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Abstract. Detection of adversarial examples has been a hot topic in the
last years due to its importance for safely deploying machine learning
algorithms in critical applications. However, the detection methods are
generally validated by assuming a single implicitly known attack strategy,
which does not necessarily account for real-life threats. Indeed, this can
lead to an overoptimistic assessment of the detectors’ performance and
may induce some bias in the comparison between competing detection
schemes. We propose a novel multi-armed framework, called MEAD, for
evaluating detectors based on several attack strategies to overcome this
limitation. Among them, we make use of three new objectives to gener-
ate attacks. The proposed performance metric is based on the worst-case
scenario: detection is successful if and only if all different attacks are cor-
rectly recognized. Empirically, we show the effectiveness of our approach.
Moreover, the poor performance obtained for state-of-the-art detectors
opens a new exciting line of research.

Keywords: Adversarial Examples · Detection · Security.

1 Introduction

Despite recent advances in the application of machine learning, the vulnerability
of deep learning models to maliciously crafted examples [34] is still an open prob-
lem of great interest for safety-critical applications [2,4,10,39]. Over time, a large
body of literature has been produced on the topic of defense methods against ad-
versarial examples. On the one hand, interest in detecting adversarial examples
given a pre-trained model is gaining momentum [17,24,27]. On the other hand,
? These authors contributed equally to this work.
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several techniques have been proposed to train models with improved robustness
to future attacks [26,31,38]. Interestingly, Croce et al. have recently pointed out
that, due to the large number of proposed methods, the problem of crafting an
objective approach to evaluate the quality of methods to train robust models
is not trivial. To this end, they have presented RobustBench [9], a standardized
benchmark to assess adversarial robustness. To the best of our knowledge, we
claim that an equivalent benchmark does not exist in the case of methods to de-
tect adversarial examples given a pre-trained model. Therefore, in this work, we
provide a general framework to evaluate the performance of adversarial detec-
tion methods. Our idea stems from the following key observation. Generally, the
performance of current state-of-the-art (SOTA) adversarial examples detection
methods is evaluated assuming a unique and thus implicitly known attack strat-
egy, which does not necessarily correspond to real-life threats. We further argue
that this type of evaluation has two main flaws: the performance of detection
methods may be overestimated, and the comparison between detection schemes
may be biased. We propose a two-fold solution to overcome the aforementioned
limitations, leading to a less biased evaluation of different approaches. This is ac-
complished by evaluating the detection methods on simultaneous attacks on the
target classification model using different adversarial strategies, considering the
most popular attack techniques in the literature, and incorporating three new
attack objectives to extend the generality of the proposed framework. Indeed,
we argue that additional attack objectives result in new types of adversarial ex-
amples that cannot be constructed otherwise. In particular, we translate such
an evaluation scheme in MEAD.

MEAD is a novel evaluation framework that uses a simple but still effective
“multi-armed” attack to remove the implicit assumption that detectors know the
attacker’s strategy. More specifically, for each natural sample, we consider the
detection to be successful if and only if the detector is able to identify all the dif-
ferent attacks perpetrated by perturbing the testing sample at hand. We deploy
the proposed framework to evaluate the performance of SOTA adversarial exam-
ples detection methods over multiple benchmarks of visual datasets. Overall, the
collected results are consistent throughout the experiments. The main takeaway
is that considering a multi-armed evaluation criterion exposes the weakness of
SOTA detection methods, yielding, in some cases, relatively poor performances.
The proposed framework, although not exhaustive, sheds light on the fact that
evaluations so far presented in the literature are highly biased and unrealistic.
Indeed, the same detector achieves very different performances when it is in-
formed about the current attack as opposed to when it is not. Not surprisingly,
supervised and unsupervised methods achieve comparable performances with the
multi-armed framework, meaning that training the detectors knowing a specific
attack used at testing time does not generalize to other attacks enough. Indeed
the goal of MEAD is not to show that new attacks can always fool robust classi-
fiers but to show that the detectors that may work well when evaluated with a
unique attack strategy end up being defeated by new attacks.
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1.1 Summary of contributions

We propose MEAD, a novel multi-armed evaluation framework for adversarial
examples detectors involving several attackers to ensure that the detector is not
overfitted to a particular attack strategy. The proposed metric is based on the
following criterion. Each adversarial sample is correctly detected if and only if all
the possible attacks on it are successfully detected. We show that this approach is
less biased and yields a more effective metric than the one obtained by assuming
only a single attack at evaluation time (see Sec. 4).

