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Abstract. We consider the question introduced by [16] of identifying
all the ε-optimal arms in a finite stochastic multi-armed bandit with
Gaussian rewards. We give two lower bounds on the sample complexity of
any algorithm solving the problem with a confidence at least 1−δ. The first,
unimprovable in the asymptotic regime, motivates the design of a Track-
and-Stop strategy whose average sample complexity is asymptotically
optimal when the risk δ goes to zero. Notably, we provide an efficient
numerical method to solve the convex max-min program that appears in
the lower bound. Our method is based on a complete characterization
of the alternative bandit instances that the optimal sampling strategy
needs to rule out, thus making our bound tighter than the one provided
by [16]. The second lower bound deals with the regime of high and
moderate values of the risk δ, and characterizes the behavior of any
algorithm in the initial phase. It emphasizes the linear dependency of the
sample complexity in the number of arms. Finally, we report on numerical
simulations demonstrating our algorithm’s advantage over state-of-the-art
methods, even for moderate risks.

Keywords: Multi-armed bandits · Best-arm identification · Pure explo-
ration.

1 Introduction

The problem of finding all the ε-good arms was recently introduced by [16]. For a
finite family of distributions (νa)a∈[K] with vector of mean rewards µ = (µa)a∈[K],
the goal is to return Gε(µ) , {a ∈ [K] : µa ≥ maxi µi−ε} in the additive case and
Gε(µ) , {a ∈ [K] : µa ≥ (1−ε)maxi µi} in the multiplicative case. This problem
is closely related to two other pure-exploration problems in the multi-armed
bandit literature, namely the TOP−k arms selection and the THRESHOLD
bandits. The former aims to find the k arms with the highest means, while the
latter seeks to identify all arms with means larger than a given threshold s. As
argued by [16], finding all the ε-good arms is a more robust objective than the
TOP-K and THRESHOLD problems, which require some prior knowledge of
the distributions in order to return a relevant set of solutions. Take for example
drug discovery applications, where the goal is to perform an initial selection of
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potential drugs through in vitro essays before conducting more expensive clinical
trials: setting the number of arms k too high or the threshold s too low may result
into poorly performing solutions. Conversely, if we set k to a small number or the
threshold s too high we might miss promising drugs that will prove to be more
efficient under careful examination. The All-ε objective circumvents this issues
by requiring to return all drugs whose efficiency lies within a certain range from
the best. In this paper, we want to identify Gε(µ) in a PAC learning framework
with fixed confidence: for a risk level δ, the algorithm samples arms a ∈ [K] in a
sequential manner to gather information about the distribution means (µa)a∈[K]

and returns an estimate Ĝε such that Pµ(Ĝε 6= Gε(µ)) ≤ δ. Such an algorithm is
called δ-PAC and its performance is measured by the expected number of samples
E[τδ], also called the sample complexity, needed to return a good answer with
high probability. [16] provided two lower bounds on the sample complexity: fhe
first bound is based on a classical change-of-measure argument and exhibits the
behavior of sample complexity in the low confidence regime (δ → 0). The second
bound resorts to the Simulator technique [18] combined with an algorithmic
reduction to Best Arm Identification and shows the dependency of the sample
complexity on the number of arms K for moderate values of δ. They also proposed
FAREAST, an algorithm matching the first lower bound, up to some numerical
constants and log factors, in the asymptotic regime δ → 0. Our contributions can
be summarized as follows:

– Usual lower bounds on the sample complexity write as f(ν) log(1/δ) + g(ν)
for an instance ν. We derive a tight bound in terms of the first-order term
which writes as T ∗ε (µ) log(1/δ), where the characteristic time T ∗ε (µ) is the
value of a concave max-min optimization program. Our bound is tight in
the sense that any lower bound of the form f(ν) log(1/δ) that holds for all
δ ∈ (0, 1) is such that f(ν) ≤ T ∗ε (µ). To do so, we investigate all the possible
alternative instances λ that one can obtain from the original problem µ by a
change-of-measure, including (but not only) the ones that were considered
by [16].

– We derive a second lower bound that writes as g(ν) in Theorem 2. g(ν) shows
an additional linear dependency on the number of arms which is negligible
when δ → 0 but can be dominant for moderate values of the risk. This result
generalizes Theorem 4.1 in [16], since it also includes cases where there can
be several arms with means close to the top arm. The proof of this result
relies on a personal rewriting of the Simulator method of [18] which was
proposed for the Best Arm Identification and TOP-k problems. As we explain
in Section 3.3, our proof can be adapted to derive lower bounds for other
pure exploration problems, without resorting to algorithmic reduction of these
problems to Best Arm Identification. Therefore, we believe that the proof
itself constitutes a significant contribution.

