T' [30], and the accurate identification of PC(T)
is a crucial step for the inference of Bayesian networks. The second structure is
the Markov boundary of T, denoted as M B(T). MB(T) is a a minimal set of
variables that makes T" conditionally independent of all the other variables, and
comprises the elements of PC(T) and the other parents of the children of T
Thus, M B(T') includes all direct causes, effects, and causes of direct effects of
T. Moreover, under certain assumptions, the Markov boundary is the solution
of the variable selection problem [32], that is, it is the minimal set of variables
with optimal predictive performance for T

In several real-world applications, such as biology [27] and neuroscience [§],
the elements in PC(T') and M B(T') identified from observational data provide
candidate causal relations explored in follow-up studies and experiments, which
often require significant resources (e.g., time or chemical reagents). In other
areas, such as algorithmic fairness [17,13], local causal discovery can help in
identifying discriminatory relationships in data. In these scenarios, it is crucial
to identify reliable causal relations between variables, ideally avoiding any false
discovery.

While the stochastic nature of random sampling implies that false discoveries
cannot be avoided with absolute certainty (when at least a relation is reported), a
common approach from statistics to limit false discoveries is to develop methods
that rigorously bound the Family-Wise Error Rate (FWER), that is, the proba-
bility of reporting one or more false discoveries. However, currently approaches
for local causal discovery do not provide guarantees on false discoveries in terms
of FWER, and the study of causal discovery with false positive guarantees has
received scant attention in general (see Section 3).

Our contributions. In this paper we introduce a novel algorithm, Radamacher
Averages for Local structure discovery, or RAveL-MB, for the MB discovery prob-
lem with rigorous guarantees on the FWER. Our RAveL-MB uses a novel algo-
rithm, RAveL-PC, that we developed for the identification of the PC of a target
variable while bounding the FWER. To the best of our knowledge, our algo-
rithms are the first ones to allow the discovery of the PC set and the MB of a
target variable while providing provable guarantees on false discoveries in terms
of the FWER. Our algorithms crucially rely on Rademacher averages, a key
concept from statistical learning theory [4], to properly account for the multiple-
hypothesis testing problem arising in local causal discovery, where a large num-
ber of statistical test for conditional independence are performed. To the best
of our knowledge, this work is the first one to introduce the use of Rademacher
averages in (local) causal discovery. We prove, both analytically and experimen-
tally, that currently used approaches to discover the PC set and the MB of a
target variable cannot be adapted to control the FWER simply by correcting
for multiple-hypothesis testing. This is due to their additional requirement of
conditional dependencies being correctly identified, which is an unreasonable
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assumption due to the stochastic nature of random sampling and finite sam-
ple sizes. Our experimental evaluation shows that our algorithms do control the
FWER while allowing for the discovery of elements in the PC set and in the MB
of a target variable. On real data, our algorithms return a subset of variables
that causally influences the target in agreement with prior knowledge.

The rest of the paper is organized as follows. Section 2 introduces the pre-
liminary concepts used in the rest of the paper. Section 3 describes previous
works related to our contribution. Section 4 describes our algorithms and their
analysis, and the assumptions required by previously proposed algorithms in or-
der to provide rigorous results in terms of the FWER. For clarity, we describe
our algorithms focusing on the case of continuous variables, but our algorithms
can be easily adapted to discrete and categorical variables. Section 5 describes
our experimental evaluation on synthetic and real data. Finally, Section 6 offers
some concluding remarks.

2 Preliminaries

In this section, we introduce basic notions and preliminary concepts used in the
rest of the paper. More specifically, in Section 2.1 we formally define Bayesian
networks (BNs) and the sets PC(T) and M B(T) for a target variable T. In
Section 2.2 we describe the statistical testing procedure commonly used by algo-
rithms for the identification of PC(T") and M B(T'). In Section 2.3 we introduce
the multiple hypotheses testing problem and the family-wise error rate (FWER).
Finally, in Section 2.4 we introduce the concept of Rademacher averages for
supremum deviation estimation.