We make use of three new objective functions which, to the best of our knowl-
edge, have never been used for the purpose of generating adversarial examples at
testing time. These are KL divergence, Gini Impurity and Fisher-Rao distance.
Moreover, we argue that each of them contributes to jointly creating competitive
attacks that cannot be created by a single function (see Sec. 3.2).

We perform an extensive numerical evaluation of SOTA and uncover their
limitations, suggesting new research perspectives in this research line (see Sec. 5).

The remaining paper is organized as follows. First, in Sec. 2, we present a detailed
overview of the recent related works. In Sec. 3, we describe the adversarial prob-
lem along with the new objectives we introduce within the proposed evaluation
framework, MEAD, which is further explained in Sec. 4. We extensively exper-
imentally validate MEAD in Sec. 5. Finally, in Sec. 6, we provide the summary
together with concluding remarks.

2 Related Works

State-of-the-art methods to detect adversarial examples can be separated in two
main groups [2]: supervised and unsupervised methods. In the supervised setting,
detectors can make use of the knowledge of the attacker’s procedure. The net-
work invariant model approach extracts natural and adversarial features from the
activation values of the network’s layers [7,23,28], while the statistical approach
extract features using statistical tools (e.g. maximum mean discrepancy [16],
PCA [21], kernel density estimation [13], local intrinsic dimensionality [25], model
uncertainty [13] or natural scene statistics [17]) to separate in-training and out-
of-training data distribution/manifolds. To overcome the intrinsic limitation of
the necessity to have prior knowledge of attacks, unsupervised detection methods
consider only clean data at training time. The features extraction can rely on dif-
ferent techniques (e.g., feature squeezing [22,36], denoiser approach [27], network
invariant [24], auxiliary model [1,32,40]). Moreover, detection methods of adver-
sarial examples can also act on the underlying classifier by considering a novel
training procedure (e.g., reverse cross-entropy [30]; the rejection option [1,32])
and a thresholding test strategy towards robust detection of adversarial exam-
ples. Finally, detection methods can also be impacted by the learning task of the
underlying network (e.g., for human recognition tasks [35]).
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2.1 Considered detection methods

Supervised methods. Supervised methods can make use of the knowledge of
how adversarial examples are crafted. They often use statistical properties of
either the input samples or the output of hidden layers. NSS [17] extract the
Natural Scene Statistics of the natural and adversarial examples, while LID [25]
extract the local intrinsic dimensionality features of the output of hidden lay-
ers for natural, noisy and adversarial inputs. KD-BU [13] estimates the kernel
density of the last hidden layer in the feature space, then estimates the bayesian
uncertainty of the input sample, following the intuition that the adversarial ex-
amples lie off the data manifold. Once those features are extracted, all methods
train a detector to discriminate between natural and adversarial samples.

Unsupervised methods. Unsupervised method can only rely on features
of the natural samples. FS [36] is an unsupervised method that uses feature
squeezing to compare the model’s predictions. Following the idea of estimating
the distance between the test examples and the boundary of the manifold of
normal examples, MagNet [27] comprises detectors based on reconstruction error
and detectors based on probability divergence.

2.2 Considered attack mechanisms

The attack mechanisms can be divided into two categories: whitebox attacks,
where the adversary has complete knowledge about the targeted classifier (its
architecture and weights), and blackbox attacks where the adversary has no
access to the internals of the target classifier.

Whitebox attacks. One of the first introduced attack mechanisms is what
we call the Fast Gradient Sign Method (FGSM) [14]. It relies on computing the
direction gradient of a given objective function with respect to (w.r.t.) the input
of the targeted classifier and modifying the original sample following it. This
method has been improved multiple times. Basic Iterative Method (BIM) [19]
and Projected Gradient Descent (PGD) [26] are two iteration extensions of
FGSM. They were introduced at the same time, and the main difference between
the two is that BIM initializes the algorithm to the original sample while PGD
initializes it to the original sample plus a random noise. Despite that PGD was
introduced under the L∞-norm constraint, it can be extended to any Lp-norm
constraint. Deepfool (DF) [29] was later introduced. It is an iterative method
based on a local linearization of the targeted classifier and the resolution of this
simplified problem. Finally, the Carlini&Wagner method (CW) aims at finding
the smaller noise to solve the adversarial problem. To do so, they present a
relaxation based on the minimization of specific objectives that can be chosen
depending on the attacker’s goal.