– We present two efficient methods to solve the minimization sub-problem
(resp. the entire max-min program) that defines the characteristic time.
These methods are used respectively in the stopping and sampling rule of
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our Track-and-Stop algorithm, whose sample complexity matches the lower
bound when δ tends to 0.

– Finally, to corroborate our asymptotic results, we conduct numerical experi-
ments for a wide range of the confidence parameters and number of arms.
Empirical evaluation shows that Track-and-Stop is optimal either for a small
number of arms K or when δ goes to 0, and excellent in practice for much
larger values of K and δ. We believe these are significant improvements in
performance to be of interest for ML practitioners seeking solutions for this
kind of problem.

In Section 2 we introduce the setting and the notation. Section 3 is devoted
to our lower bounds on the sample complexity of identifying the set of ε-good
arms and the pseudo-code of our algorithm, along with the theoretical guarantees
on its sample complexity. In Sections 4 and 5, we present our method for solving
the optimization program that defines the characteristic time, which is at the
heart of the sampling and stopping rules of our algorithm.

2 Setting and notation

The stochastic multi-armed bandit is a sequential learning framework where a
learner faces a set of unknown probability distributions (νa)a∈[K] with means
(µa)a∈[K], traditionally called arms. The learner collects information on the
distributions by, at each time step t, choosing an arm based on past observations,
and receiving an independent sample of this arm. The goal of fixed-confidence
pure exploration is to answer some question about this set of distributions
while using a minimum number of samples. In our case, we define the set of
ε-good arms as Gε(µ) , {a ∈ [K] : µa ≥ maxi µi − ε} ; we wish to devise
an algorithm that will collect samples and stop as soon as it can produce an
estimate of Gε(µ) that is certified to be correct with a prescribed probability
1− δ. This algorithm has three components. The sampling rule is {πt}t≥1, where
πt(a| a1, r1, . . . , at−1, rt−1) denotes the probability of choosing arm a at step t
after a sequence of choices (a1, . . . , at−1) and the corresponding observations
(r1, . . . , rt). The stopping rule τδ is a stopping time w.r.t the filtration of sigma-
algebras Ft = σ(a1, r1, . . . , at−1, rt−1) generated by the observations up to time
t. Finally, the recommendation rule Ĝε is measurable w.r.t Fτδ and should satisfy
Pν,A(Ĝε = Gε(µ)) ≥ 1−δ. Algorithms obeying this inequality are called δ-correct,
and among all of them we aim to find one with a minimal expected stopping time
Eν,A[τδ]. In this work, like in [16], we restrict our attention to Gaussian arms
with variance one. Even though this assumption is not mandatory, it considerably
simplifies the presentation of the results3.

3 For σ2-subgaussian distributions, we only need to multiply our bounds by σ2. For
bandits coming from another single-parameter exponential family, we lose the closed-
form expression of the best response oracle that we have in the Gaussian case, but
one can use binary search to solve the best response problem.
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3 Lower bounds and asymptotically matching algorithm

We start by proving a lower bound on the sample complexity of any δ-correct
algorithm. This lower bound will later motivate the design of our algorithm.

3.1 First lower bound

Let ∆K denote the K-dimensional simplex and kl(p, q) be the KL-divergence
between two Bernoulli distributions with parameters p and q. Finally, define the
set of alternative bandit problems Alt(µ) = {λ ∈ RK : Gε(µ) 6= Gε(λ)}. Using
change-of-measure arguments introduced by [13] , we derive the following lower
bound on the sample complexity in our special setting.

Proposition 1. For any δ-correct strategy A and any bandit instance µ, the
expected stopping time τδ can be lower-bounded as

Eν,A[τδ] ≥ T ∗ε (µ) log(1/2.4δ)

where

T ∗ε (µ)
−1 , sup

ω∈∆K
Tε(µ,ω)

−1 and (1)

Tε(µ,ω)
−1 , inf

λ∈Alt(µ)

∑
a∈[K]

ωa
(µa − λa)2

2
. (2)

The characteristic time T ∗ε (µ) above is an instance-specific quantity that deter-
mines the difficulty of our problem. The optimization problem in the definition
of T ∗ε (µ) can be seen as a two-player game between an algorithm which samples
each arm a proportionally to ωa and an adversary who chooses an alternative
instance λ that is difficult to distinguish from µ under the algorithm’s sampling
scheme. This suggests that an optimal strategy should play the optimal allocation
ω∗ that maximizes the optimization problem (1) and, as a consequence, rules
out all alternative instances as fast as possible. This motivates our algorithm,
presented in Section 3.2.