2.1 Bayesian Networks

Bayesian Networks (BNs) are convenient ways to model the influence among
a set of variables V. BNs represent interactions using a Direct Acyclic Graph
(DAG), and employ probability distributions to define the strength of the rela-
tions. More formally, they are defined as follows.

Definition 1 (Bayesian network [19]). Let p be a joint probability distribu-
tion over V. Let G = (W, A) be a DAG where the vertices W of G are in a
one-to-one correspondence with members of V, and such that VX € V, X is
conditionally independent of all non-descendants of X, given the parents of X
(i.e., the Markov condition holds). A Bayesian Network (BN) is defined as a
triplet (V, G, p).

A common assumption for the study of BNs is faithfulness, defined as follows.

Definition 2 (Faithfulness [30]). A directed acyclic graph G is faithful to a
joint probability distribution p over variable set 'V if and only if every indepen-
dence present in p is entailed by G and the Markov Condition. A distribution p
is faithful if and only if there exists a DAG G such that G is faithful to p.
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The dependencies between variables in a faithful BN can be analyzed through
the study of paths, which are sequences of consecutive edges of any directionality
(ie. X > Y or X « Y) in G. In particular, the directional separation, or d-
separation [20], criterion can be used to study the dependence between two
subsets X and Y of variables conditioning on another set Z of variables, such
that X,Y,Z C V are disjoint. Informally, the criterion marks a path between
any variable in X and any variable in Y as blocked by Z if the flow of dependency
between the two sets is interrupted and therefore the two sets are independent
conditioning on Z, written X 1L Y|Z. Viceversa, if the two sets X and Y are
conditionally dependent given Z, denoted with X /A Y|Z, the path is marked
as open. More formally, the definition of d-separated path is the following.

Definition 3 (d-separation [20]). A path g is d-separated, or blocked, by a
set of nodes Z if and only if:

1. q contains a chain I - M — J or a fork I < M — J such that M € Z, or
2. q contains an inverted fork (or collider) I — M «+ J such that M & Z and

no descendant of M is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from
a node in X to a node in Y.

A causal Bayesian network is a Bayesian network with causally relevant edge
semantics [20, 16].

Local causal discovery The task of inferring the local region of a causal BN
related to a target variable T' from data is called local causal discovery. Two sets
of variables are of major importance in local causal discovery. The first set is the
parent-children set PC(T).

Definition 4 (Parent-children set of T [16]). The parent-children set of
T, or PC(T), is the set of all parents and all children of T, i.e., the elements
directly connected to T, in the DAG G.

The elements in PC(T') are the only variables that cannot be d-separated from
T, that is, by the Markov property, for each X in PC(T) : X [ T|Z,VZ C
V\{X,T}. The second set is the Markov boundary M B(T) of a target variable
T, defined as follows.

Definition 5 (Markov boundary of T [20, 33]). The Markov boundary of
T or MB(T) is the smallest set of variables in V \ {T'} conditioned on which
all other variables are independent of T, that is VY € V\ MB(T),Y #T,T 1L
Y|MB(T).

Given its definition and the d-separation criteria, in a faithful BN M B(T)
is composed of all parents, children, and spouses (i.e., parents of children) of T
[16], that are those variables X € V \ {T'} for which 3Y € PC(T') such that
X UTZand X A TIZU{Y} for all Z C V\ {X,T}. MB is the minimal
subset S C 'V for which p(T|S) is estimated accurately [16, 33|, therefore is the
optimal solution for feature selection tasks.
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2.2 Statistical testing for independence

The identification of PC(T') and M B(T) is based on the definitions of conditional
dependence and independence between two variables X and Y. In practice, given
a dataset, the conditional dependencies between variables are assessed using
statistical hypothesis testing. Since a universal independence test does not exist
[29], & commonly used approach is to compute the Pearson’s linear correlation
coefficient r between two vectors x and y of k elements:

k _
r — Zi:o TilYi — kxy (1>
el (k —1)sxsy

where z and ¥ are the sample mean of x and y, respectively, while sx and sy
are the sample standard deviations.