Blackbox attacks. Blackbox attacks can only rely on queries to attack
specific models. Square Attack (SA) [3] is an iterative method that randomly
searches for a perturbation that will increase the attacker’s objective at each step,
Hop Skip Jump (HOP) [8] tries to estimate the gradient direction to perturb,
and Spatial Transformation Attack (STA) [12] applies small translations and
rotations to the original sample to fool the targeted classifier.
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3 Adversarial Examples and Novel Objectives

Let X ⊆ Rd be the input space and let Y = {1, . . . , C} be the label space related
to some task of interest. We denote by PXY the unknown data distribution over
X × Y. Throughout the paper we refer to the classifier qŶ |X(y|x; θ) to be the
parametric soft-probability model, where θ ∈ Θ are the parameters, y ∈ Y the
label and fθ : X → Y s.t. fθ(x) = argmaxy∈Y qŶ |X(y|x; θ) to be its induced hard
decision. Finally, we denote by x′ ∈ Rd an adversarial example, by `(x,x′; θ) the
objective function used by the attacker to generate that sample, and a`(·; ε, p)
the attack mechanism according to a objective function `, with ε the maximal
perturbation allow and p the Lp-norm constraint.

3.1 Generating adversarial examples

Adversarial examples are slightly modified inputs that can fool a target classifier.
Concretely, Szegedy et al. [33] define the adversarial generation problem as:

x′ = argmin
x′∈Rd : ‖x′−x‖p<ε

‖x′ − x‖ s.t. fθ(x
′) 6= y, (1)

where y is the true label (supervision) associated to the sample x. Since this
problem is difficult to tackle, it is commonly relaxed as follows [6]:

a`(x; ε, p)
1 ≡ x′` = argmax

x′
`∈Rd : ‖x′

`−x‖p<ε
`(x,x′`; θ). (2)

It is worth to emphasize that the choice of the objective `(x,x′`; θ) plays a crucial
role in generating powerful adversarial examples x′`. The objective function `
traditionally used is the Adversarial Cross-Entropy (ACE) [26]:

`ACE(x,x
′
`; θ) = EY |x

[
− log qŶ |X(Y |x′`; θ)

]
, (3)

It is possible to use any objective function ` to craft adversarial samples. We
present the three losses that we use to generate adversarial examples in the fol-
lowing. While these losses have already been considered in detection/robustness
cases, to the best of our knowledge, they have never been used to craft attacks
to test the performances of detection methods.

3.2 Three New Objective Functions

The Kullback-Leibler divergence. The Kullback-Leibler (KL) divergence
between the natural and the adversarial probability distributions has been widely
used in different learning problems, as building training losses for robust mod-
els [37]. KL is defined as follows:

`KL (x,x′`; θ) = EŶ |x;θ

[
log

(
qŶ |X(Ŷ |x; θ)

qŶ |X(Ŷ |x′`; θ)

)]
. (4)

1 Throughout the paper, when the values of ε and p are clear from the context, we
denote the attack mechanism as a`(·).
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(a) Pre-trained classifier (b) Detector trained on ACE

(c) Pre-trained classifier (d) Detector trained on Gini

Fig. 1: Decision boundary for the binary classifier 1a-1c: the decision region for
class 1 is green, the decision region of class 0 is pink. The natural testing samples
belonging to class 0 are reported in blue, the corresponding adversarial examples
crafted using ACE (1a) and Gini Impurity (1c) in red. Decision boundary of the
detectors 1b-1d: B, the decision region of the natural examples; A`, reported in
red shades, the decision region of the adversarial examples when the detector
is trained on data points crafted via ` ∈ {ACE, Gini} as objective. The darker
shades stand for higher confidence. The red points represent the adversarial
examples created with the opposite loss (respectively ` ∈ {Gini, ACE}).