3.2 Algorithm

We propose a simple Track-and-Stop strategy similar to the one proposed by
[8] for the problem of Best-Arm Identification. It starts by sampling once from
every arm a ∈ [K] and constructs an initial estimate µ̂K of the vector of mean
rewards µ. After this burn-in phase, the algorithm enters a loop where at every
iteration it plays arms according to the estimated optimal sampling rule (3) and
updates its estimate µ̂t of the arms’ expectations. Finally, the algorithm checks
if the stopping rule (4) is satisfied, in which case it stops and returns the set of
empirically ε-good arms.
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Sampling rule: our sampling rule performs so-called C-tracking: first, we
compute ω̃(µ̂t), an allocation vector which is 1√

t
-optimal in the lower-problem

(1) for the instance µ̂t. Then we project ω̃(µ̂t) on the set ∆ηt
K = ∆K ∩ [ηt, 1]

K .
Given the projected vector ω̃ηt(µ̂t), the next arm to sample from is defined by:

at+1 = argmin
a

Na(t)−
t∑

s=1

ω̃ηta (µ̂s) (3)

where Na(t) is the number of times arm a has been pulled up to time t. In
other words, we sample the arm whose number of visits is farther behind its
corresponding sum of empirical optimal allocations. In the long run, as our
estimate µ̂t tends to the true value µ, the sampling frequency Na(t)/t of every
arm a will converge to the oracle optimal allocation ω∗a(µ). The projection on ∆ηt

K

ensures exploration at minimal rate ηt = 1

2
√

(K2+t)
so that no arm is left-behind

because of bad initial estimates.

Stopping rule: To be sample-efficient, the algorithm should should stop as soon
as the collected samples are sufficiently informative to declare that Gε(µ̂t) =
Gε(µ) with probability larger than 1− δ. For this purpose we use the Generalized
Likelihood Ratio (GLR) test [3]. We define the Z-statistic:

Z(t) = t× Tε
(
µ̂t,

N(t)

t

)−1
where N(t) =

(
Na(t)

)
a∈[K]

. As shown in [8,6], the Z-statistic is equal to the
ratio of the likelihood of observations under the most likely model where Gε(µ̂t)
is the correct answer, i.e. µ̂t, to the likelihood of observations under the most
likely model where Gε(µ̂t) is not the set of ε-good arms. The algorithm rejects
the hypothesis Gε(µ̂t) 6= Gε(µ) and stops as soon as this ratio of likelihoods
becomes larger than a certain threshold β(δ, t), properly tuned to ensure that
the algorithm is δ-PAC. The stopping rule is defined as:

τδ = inf
{
t ∈ N : Z(t) > β(t, δ)

}
(4)

One can find many suitable thresholds from the bandit literature [7], [15],
[12], all of which are of the order β(δ, t) ≈ log(1/δ) + K

2 log(log(t/δ)) is enough
to ensure that P

(
Gε(µ̂τδ) 6= Gε(µ)

)
≤ δ, i.e. that the algorithm is δ-correct.

Now we state our sample complexity result which we adapted from Theorem
14 in [8]. Notably, while their Track-and-Stop strategy relies on tracking the
exact optimal weights to prove that the expected stopping time matches the
lower bound when δ tends to zero, our proof shows that it is enough to track
some slightly sub-optimal weights with a decreasing gap in the order of 1√

t
to

enjoy the same sample complexity guarantees.
Theorem 1. For all δ ∈ (0, 1), Track-and-Stop terminates almost-surely and its
stopping time τδ satisfies:

lim sup
δ→0

E[τδ]
log(1/δ)

≤ T ∗ε (µ).
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Algorithm 1: Track and Stop
Input: Confidence level δ, accuracy parameter ε.

1 Pull each arm once and observe rewards (ra)a∈[K].
2 Set initial estimate µ̂K = (r1, . . . , rK)T .
3 Set t← K and Na(t)← 1 for all arms a.
4 while Stopping condition (4) is not satisfied do
5 Compute ω̃(µ̂t), a 1√

t
-optimal vector for (1) using mirror-ascent.