The vectors x and y correspond to the observations of X and Y in the data,
but their definition depends on whether the test is unconditional, or conditional
on a set Z of variables. In the first case, x and y are the vectors of observations
for variables X and Y, respectively. In the second case, x and y represent the
residuals of the linear regression of the observations of the variables in Z on the
ones in X (respectively, for y, the ones in Y'). For sake of simplicity, in what
follows we will use 7x,y,z to denote the value of r« y when x and y are obtained
conditioning on the set Z, potentially with Z = () (i.e., for unconditional testing),
as we just described.

Under the null hypothesis of independence between X and Y conditional
on Z (including the case Z = (), the expected value of rxy z is 0, and the

statistic t = IX,¥.2 follows a Student’s t distribution with and k& — 2
V(e ) R A

degrees of freedom. The dependence between X and Y is then usually assessed
by computing (with Student’s t distribution) the p-value for the test statistic ¢,
that is the probability that the statistic is greater or equal than ¢ under the null
hypothesis of independence. In practice, algorithms for local causal discovery
(e.g., [34,24]) consider X and Y as independent (unconditionally or conditional
on Z) if the p-value is greater than a threshold ¢ (common values for § are 0.01
or 0.05), while X and Y are considered as dependent otherwise.

2.3 Multiple hypotheses testing

As described above, in testing for the independence of two variables X and Y,
they are considered dependent if the p-value of the corresponding test is below
a threshold 4. It is easy to see that such procedure guarantees that if X and Y
are independent, then the probability of a false discovery, that is falsely rejecting
their independence, is at most §. The situation is drastically different when a
large number N of hypotheses are tested, as in the case of local causal discovery.
In this case, if the same threshold ¢ is used for every test, the expected number
of false discoveries can be as large as 6 V. Therefore, it is necessary to correct
for multiple hypothesis testing (MHT), with the goal of providing guarantees
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on false discoveries. A commonly used guarantee is provided by the Family-
Wise Error Rate (FWER), which is the probability of having at least one false
discovery among all the tests. A common approach to control the FWER is the
so called Bonferroni correction [9], which performs each test with a corrected
threshold d¢.5¢ = /N (a simple union bound shows that the resulting FWER is
at most 9).

2.4 Supremum Deviation and Rademacher Averages

While Bonferroni correction does control the FWER, it conservatively assumes
the worst-case scenario (of independence) between all null hypotheses. This often
leads to a high number of false negatives (i.e. false null hypotheses that are not
rejected). We now describe Rademacher averages [4, 12|, which allow to compute
data-dependent confidence intervals for all hypotheses simultaneously, leading to
improved tests for MHT scenarios [22]. Rademacher averages are a concept from
statistical learning theory commonly used to measure the complexity of a family
of functions and that, in general, also provide a way to probabilistically bound
the deviation of the empirical means of the functions in the family from their
expected values.

Let F be a family of functions from a domain X to [a,b] C R and let S be a
sample of m i.i.d. observations from an unknown data generative distribution p
over X. We define the empirical sample mean of a function f € F, Es[f], and
its expectation E[f] as

Es[f]i% > f(si) and E[f]=E, [nll > f(Si)] : (2)

s, €S s; €8

Note that E[f] = E,[f], that is, the expected value of the empirical mean corre-
sponds to the expectation according to distribution p. A measure of the maxi-
mum deviation of the empirical mean from the (unknown) expectation for every
function f € F is given by the supremum deviation (SD) D(F,S) that is defined
as

D(F,$) = sup |&s[f] — B[] 3)

feF

Computing D(F,S) exactly is not possible given the unknown nature of g,
therefore bounds are commonly used. An important quantity to estimate tight
bounds on the SD is the Empirical Rademacher Average (ERA) R(F,S) of F
on S, defined as

R(F,S)=E,

1 m
i)

where o is a vector of m i.i.d. Rademacher random variables, i.e. for which each
element o; equals 1 or -1 with equal probability. ERA is an alternative of VC di-
mension for computing the expressiveness of a set S over class function F, whose
main advantage is that it provides tight data-dependent bounds while the VC
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dimension provides distribution-free bounds that are usually fairly conservative
([18], chap. 14).