The Fisher-Rao objective. The Fisher-Rao (FR) distance is an information-
geometric measure of dissimilarity between soft-predictions [5]. It has been
recently used to craft a new regularizer for robust classifiers [31]. FR can be
computed as follows:

`FR(x,x
′
`; θ) =2 arccos

∑
y∈Y

√
qŶ |X(y|x; θ)qŶ |X(y|x′`; θ)

 . (5)

The Gini Impurity score. The Gini Impurity score approximates the proba-
bility of incorrectly classifying the input x if it was randomly labeled according
to the model’s output distribution qŶ |X(y|x′`; θ). It was recently used in [15] to
determine whether a sample is correctly or incorrectly classified.

`Gini(·,x′`; θ) = 1−
√∑
y∈Y

q2
Ŷ |X

(y|x′`; θ). (6)
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3.3 A case study: ACE vs. Gini Impurity

In Figure 1 we provide insights on why we need to evaluate the detectors on
attacks crafted through different objectives. We create a synthetic dataset that
consists of 300 data points drawn from N0 = N (µ0, σ

2I) and 300 data points
drawn from N1 = N (µ1, σ

2I), where µ0 = [1 1], µ1 = [−1 − 1] and σ = 1. To
each data point x is assigned true label 0 or 1 depending on whether x ∼ N0

or x ∼ N1, respectively. The data points have been split between the training
set (70%) and the testing set (30%). We finally train a simple binary classifier
with one single hidden layer and a learning rate of 0.01 for 20 epochs. We attack
the classifier by generating adversarial examples with PGD under the L∞-norm
constraints with ε = 1.2 for the ACE attacks and ε = 5 for the Gini Impurity
attacks to have a classification accuracy (classifier performance) of 50% on the
corrupted data points. In Figure 1a-1c we plot the decision boundary of the
binary classifier together with the adversarial and natural examples belonging
to class 0. As can be seen, ACE creates points that lie in the opposite decision
region with respect to the original points (Fig. 1a). Conversely, Gini Impurity
tends to create new data points in the region of maximal uncertainty of the
classifier (Fig. 1c). Consider the scenario where we train a simple Radial Basis
Function (RBF) kernel SVM on a subset of the testing set of the natural points
together with the attacked examples, generated with the ACE or the Gini Impu-
rity score depending on the case (Fig. 1b-1d). We then test the detector on the
data points originated with the opposite loss, Figure 1b and Figure 1d respec-
tively. The decision region of the detector for natural examples is in blue, and the
one for the adversarial examples is in red. The intensity of the color corresponds
to the level of certainty of the detector. The accuracy of the detector on natural
and adversarial data points decreases from 71% to 62% when changing to the
opposite loss in Fig. 1b, and from 87% to 63% in Fig. 1d. Hence, testing on
samples crafted using a different loss in Eq. (2) means changing the attack and,
consequently, evaluating detectors without taking into consideration this pos-
sibility leads to a more biased and unrealistic estimation of their performance.
When the detector is trained on the adversarial examples created with both the
losses, the accuracy is 79.8% when testing on Gini and 66.3% when testing on
ACE, which is a better trade-off in adversarial detection performances.

The aforementioned losses will be included in the following section to design MEAD,
our multi-armed evaluation framework, a new method to evaluate the perfor-
mance of adversarial detection with low bias.

4 Evaluation with a Multi-Armed Attacker

The proposed evaluation framework, MEAD, consists in testing an adversarial
examples detection method on a large collection of attacks grouped w.r.t. the Lp-
norm and the maximal perturbation ε they consider. Each given natural input
example is perturbed according to the collection of attacks. Note that, for every
attack, a perturbed example is considered adversarial if and only if it fools the
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x A

ε = 5 p = 1

PGDACE(x)
All Attacks

PGDKL(x)

PGDFR(x)

PGDGini(x)

Perturbed
Examples

PGD`(x) if
1 [fθ (x

′
`) 6= y]

Adversarial
Examples
Sifter

y

γ

−

PGDKL(x)

PGDFR(x)

PGDGini(x)

DETECTOR

d

d

1

1

1

0

Adversarial decision:
the attacks are all
correctly detected
as adversarial, TP.
Otherwise FN, if d
outputs at least

one 0.

Natural decision:
the sample is

correctly detected
as natural, TN.

Otherwise FP, if d
outputs 1.