6 Pull next arm at+1 given by (3) and observe reward rt.
7 Update µ̂t according to rt.
8 Set t← t+ 1 and update

(
Na(t)

)
a∈[K]

.
9 end
Output: Empirical set of ε-good arms: Gε(µ̂τδ)

Remark 1. Suppose that the arms are ordered decreasingly µ1 ≥ µ2 ≥ · · · ≥ µK .
[16] define the upper margin αε = min

k∈Gε(µ)
µk − (µ1 − ε) and provide a lower

bound of the form f(ν) log(1/δ) where:

f(ν) , 2

K∑
a=1

max

(
1

(µ1 − ε− µi)2
,

1

(µ1 + αε − µa)2

)
.

It can be seen directly (or deduced from Theorem 1) that f(ν) ≤ T ∗ε (µ). In a
second step, they proposed FAREAST, an algorithm whose sample complexity in
the asymptotic regime δ → 0 matches their bound up to some universal constant
c that does not depend on the instance ν. From Proposition 1, we deduce that
T ∗ε (µ) ≤ cf(ν), which can be seen directly from the particular changes of measure
considered in that paper. The sample complexity of our algorithm improves upon
previous work by multiplicative constants that can possibly be large, as illustrated
in Section 6.

3.3 Lower bound for moderate confidence regime

The lower bound in Proposition 1 and the upper bound in Theorem 1 show
that in the asymptotic regime δ → 0 the optimal sample complexity scales
as T ∗ε (µ) log(1/δ). However, one may wonder whether this bound catches all
important aspects of the complexity, especially for large or moderate values of
the risk δ. Towards answering this question, we present the following lower bound
which shows that there is an additional cost, linear in the number of arms, that
any δ-PAC algorithm must pay in order to learn the set of All-ε good arms.
Before stating our result, let us introduce some notation. We denote by SK the
group of permutations over [K]. For a bandit instance ν = (ν1, . . . , νK) we define
the permuted instance π(ν) = (νπ(1), . . . , νπ(K)). SK(ν) = {π(ν), π ∈ SK} refers
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to the set of all permuted instances of ν. Finally, we will write π ∼ SK to indicate
that a permutation is drawn uniformly at random from SK . These results are
much inspired from [16], but come with quite different proofs that we hope can
be useful to the community.

Theorem 2. Fix δ ≤ 1/10 and ε > 0. Consider an instance ν such that there
exists at least one bad arm: Gε(µ) 6= [K]. Without loss of generality, suppose the
arms are ordered decreasingly µ1 ≥ µ2 ≥ · · · ≥ µK and define the lower margin
βε = min

k/∈Gε(µ)
µ1 − ε − µk. Then any δ-PAC algorithm has an average sample

complexity over all permuted instances satisfying

Eπ∼SKEπ(ν)[τδ] ≥
1

12|Gβε(µ)|3
K∑
b=1

1

(µ1 − µb + βε)2
,

The proof of the lower bound can be found in Appendix C. In the special case
where |G2βε | = 1, then |Gβε | = 1 also (since {1} ⊂ Gβε ⊂ G2βε) and we recover
the bound in Theorem 4.1 of [16]. The lower bound above informs us that we
must pay a linear cost in K, even when there are several arms close to the top
one, provided that their cardinal does not scale with the total number of arms,
i.e. |Gβε | = O(1).

The bound of Thm 2 can be arbitrarily large compared to T ∗ε (µ) log(1/δ).
Fix δ = 0.1 and let ε, β > 0 with β � ε and consider the instance such that
µ1 = β, µK = −ε and µa = −β for a ∈ [|2,K − 1|]. Then we show in Appendix C
that T ∗ε (µ) log(1/δ) = O(1/β2 +K/ε2). In contrast the lower bound above scales
as Ω(K/β2). Since β � ε, the second bound exhibits a better scaling w.r.t the
number of arms.

The intuition behind this result comes from the following observations:
first, note that arms in Gβε(µ) must be sampled at least Ω(1/β2

ε ) times, because
otherwise we might underestimate their means and misclassify the arms in
argmink/∈Gε(µ) µ1−ε−µk as good arms. Second, in the initial phase the algorithm
does not know which arms belong to Gβε(µ) and we need at least Ω(1/(µ1 −
µb)

2) samples to distinguish any arm b from arms in Gβε(µ). Together, these
observations tell us that we must pay a cost of Ω(min(1/β2