Computing the exact value of R(}' ,S) is often infeasible since the expectation
is taken over 2™ elements. A common approach is then to estimate R(J—' ,S)

using a Monte-Carlo approach with n samples of . The n-samples Monte-Carlo
Empirical Rademacher Average (n-MCERA) R, (F,S,0) is defined as

R (F,S,0) Zsup — Z 0. f(si) (5)

=1 ferm s; €S
with ¢ being a m X n matrix of i.i.d. Rademacher random variables. n-MCERA
is useful to derive probabilistic upper bounds to the SD, as the following.
Theorem 1 (Th. 3.1 of [22]). Let 6 € (0,1). For ease of notation let

4

In
n T
R =R, (F.S,0) +2:/ 52 (6)

With a probability of at least 1 — & over the choice of S and o, it holds

. c(4mR+ cln 4)In 4 In 4 1
D(J—',S)<2R+\/ LRIy S i | (7)
m m 2m

TS

where z = max{|al,|b|} and c=|b— al.

Theorem 1 allows us to obtain confidence intervals around the empirical mean
containing the expectation with probability at least 1 — § for all functions in F
simultaneously.

3 Related work

Given a target variable T, the task of finding M B(T) is strictly related to the
discovery of PC(T). A common approach for MB discovery consists of creating
a candidate set of elements in M B(T) by running a PC discovery algorithm
twice (first on T', and then on all the elements reported as member of PC(T))
to find the elements at distance at most 2 from 7', and then to eliminate false
positives, which are those elements that are not parents, children, or spouses
of T. Various algorithms follow this general scheme [33,2,24, 1], each one with
a different variant that aims at minimizing the number of independence tests
actually performed and their degrees of freedom to reduce the amount of data
required. Note however that, as described in Section 4.3, this does not decrease
the number of statistical tests to be considered for MHT correction, since a
priori all tests could potentially be performed. Among such algorithms, Pena
et al. [24] proposed PCM B and proved its correctness under the assumption
of all statistical tests being correct, that is, not returning any false positive
or false negative. A different approach has been proposed for TAM B [34] that
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incrementally grows a candidate set of elements in M B(T) without searching
for PC(T), and then performs a false positive removal phase. Both PCM B and
IAM B do not report false positives only under the assumption of not having any
false positive and any false negative. Such assumptions are unrealistic in real-
world scenarios due to noise in the data, finite sample sizes, and probabilistic
guarantees of statistical tests, especially in multiple hypotheses scenarios. Our
algorithms RAveL-PC and RAveL-MB do not require such assumptions to identify
PC(T) and M B(T) with guarantees on the FWER.

To the best of our knowledge, the study of local causal discovery with guar-
antees on false discoveries has received scant attention. Tsamardinos et al. [35]
introduced the problem of MHT in the context of local causal discovery, and
proposed to use the Benjamini-Hochberg correction [6] to estimate the False
Discovery Rate (FDR) of elements retrieved by PC(T) discovery algorithms.
However, such work does not provide an algorithm with guarantees for M B(T).
To the best of our knowledge, no method has focused on local causal discov-
ery while bounding the FWER, which is extremely important in domains where
false positives are critical or where follow-up studies require significant resources
(e.g., biology and medicine).

Additional works focused on the more general task of BN inference. In [3],
the authors extended the analysis of [35] from the local discovery task to the BN
inference while [14, 15, 31] re-implemented the PC algorithm for BN structure
discovery using the Benjamini-Yekutieli [7] correction for the FDR, the former
focusing on the skeleton retrieving and the latter deriving bounds on edge ori-
entation as well. Our work instead focuses on local causal discovery tasks.

Rademacher averages have been successfully used to speed-up data mining
tasks (e.g., pattern mining [25, 26, 22, 28,10, 23]). To the best of our knowledge,
ours is the first work to introduce their use in (local) causal discovery.