Fig. 2: MEAD: x is the natural example, ε = 5 is the perturbation magnitude,
L1 is the norm. From the set of all the possible existing attacks A we consider
the ones using PGD. The sifter discards all the perturbed samples that do not
fool the classifier fθ. d is the detector.

classifier. Otherwise, it is discarded and will not influence the evaluation. We
then feed all the natural and successful adversarial examples to the detector and
gather all the predictions. Finally, based on the detection decisions, we evaluate
the detector according to a worst-case scenario:
i) Adversarial decision: for each natural example, we gather all the successful
adversarial examples. If the detector detects all of them, then the perturbed
sample is considered correctly detected (i.e., it is a true positive). However, if the
detector misses at least one of them, the noisy sample is considered undetected
(i.e., it is a false negative).
ii) Natural decision: for each natural sample, if the detector does not detect it,
then the sample is considered correctly non-detected (i.e., it is a true negative);
otherwise it is incorrectly detected (i.e., it is a false positive).

Specifically, let Dm = {(xi, yi)}mi=1 ∼ PXY be the testing set of size m,
where xi ∈ X is the natural input sample and yi ∈ Y is its true label. Let d:
X × R → {0, 1} be the detection mechanism and a` : X × R × {1, 2,∞} → X
the attack strategy according to the objective function ` ∈ L within a selected
collection of objectives L as described in Sec. 3. For every considered Lp-norm,
p ∈ {1, 2,∞}, maximal perturbation ε ∈ R, and every threshold γ ∈ R2:

TPε,p(γ) =
{
(x, y) ∈ Dm : ∀` ∈ L {fθ

(
a`(x)

)
6= y} ∧ {d

(
a`(x), γ

)
= 1}

}
(7)

FNε,p(γ) =
{
(x, y) ∈ Dm : ∃` ∈ L {fθ

(
a`(x)

)
6= y} ∧ {d

(
a`(x), γ

)
= 0}

}
(8)

TNε,p(γ) = {(x, y) ∈ Dm : d(x, γ) = 0} (9)
FPε,p(γ) = {(x, y) ∈ Dm : d(x, γ) = 1}. (10)

In Fig. 2 we provide a graphical interpretation of MEAD when the perturbation
magnitude and the norm are fixed.
2 With an abuse of notation, ∀` ∈ L stands for all the considered attack mechanisms
for specific values of ε, p within a collection of objectives L.



MEAD 9

5 Experiments

In this section, we assess the effectiveness of the proposed evaluation framework,
MEAD. The code is available at https://github.com/meadsubmission/MEAD.

5.1 Experimental setting

Evaluation metrics. For each Lp-norm and each considered ε, we apply our
multi-armed detection scheme. We gather the global result considering all the
attacks and all the objectives. Moreover, we also report the results per objec-
tive. The performance is measured in terms of the AUROC↑ [11] and in terms
of FPR↓95%. The first metric is the Area Under the Receiver Operating Charac-
teristic curve and represents the ability of the detector to discriminate between
adversarial and natural examples (higher is better). The second metric repre-
sents the percentage of natural examples detected as adversarial when 95 % of
the adversarial examples are detected, i.e., FPR at 95 % TPR (lower is better).

Datasets and classifiers. We run the experiments on MNIST [20] and CI-
FAR10 [18]. The underlying classifiers are a simple CNN for MNIST, consisting of
two blocks of two convolutional layers, a max-pooling layer, one fully-connected
layer, one dropout layer, two fully-connected layers, and ResNet-18 for CIFAR10.
The training procedures involve 100 epochs with Stochastic Gradient Descent
(SGD) optimizer using a learning rate of 0.01 for the simple CNN and 0.1 for
ResNet-18; a momentum of 0.9 and a weight decay of 10−5 for ResNet-18. Once
trained, these networks are fixed and never modified again.

Grouping attacks. We test the methods on the attacks presented in Sec. 2.2,
and we present them based on the norm constraint used to construct the at-
tacks.Under the L1-norm fall PGD with ε in {5, 10, 15, 20, 25, 30, 40}. Under the
L2-norm fall PGD with ε in {0.125, 0.25, 0.3125, 0.5, 1, 1.5, 2}, CW with ε = 0.01,
HOP with ε = 0.1, and DF which has no constraint on ε. Under the L∞-norm
fall FGSM, BIM and PGD with ε in {0.0315, 0.0625, 0.125, 0.25, 0.3125, 0.5},
CW with ε = 0.3125, and SA with ε = 0.3125 for MNIST and ε = 0.125 for
CIFAR10. Finally, ST is not constrained by a norm or a maximum perturbation,
as it is limited in maximum rotation (30 for CIFAR10 and 60 for MNIST) and
translation (8 for CIFAR10 and 10 for MNIST).