ε , 1/(µ1 − µb)
2))

samples to either declare that b is not in Gβε(µ) or learn its mean up to O(βε)
precision. More generally, consider a pure exploration problem with a unique
answer, where some particular arm i?4 needs to be estimated up to some precision
η > 0 in order to return the correct answer. In this case, one can adapt our
proof, without using any algorithmic reduction to Best Arm Identification, to
show that every arm a must be played at least Ω(1/(|µi? − µa| + η)2) times.
For example, consider the problem of testing whether the minimum mean of a
multi-armed bandit is above or below some threshold γ. Let ν be an instance
such that {a ∈ [K] : µa < γ} = {i?} and define η , γ − µi? > 0. Then our proof

4 or a subset of arms, as in our case.
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can be adapted in a straightforward fashion to prove that any δ-PAC algorithm
for this task has a sample complexity of at least Ω

(∑K
a=1

1
(µa−µi?+η)2

)
.5

4 Solving the min problem: Best response oracle

Note that Algorithm 1 requires to solve the best response problem, i.e. the
minimization problem in (2), in order to be able to compute the Z-statistic of the
stopping rule, and also to solve the entire lower bound problem in (1) to compute
the optimal weights for the sampling rule. The rest of the paper is dedicated to
presenting the tools necessary to solve these two problems. For a given vector ω,
we want to compute the best response

λ∗ε,µ(ω) , argmin
λ∈Alt(µ)

∑
a∈[K]

ωa
(µa − λa)2

2
. (5)

For the simplicity of the presentation, we assume that the arms are ordered
decreasingly µ1 ≥ µ2 ≥ · · · ≥ µK and start by presenting the additive case
(i.e. Gε(µ) , {a ∈ [K] : µa ≥ max

i
µi − ε}). The multiplicative case can be

treated in the same fashion and is deferred to appendix A. Finally, we denote by
Bε(µ) , [K] \Gε(µ) the set of bad arms.

Since an alternative problem λ ∈ Alt(µ) must have a different set of ε-optimal
arms than the original problem µ, we can obtain it from µ by changing the
expected reward of some arms. We have two options to create an alternative
problem λ:

– Making one of the ε-optimal arms bad. We can achieve it by decreasing
the expectation of some ε-optimal arm k while increasing the expectation
of some other arm ` to the point where k is no more ε-optimal. This is
illustrated in Figure 1.

– Making one of the ε-sub-optimal arms good. We can achieve it by
increasing the expectation of some sub-optimal arm k while decreasing the
expectations of the arms with the largest means -as many as it takes- to the
point where k becomes ε-optimal. This is illustrated in Figure 1.

In the following, we solve both cases separately.

Case 1: Making one of the ε-optimal arms bad. Let k ∈ Gε(µ) be one
of the ε-optimal arms. In order to make arm k sub-optimal, we need to set the
5 The phenomenon discussed above is essentially already discussed in [16], a very rich
study of the problem. However, we do not fully understand the proof of Theorem
4.1. Define a sub-instance to be a bandit ν̃ with fewer arms m ≤ K such that
{ν̃1, . . . , ν̃m} ⊂ {ν1, . . . , νK}. Lemma D.5 in [16] actually shows that there exists
some sub-instance of ν on which the algorithm must pay Ω(

∑m
b=2 1/(µ1 − µb)

2)
samples. But this does not imply that such cost must be paid for the instance of
interest ν instead of some sub-instance with very few arms.
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Fig. 1. Left: Making One of the ε-Optimal Arms Bad. Right: Making One of the
ε-Sub-Optimal Arms Good.

expectation of arm k to some value λk = t and the maximum expectation over
all arms to max

a
λa = t + ε. Note that the index of the arm ` with maximum

expectation can be chosen in Gε(µ). Indeed, if we choose some arm from Bε(µ)
to become the arm with maximum expectation in λ then we would make an
ε-suboptimal arm good which is covered in the other case below. The expectations
of all the other arms should stay the same as in the instance µ, since changing
their values would only increase the value of the objective. Now given indices
k and `, computing the optimal value of t is rather straightforward since the
objective function simplifies to

ωk
(µk − t)2

2
+ ω`

(µ` − t− ε)2

2

for which the optimal value of t is:

t = µk,`ε (ω) ,
ωkµk + ω`(µ` − ε)

ωk + ω`
.

and the corresponding alternative bandit is:

λk,`ε (ω) , (µ1, . . . ,µ
k,`
ε (ω)︸ ︷︷ ︸

index k

, . . . ,µk,`ε (ω) + ε︸ ︷︷ ︸
index `

, . . . , µK)T.

The last step is taking the pair of indices (k, `) ∈ Gε(µ) × (Gε(µ) \ {k}) with
the minimal value in the objective (2).