4 Algorithms for local causal discoveries with FWER
guarantees

In this section we describe algorithms to obtain PC(T) and M B(T) with guar-
antees on the FWER. First, we discuss in Section 4.1 the requirements for pre-
viously proposed algorithms PCM B and IAM B to obtain guarantees on the
FWER. In particular, we show that they require unrealistic assumptions that are
not met in practice, as confirmed by our experimental evaluation (see Section 5).
We then present in Section 4.2 our algorithms RAveL-PC and RAveL-MB for the
computation of PC(T) and M B(T) with guarantees on the FWER. Finally in
Section 4.3 we describe how Rademacher averages are used by our algorithms
for effective independence testing.

4.1 Analysis and limitations of PCM B and IAMB

The algorithms presented in Section 3 are correct under the assumption that
the independence tests result in no false positive and no false negative [24,
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34]. In this section we determine milder sufficient conditions that allow GetPC
[24] to control the FWER for the PC discovery task, and PCMB [24] and
IAM B [34] to control the FWER for the MB discovery task. In all cases, a first
requirement is that the independence tests performed by the algorithms must
be corrected for MHT in order to bound the FWER. However, we also show
that an additional requirement on the ability to identify dependent variables
(i.e., on the power of the tests) is needed. In particular, we refer to the situation
where all tests on dependent variables correctly reject the null hypothesis of
independence as the infinite power assumption. In some cases, we consider the
infinite power assumption only for independence tests between pairs of variables
that are directly connected in the underlying DAG. We refer to such situation
as the local infinite power assumption.

We start by proving sufficient conditions for bounding the FWER of the
elements returned by GetPC [24]. (All proofs are in the Appendix.)

Theorem 2. GetPC(T) outputs a set of elements in PC(T) with FWER < ¢
if the independence tests performed by GetPC have FWER < § and the local
infinite power assumption holds.

The following proves that similar requirements are needed for PCM B [24]
to have guarantees on the FWER.

Theorem 3. PCMB(T) outputs a set of elements in M B(T) with FWER <
if the independence tests performed by PCM B have FWER < § and the infinite
power assumption holds.

The following result proves analogous requirements for TAM B.

Theorem 4. TAMB(T) outputs a set of elements in M B(T) with FWER < 6
if the independence tests performed by IAM B have FWER < § and the infinite
power assumption holds.

Note that the results above require the (local) infinite power assumption
to hold in order to have guarantees on the FWER of the output of previously
proposed algorithms. In fact, if the (local) infinite power assumption does not
hold, such algorithms may output false positives even when all independence
tests do not return a single false positive. We present two such examples in the
Appendix. Moreover, our experimental evaluation in Section 5 shows that this
situation does happen in practice.

4.2 Algorithms RAveL-PC and RAveL-MB

As shown in Section 4.1, correcting for the FWER of every independence test is
not sufficient for bounding the FWER of the variables returned by current state-
of-the-art algorithms for PC and MB discovery. In addition, infinite statistical
power is a strong assumption which is impossible to test and ensure in real-
world scenarios. Motivated by these observations, we developed RAveL-PC and
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RAveL-MB, two algorithms for the discovery of elements in PC and MB, respec-
tively, that control the FWER of their outputs without making any assumption
on statistical power.

RAveL-MB follows the same overall approach used by previously proposed
algorithms (e.g., PCM B, see Section 3): it first identifies elements in PC(T)
and adds them to M B(T), and then tests the spouse condition on elements
at distance 2 from T, that are variables Y € PC(X) with X € PC(T) and
Y ¢ PC(T). The pseudocode of RAveL-MB is shown in Algorithm 1. RAveL-MB
inizializes M B to the output of the function RAveL-PC(T",V,d) (line 1), which
returns a subset of PC(T'). For each element X € M B (line 2), RAveL-MB com-
putes RAveL-PC(X,V,d) and, for every returned element Y that is not already
in M B (line 3), an independence test of T'on Y conditioning on V\{Y, T} using
function test_indep(T,Y,V \ {Y,T},d) is performed to test whether YV is a
spouse of T" with respect to X (line 4). If such test determines the conditional
dependence between T and Y, then Y is added to M B (line 5). Finally, after
analyzing all variables originally in M B, RAveL-MB outputs the set of elements
in the Markov Boundary (line 6).