Detection Methods. We tested dection methods introduced in Sec. 2.1. In the
supervised case, we train the detectors using adversarial examples created by
perturbing the samples in the original training sets with PGD under L∞-norm
and ε = 0.03125. In the unsupervised case, the detectors only need natural
samples in the training sets. They are tested on all the previously mentioned
attacks, generated on the testing sets.

https://github.com/meadsubmission/MEAD
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Table 1: Overall performances on CIFAR10 of all the detectors per objective and
in MEAD. The worst results among all the settings is in bold; the ones in the
single-armed setting is underlined. No norm denotes the group of attacks that
do not depend on the norm constraint.
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Table 2: Overall performances on MNIST of all the detectors per objective and
in MEAD. The worst results among all the settings is in bold; the ones in the
single-armed setting is underlined. No norm denotes the group of attacks that
do not depend on the norm constraint.
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5.2 Experimental results

In this section, we refer to single-armed setting when we consider the setup where
the adversarial examples are generated w.r.t. one of the objectives in Sec. 3. We
provide the average of the performances of all the detection methods on CIFAR10
in Tab. 1 and on MNIST in Tab. 2. Due to space constraints, the detailed tables
for each detection method (i.e., NSS, LID, KD-BU, MagNet, and FS) and for
each dataset (i.e., CIFAR10 and MNIST) are reported in Appendix A.

MEAD and the single-armed setting. Table 1 shows a decrease in the per-
formance of all the detectors when going from the single-armed setting to MEAD.
NSS is the more robust among the supervised methods when passing from the
single-armed setting to the proposed setting. Indeed, (cf Tab. 1), in terms of
AUROC↑, it registers a decrease of up 4.9 percentage points under the L1-norm
constraint, 4.7 under the L2-norm constraint, and 5.3 under the L∞-norm con-
straint. This can be explained by the fact that the network in NSS is trained
on the natural scene statistics extracted from the trained samples differently
from the other detectors. In particular, these statistical properties are altered
by the presence of adversarial perturbations and hence are found to be a good
candidate to determine if a sample is adversarial or not. By looking closely at
the results for NSS in Tab. 5, it comes out that it performs better when eval-
uated on L∞ norm constraint. Indeed, in this case, the adversarial examples
at testing time are similar to those used at training time. Not surprisingly, the
performance decreases when evaluated on other kinds of attacks. Notice that, in
the single-armed setting, all the supervised methods turn out to be much more
inefficient than when presented in the original papers. Indeed, as already ex-
plained in Sec. 5.1, we train the detectors using adversarial examples created by
perturbing the samples in the original training sets with PGD under L∞-norm
and ε = 0.03125, and then we test them on a variety of attacks. Hence, we do
not train a different detector for each kind of attack seen at testing time. On the
other side, the unsupervised detector MagNet appears to be more robust than
FS when changing from the single-armed setting to MEAD. Indeed, in terms of
AUROC↑, it loses at most 2.2 percentage points (L∞ norm case). On average, FS
is the unsupervised detector that achieves the best performance on CIFAR10,
while MagNet is the one to achieve the best performance on MNIST.

Remark: Some single-armed setting results turn out to be worse than the cor-
responding results in MEAD (cf Tab. 5-9 and Tab. 11-15 in Appendix A). We
provide here an explanation of this phenomenon. Given a natural input sample
x, let x` denotes the perturbed version of x according to some fixed norm p, fixed
perturbation magnitude ε and objective function ` between ACE, KL, Gini and
FR. Suppose fθ(xACE) = y, where y is the ground true label of x, this means
that xACE is a perturbed version of the natural example but not adversarial. As-
sume instead fθ(xKL) 6= y, fθ(xGini) 6= y and fθ(xFR) 6= y. If at testing time the
detector is able to recognize all of them as being positive (i.e., adversarial), then
under MEAD, xKL,xGini,xFR would be considered a true positive. This example,
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counting as a true positive under MEAD, would instead be discarded under the
single-armed setting of ACE, as xACE is neither a clean example nor an adver-
sarial one. Then, the larger amount of true positives in MEAD can potentially
lead to an increase in the global AUROC↑.