Case 2: Making one of the sub-optimal arms good. Let k ∈ Bε(µ) be a
sub-optimal arm, if such arm exists, and denote by t the value of its expectation
in λ. In order to make this arm ε-optimal, we need to decrease the expectations
of all the arms that are above the threshold t+ ε. We pay a cost of 1

2ωk(t− µk)
2

for moving arm k and of 1
2ωi(t+ ε− µi)2 for every arm i such that µi > t+ ε.

Consider the functions:
fk(t) =

1

2
ωk(t− µk)2

and for i ∈ [K] \ {k}

fi(t) =

{
1
2ωi(t+ ε− µi)2 for t < µi − ε,
0 for t ≥ µi − ε.
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Each of these functions is convex. Therefore the function f(t) =
K∑
i=1

fi(t) is

convex and has a unique minimizer t∗. One can easily check that f ′(µk) ≤ 0 and
f ′(µ1 − ε) ≥ 0, implying that µk − ε < µk ≤ t∗ ≤ µ1 − ε. Therefore:

` = min{i ≥ 1 : t∗ > µi − ε} − 1

is well defined and satisfies ` ∈ [|1, k − 1|]. Note that by definition µ`+1 − ε < t∗

and t∗ ≤ µa − ε for all a ≤ `, hence:

0 = f ′(t∗) = ωk(t
∗ − µk) +

∑̀
a=1

ωa(t
∗ + ε− µa).

Implying that6:

t∗ = µk,`ε (ω) ,
ωkµk +

∑`
a=1 ωa(µa − ε)

ωk +
∑`
a=1 ωa

and the alternative bandit in this case writes as:

λk,`ε (ω) , (µk,`ε (ω) + ε︸ ︷︷ ︸
indices 1to `

, µ`+1, . . . ,µ
k,`
ε (ω)︸ ︷︷ ︸

index k

, . . . , µK)T.

Observe that since ` depends on t∗, we can’t directly compute t∗ from the
expression above. Instead, we use the fact that ` is unique by definition. Therefore,
to determine t∗ one can compute µk,`ε (ω) for all values of ` ∈ [|1, k − 1|] and
search for the index ` satisfying µ`+1 − ε < µk,`ε (ω) ≤ µ` − ε and with minimum
value in the objective (2).

As a summary, we have reduced the minimization problem over the infinite
set Alt(µ) to a combinatorial search over a finite number of alternative bandit
instances whose analytical expression is given in the next definition.

Definition 1. Let λk,`ε (ω) be a vector created form µ by replacing elements on
positions k and ` (resp. 1 to `), defined as:

λk,`ε (ω) , (µ1, . . . ,µ
k,`
ε (ω)︸ ︷︷ ︸

index k

, . . . ,µk,`ε (ω) + ε︸ ︷︷ ︸
index `

, . . . , µK)T

for k ∈ Gε(µ) and

λk,`ε (ω) , (µk,`ε (ω) + ε︸ ︷︷ ︸
indices 1to `

, µ`+1, . . . ,µ
k,`
ε (ω)︸ ︷︷ ︸

index k

, . . . , µK)T

for k ∈ Bε(µ) where µk,`ε (ω) is a weighted average of elements on positions k
and ` (resp. 1 to `) defined as:

µk,`ε (ω) ,
ωkµk + ω`(µ` − ε)

ωk + ω`
6 µk,`ε (ω) has a different definition depending on k being a good or a bad arm.
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for k ∈ Gε(µ) and

µk,`ε (ω) ,
ωkµk +

∑`
a=1 ωa(µa − ε)

ωk +
∑`
a=1 ωa

for k ∈ Bε(µ).

The next lemma then states that the best response oracle belongs to the finite
set of (λk,`ε (ω))k,`.

Lemma 1. Using the previous definition, λ∗ε,µ(ω) can be computed as

λ∗ε,µ(ω) = argmin
λ∈ΛG∪ΛB

∑
a∈[K]

ωa
(µa − λa)2

2

where
ΛG = {λk,`ε (ω) : k ∈ Gε(µ), ` ∈ Gε(µ)/{k}}

and

ΛB = {λk,`ε (ω) : k ∈ Bε(µ), ` ∈ [|1, k − 1|]
s.t. µ` ≥ µk,`ε (ω) + ε > µ`+1}.

5 Solving the max-min problem: Optimal weights

First observe that we can rewrite Tε(µ, .)−1 as a minimum of linear functions:

Tε(µ,ω)
−1 = inf

d∈Dε,µ
ωTd (6)

where

Dε,µ ,

{(
(λa − µa)2

2

)T

a∈[K]

∣∣ λ ∈ Alt(µ)

}
.