Note that the spouse condition is tested by conditioning only on the set
V\{Y,T}. This is sufficient, since it is a set conditioned on which T and Y are
d-connected if and only if Y is directly connected or is a spouse of T'. In fact, if
Y does not belong to any of these elements, then Y is connected to T' through
paths that contain chains or forks whose middle element is in V' \ {Y,T}. That
is, Y is connected to T only through d-blocked paths.

Algorithm 1: RAveL-MB(T',V,J)
Input: target variable T, set of variables V, threshold ¢ € (0, 1]
Output: A subset of M B(T') with FWER lower than 4.
1 MB < RAvelL-PC(T,V,0) ;
2 foreach X € M B do
3 foreach Y € RAvelL-PC(X,V,§) andY ¢ MB do
4 if not test_indep (T,Y ,V\{Y,T},5) then
5
6

MB <+ MBU{Y};
return M B;

RAveL-MB uses algorithm RAveL-PC(X,V,d) (shown in Algorithm 2) for the
discovery of variables of a set V that are in PC(X). The parameter ¢ controls
the overall FWER of the procedure. RAveL-PC(X,V,d) identifies PC(X) by
using the definition of parent-children set, that is, Y € PC(X) gets returned if
only if all independence tests between X and Y reject the null hypothesis.

Both algorithms RAveL-MB and RAveL-PC employ a function, denoted as
test_indep(X,Y,Z,d), that performs the independence test between X,Y €
V conditioning on Z C V while controlling the FWER of all testable hypotheses
with threshold 4, and returns true only if the null hypothesis gets rejected. Prac-
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Algorithm 2: RAveL-PC(T",V,J)
Input: target variable T, set of variables V| threshold § € (0, 1]
Output: A subset of PC(T") with FWER lower than .

1 PC + V\{T};

2 foreach X € V\ {T'} do

3 foreach Z C V\ {X,T} do

4 if test_indep(T',X,Z,5) then

5

6

PC + PC\ {X};
return PC;

tical details on our implementation of test_indep(X,Y ,Z,d) are provided in
Section 4.3.

The following results prove that RAveL-PC and RAveL-MB control the FWER
of PC and MB, respectively.

Theorem 5. RAvel-PC(T,V,0) outputs a set of elements in PC(T) with
FWER < 6.

Theorem 6. RAveL-MB outputs a set of elements in M B(T) with FWER <.

The choice of V\ {Y, T} as conditioning set for testing the spouse condition
is a consequence of RAveL-PC returning, with probability at least 1 — ¢, a subset
of PC(T), and of any superset of PC(T) allowing the discovery of spouses by
RAveL-MB. We note that prior knowledge may be incorporated in the algorithm,
if available, by conditioning on smaller set of variables, therefore increasing the
precision of independence tests.

4.3 Rademacher averages for independence testing

Note that our algorithms RAveL-PC(X ,V,d) and RAveL-MB(X ,V ,d) both rely
on the availability of function test_indep(X,Y ,Z,d), which assesses the in-
dependence between X,Y € V conditioning on Z C V and returns true only
if the null hypothesis gets rejected, while controlling the FWER of all testable
hypotheses below a threshold §.

The naive implementation of test_indep(X,Y ,Z,d) would be to perform
a standard statistical test (see Section 2.2) and use Bonferroni correction (see
Section 2.3) to correct for multiple hypothesis testing. In particular, this re-
quires to use a modified threshold 6/N for every hypothesis, where N is the
maximum number of hypotheses that could be tested. Therefore, N is the maxi-
mum number of conditional independencies' between the variables in V, that is

1 N counts, in fact, the total number of possible conditional independencies between
any couple of variables by considering the symmetry property of independence tests,
that is testing the (conditional) independence of X from Y is equivalent to testing
the one of Y from X.
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N = |V|(|V|—1)2IVI=3, Note that the value of N grows exponentially with [V,
leading to a Bonferroni correction which is very conservative and, therefore, to a
high number of false negatives (independence tests between dependent variables
for which the null hypothesis does not get rejected).