Note that by using Dε,µ instead of Alt(µ), the optimization function becomes
simpler for the price of more complex domain (see Figure 2 for an example). As
a result, Tε(µ, .)−1 is concave and we can compute its supergradients thanks to
Danskin’s Theorem [4] which we recall in the lemma below.

Lemma 2. (Danskin’s Theorem) Let λ∗(ω) be a best response to ω and define

d∗(ω) ,
( (λ∗(ω)a−µa)2

2

)T
a∈[K]

. Then d∗(ω) is a supergradient of Tε(µ, .)−1 at ω.

Next we prove that Tε(µ, .)−1 is Liptschiz.

Lemma 3. The function ω 7→ Tε(µ,ω)
−1 is L-Lipschitz with respect to ‖ · ‖1

for any

L ≥ max
a,b∈[K]

(µa − µb + ε)2

2
.
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Fig. 2. Comparison of Alt(µ) with Simple Linear Boundaries (First Figure) and Dε,µ
with Non-Linear Boundaries (Second Figure) for µ = [0.9, 0.6] and ε = 0.05.

Proof. As we showed in Lemma 1, the best response λ∗ε,µ(ω) to ω is created
from µ by replacing some of the elements by µk,`ε (ω) or µk,`ε (ω) + ε. We also
know that µk,`ε (ω) is a weighted average of an element of µ with one or more
elements of µ decreased by ε. This means that:

max
a∈[K]

µa ≥ µk,`ε (ω) ≥ min
a∈[K]

µa − ε

and, as a consequence, we have:

|µi − λ∗ε,µ(ω)i| ≤ max
a,b∈[K]

(µa − µb + ε)

for any i ∈ [K]. Let f(ω) , Tε(µ,ω)
−1. Using the last inequality and the

definition of d∗(ω), we can obtain:

f(ω)− f(ω′) ≤ (ω − ω′)Td∗(ω′)
≤ ‖ω − ω′‖1‖d∗(ω′)‖∞

≤ ‖ω − ω′‖1 max
a,b∈[K]

(µa − µb + ε)2

2

for any ω, ω′ ∈ ∆K .

As a summary Tε(µ, .)−1 is concave, Lipschitz and we have a simple expression
to compute its supergradients through the best response oracle. Therefore we
have all the necessary ingredients to apply a gradient-based algorithm in order to
find the optimal weights and therefore, the value of T ∗ε (µ). The algorithm of our
choice is the mirror ascent algorithm which provides the following guarantees:

Proposition 2. [2] Let ω1 = ( 1
K , . . . ,

1
K )T and learning rate αn = 1

L

√
2 logK
n .

Then using mirror ascent algorithm to maximize a L-Lipschitz function f ,
with respect to ‖ · ‖1, defined on ∆K with generalized negative entropy Φ(ω) =∑

a∈[K] ωa log(ωa) as the mirror map enjoys the following guarantees:

f(ω∗)− f

(
1

N

N∑
n=1

ωn

)
≤ L

√
2 logK

N
.
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Computational complexity of our algorithm. To simplify the presentation
and analysis, we chose to focus on the vanilla version of Track and Stop. However,
in practice this requires solving the optimization program that appears in the
lower bound at every time step, which can result in large run times. Nonetheless,
we note that there are many possible adaptations of Track and Stop that reduce
the computational complexity, while retaining the guarantees of asymptotic
optimality in terms of the sample complexity (and with a demonstrated small
performance loss experimentally). A first solution is to use Franke-Wolfe style
algorithms [17,19], which only perform a gradient step of the optimization program
at every step. Once can also apply the Gaming approach initiated by [5] which
only needs to solve the best response problem, and runs a no-regret learner
such as AdaHedge to determine the weights to be tracked at each step. This
approach was used for example by [10] in a similar setting of Pure Exploration
with semi-bandit feedback. Another adaptation is the Lazy Track-and-Stop [9],
which updates the weights that are tracked by the algorithms every once in a
while. We chose the latter solution in our implementation, where we updated the
weights every 100K steps.