The high number of tests is not a feature of our algorithms only, but it is, in
essence, shared by other widely used algorithms such as IAMB and PCMB (see
Section 3). In fact, for both algorithms, the potential number of independence
tests they perform can be as high as N = [V|(|[V| = 1)2/VI=3, even if a smaller
number of tests may be considered in practice, depending on the output of the
tests in previous steps, and a proper MHT correction depends on the maximum
number of tests that could be performed.

Our solution to make our algorithms RAveL-PC(X,V,§) and
RAvelL-MB(X,V,d) practical is to implement test_indep(X,Y,Z,d) ex-
ploiting Rademacher averages to obtain data-dependent bounds and confidence
intervals. The key idea is to estimate confidence intervals around the empirical
test statistics rx,y,z so that they contain the true values simultaneously with
probability 1 — 4. In this way, testing for independence corresponds to check
whether a confidence interval contains 0, which is the expected value of rxy z
under the null hypothesis of independence.

To implement the idea described above, we express Eqn. 1 as an additive
function on the samples as follows. First, we assume that all variables have been
centered around 0 and then normalized by dividing for the maximum absolute

value (i.e., T = 0 and max(|x|) = 1 for all variables). Let si,sa,...,s; the
samples in the dataset S = {s1,$2,...,8k}, where each s; is a collection of
observations s; = {v{,v5,...} of variables in V, where v} is the observation of

the j-th variable V; € V in sample s;. Given two variables X,Y € V, and a
set of variables Z C 'V, we define the following function that, given a sample s;,
provides an estimate of rx y z using only s;

TiYi
rxvals) =k _yl. 8)

Note that the conditioning set Z does not explicitly appear in the term k7%,
but it is used in the definition of the values in x and y (see Section 2.2).
Therefore, we have the following modified version of Pearson’s coefficient,

where s is replaced by max(|x|) — X (similarly for sy):

k
1
TXYz =g Z rx,v,z(5)- 9)

i=1

By considering the family F of functions defined by rx y,z for each pair X, Y
of variables and each set Z C V \ {X, Y}, we have that the n-MCERA (Eqn. 5)
is
- 1< 1<
Rn S =— S i i) 10
i (F,S,0) nz sup  — > 05.irx,v,z(s) (10)

k
=1 rx,y,z€F p—
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After the n-MCERA has been computed as above, we compute the supremum
deviation D(F, S) according to Theorem 1, which allows us to obtain confidence
intervals around the empirical rx v,z as

CIX,Y,Z = [Tx’yyz — D(]_"7 S),?”)gy’z + D(]‘—, S)] (11)

with the guarantee that, simultaneously for all rx y,z € F , Clx y,z contains
the expected value of rx y,z with probability at least 1 — §. Then, for a pair
X,Y of variables and a set Z C V \ {X,Y}, we reject the null hypothesis of
independence between X,Y conditioning on Z (i.e., test_indep(X,Y,Z,J)
returns true) if Clx y,z does not contain the value 0.

5 Experimental Evaluation

This section describes the experimental evaluation performed to empirically as-
sess our algorithms. In Section 5.1 we compare RAveL-PC and RAveL-MB per-
formances with other state-of-the-art methods on synthetic data. Section 5.2
presents the analysis on real world data. We implemented? RAveL.-PC, RAveL-MB,
and the other algorithms considered in this section in Python 3 and R.

5.1 Synthetic data

We used synthetic data to evaluate RAveL-PC and RAveL-MB against state-of-the-
art algorithms for the task of PC and MB discovery, respectively. In our synthetic
data, each variable is a linear combination of its parents values plus a Gaussian
noise term. The related structural model includes 13 variables and is shown in
the Appendix. We set the rejection threshold § = 0.05, which is a common value
in literature, and we run each algorithm on increasing size datasets. We repeated
each trial 100 times and used n = 1000 for the n-MCERA. For each dataset, we
considered all variables as target variable T" in turn and run the algorithms for
each choice of T'. (Note that the number N of potential hypotheses tested is still
the same as defined in Section 4.3.)

For the PC discovery task, we compared two versions of GetPC' [24], the
original one (without any correction for MHT) and a modified version with Bon-
ferroni correction, our algorithm RAveL-PC (that uses Rademacher averages as
described in Section 4.3), and a variant of RAveL-PC that uses Bonferoni correc-
tion instead of Rademacher averages for MHT. Figure 1(a) shows the estimated
FWER of each method (that is, the fraction of trials in which at least a false
positive is reported). The results confirm our analysis in Section 4.2, and we ob-
serve that, for the specific BN we consider, algorithm GetPC has FWER below
the threshold, even if this is not guaranteed from our theoretical analysis. For
the MB discovery task, we compared two versions of PCM B [24] (which uses
GetPC as subroutine) and of TAM B [34], the original one (without any correc-
tion for MHT) and a modified version with Bonferroni correction, our algorithm

2 Code and appendix available at https://github.com/VandinLab/RAveL .
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10 —&— RAvel-PC
¥~ RAvel-PC - Bonferroni correction
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Fig. 1. Empirical FWER of various PC discovery (a) and MB discovery (b) algorithms
on synthetic data for different sample sizes. FWER is the fraction of 100 trials in which
at least one false positive is reported. The dashed line represents the bound § = 0.05
to the FWER used in the experiments.

RAveL-MB, and a variant of RAveL-MB that uses Bonferoni correction instead of
Rademacher averages. Figure 1(b) shows the FWER of each method. The results
confirms RAveL-MB and its variant to be the only algorithms with guarantees on
the FWER at any sample size, that is without infinite power assumption. More-
over, note that PC'M B reports false positives with high probability even if its
GetPC' does not. This is due to elements at distance 2 from 7' that are cor-
rectly identified as candidate spouses, but for which the spouse condition used
by PCM B results in a false positive due to false negatives in PC(T).

We then assessed the fraction of false negatives for our algorithms, which are
the only ones with guarantees on the FWER, on datasets with sample sizes up to
500000 elements by repeating each trial 5 times. We analyzed only the standard
version of our algorithms, which is the only practical option in scenarios with
a large number of variables (i.e., when the number N of tests is very large).
The percentage of false negatives returned by RAveL-PC and RAveL-MB starts
decreasing for datasets with more than 25000 samples, but a simple modification
of the test statistic (to be described in the journal version of this paper) greatly
improves the performances lowering the data requirement to just 1000 samples.
In all such tests our algorithms did not return any false positive.

5.2 Real-world dataset

We tested our algorithms on the Boston housing dataset [11]|, which contains
data about Boston suburbs, considering the median price of homes in each sub-
urb as target 7. Since the number of variables for such dataset is small, we used
the Bonferroni variant of our algorithms RAveL-PC and RAveL-MB, with § = 0.01.
Both algorithms reported in output two variables, one related to the number of
rooms per house, and the other to the median income of the suburb residents,
that clearly influence the median price of the houses in the neighbourhood. The
first variable is a common indicator of the price of a house, while the second con-
firms the intuition that between two identical houses, the one built in a wealthier
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neighborhood has a higher price. These results provide empirical evidence that
our algorithms identify meaningful causal relations while avoiding false positives.

6 Conclusions

In this paper we presented two algorithms, RAveL-PC and RAveL-MB, for the task
of local causal discovery. In contrast to state-of-the-art approaches, our algo-
rithms provide guarantees on false discoveries in terms of bounding the FWER.
Our algorithms use Rademacher averages to to properly account for multiple
hypothesis testing, and our experimental evaluation shows that our algorithms
properly control for false discoveries. Our algorithms can be extended to other
(e.g., non-linear) test statistics and to other tests (e.g., based on permutation
testing). Interesting research directions include the application of our frame-
work to recently proposed independence tests [5], improving the efficiency of our
algorithms, and exploiting them for structure discovery.
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