6 Experiments

We conducted three experiments to compare Track-and-Stop with state-of-the-art
algorithms, mainly (ST)2 and FAREAST from [16]. In the first experiment, we sim-
ulate a multi-armed bandit with Gaussian rewards of means µ = [1, 1, 1, 1, 0.05],
variance one and a parameter ε = 0.9. We chose this particular instance µ because
its difficulty is two-fold: First, the last arm µ5 is very close to the threshold
maxa µa− ε. Second, the argmax is realized by more than one arm, which implies
that any algorithm must estimate all the means to high precision to produce a
confident guess of Gε(µ). Indeed, a small underestimation error of maxa µa would
mean wrongly classifying µ5 as a good arm. We run the three algorithms for
several values of δ ranging from δ = 0.1 to δ = 10−10, with N = 100 Monte-Carlo
simulations for each risk level. Figure 3 shows the expected stopping time along
with the 10% and 90% quantiles (shaded area) for each algorithm. Track-and-
Stop consistently outperforms (ST)2 and FAREAST, even for moderate values
of δ. Also note that, as we pointed out in Remark 1, the sample complexity of
Track-and-Stop is within some multiplicative constant of (ST)2.

Next, we examine the performance of the algorithms w.r.t the number of
arms. For any given K, we consider a bandit problem µ similar to the previous
instance: ∀a ∈ [|1,K−1|], µa = 1 and µK = 0.05. We fix ε = 0.9 and δ = 0.1 and
run N = 30 Monte-Carlo simulations for each K. Figure 4 shows, in log-scale,
the ratio of the sample complexities of (ST)2 and FAREAST w.r.t to the sample
complexity of Track-and-Stop. We see that Track-and-Stop performs better than
(ST)2 (resp. FAREAST) for small values of K. However when the number of
arms grows larger than K = 40 (resp. K = 60), (ST)2 (resp. FAREAST) have a
smaller sample complexity.
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Fig. 3. Expected Stopping Time on µ = [1, 1, 1, 1, 0.05]. Left: All three Algorithms.
Right: Track-and-Stop vs FAREAST.

Fig. 4. Left: log10
(
EAlg[τδ]/ETaS[τδ]

)
for Alg ∈ {(ST)2,FAREAST} and TaS = Track-

and-Stop, Kmin = 5 arms. Right: F1 scores for Cancer Drug discovery.

Finally, we rerun the Cancer Drug Discovery experiment from [16]. Note that
this experiment is more adapted to a fixed budget setting where we fix a sampling
budget and the algorithm stops once it has reached this limit, which is different
from the fixed confidence setting that our algorithm was designed for. The goal is
to find, among a list of 189 chemical compounds, potential inhibitors toACRVL1,
a Kinaze that researchers [1] have linked to several forms of cancer. We use the
same dataset as [16], where for each compound a percent control7 is reported. We
fix a budget of samples N = 105 and try to find all the ε-good compounds in the
multiplicative case with ε = 0.8. For each algorithm, we compute the F1-score8 of
7 percent control is a metric expressing the efficiency of the compound as an inhibitor
against the target Kinaze.

8 F1 score is the harmonic mean of precision (the proportion of arms in Ĝ that are
actually good) and recall (the proportion of arms in Gε(µ) that were correctly
returned in Ĝ).
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its current estimate Ĝε = {i : µ̂i ≥ (1− ε)maxa µ̂a} after every iteration. The
F1-score in this fixed-budget setting reflects how good is the sampling scheme
of an algorithm, independently of its stopping condition. In Figure 4 we plot
the average F1-score along with the 10% and 90% quantiles (shaded area). We
see that (ST)2 and Track-and-Stop have comparable performance and that both
outperform UCB’s sampling scheme.

7 Conclusion

We shed a new light on the sample complexity of finding all the ε-good arms
in a multi-armed bandit with Gaussian rewards. We derived two lower bounds,
identifying the characteristic time that reflects the true hardness of the problem
in the asymptotic regime. Moreover, we proved a second bound highlighting
an additional cost that is linear in the number of arms and can be arbitrarily
larger than the first bound for moderate values of the risk. Then, capitalizing on
an algorithm solving the optimization program that defines the characteristic
time, we proposed an efficient Track-and-Stop strategy whose sample complexity
matches the lower bound for small values of the risk level. Finally, we showed
through numerical simulations that our algorithm outperforms state-of-the-art
methods for bandits with small to moderate number of arms. Several directions
are worth investigating in the future. Notably, we observe that while Track-
and-Stop performs better in the fixed-K-small-δ regime, the elimination based
algorithms (ST)2 and FAREAST become more efficient in the large-K-fixed-δ
regime. It would be interesting to understand the underlying tradeoff between the
number of arms and confidence parameter. This will help design pure exploration
strategies having best of both worlds guarantees.
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