Effectiveness of the proposed objective functions. In Tab. 4 and Tab. 10,
relegated to the Appendix due to space constraints, we report the averaged
number of successful adversarial examples under the multi-armed setting as well
as the details per single-armed settings on CIFAR10 and MNIST, respectively.
The attacks are most successful when the value of the constraint ε for every
Lp-norm increases. Generating adversarial examples using the ACE for each at-
tack scheme creates more harmful (adversarial) examples for the classifier than
using any other objective. However, using either the Gini Impurity score, the
Fisher-Rao objective, or the Kullback-Leibler divergence seems to create exam-
ples that are either equally or more difficult to be detected by the detection
methods. For this purpose, we provide two examples. First, by looking at the
results in Tab. 7, we can deduce that LID finds it difficult to recognize the at-
tacks based on KL and FR objective functions but not the ones created through
Gini. For example, with PGD1 and ε = 40, we register a decrease in AUROC↑ of
9.5 percentage points when going from the single-armed setting of Gini to the
one of FR. Similarly, the decrease is 8.3 percentage points in the case of KL.
This behavior is even more remarkable when we look at the results in terms of
FPR↓95%: the gap between the best FPR↓95% values (obtained via Gini) and
the worst (via FR) is 30.7 percentage points. On the other side, the situation is
reversed if we look at the results in Tab. 8 as FS turns out to be highly ineffi-
cient at recognizing adversarial examples generated via the Gini Impurity score.
By considering the results associated to the highest value of ε for each norm,
namely ε = 40 for L1-norm; ε = 2 for L2-norm; ε = 0.5 for L∞-norm, the gap
between best FPR↓95% values (obtained via KL divergence) and the worst (via
Gini Impurity score), varies from a minimum of 41.7 (L∞-norm) to a maximum
of 64.4 (L2-norm) percentage points. This example, in agreement with Sec. 3.3,
testify on real data that testing the detectors without taking into consideration
the possibility of creating attacks through different objective functions leads to
a biased and unrealistic estimation of their performances.

Comparison between supervised and unsupervised detectors. The un-
supervised methods find it challenging to recognize attacks crafted using the
Gini Impurity score. Indeed, according to Sec. 3.3, that objective function cre-
ates attacks on the decision boundary of the pre-trained classifier. Consequently,
the unsupervised detectors can easily associate such input samples with the clus-
ter of naturals. Supervised methods detect Adversarial Cross-Entropy loss-based
attacks more and, therefore, more volatile when it comes to other types of loss-
based attacks. Overall, by looking at the results in Tab. 3 on both the datasets,
most of the supervised and unsupervised methods achieve comparable perfor-
mances with the multi-armed framework, meaning that the current use of the
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Table 3: Performances of each detection method under the MEAD framework on
CIFAR10 and MNIST averaged over the norm-based constraint. The best results
among all the methods is in bold; the ones per type of detection method (i.e.
Supervised and Unsupervised) are underlined.
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knowledge about the specific attack is not general enough. The exception to this
is NSS, which, as already explained, seems to be the most general detector.

On the effects of the norm and ε. The detection methods recognize at-
tacks with a large perturbation more easily than other attacks (cf Tab. 5-9
and Tab. 11-15). L∞-norm attacks are less easily detectable than any other Lp-
norm attack. Indeed, multiple attacks are tested simultaneously for a single ε
under the L∞ norm constraint. For example, in CIFAR10 with ε = 0.3125 and
L∞, PGD, FGSM, BIM, and CW are tested together, whereas, with any other
norm constraint, only one typology of attack is examined. Indeed the more at-
tack we consider for a given ε, the more likely at least one attack will remain
undetected. Globally, under the L∞-norm constraint, Gini Impurity score-based
attacks are the least detected attacks. However, each method has different behav-
iors under L1 and L2. NSS is more sensitive to Kullback-Leibler divergence-based
attacks while MagNet is more volatile to the Fisher-Rao distance-based attacks.
As already pointed out, FS achieves inferior performance when evaluated against
attacks crafted through the Gini Impurity objective, while the sensitivity of LID
and KD-BU to a specific objective depends on the Lp-norm constraint.

6 Summary and Concluding Remarks

We introduced MEAD a new framework to evaluate detection methods of ad-
versarial examples. Contrary to what is generally assumed, the proposed setup
ensures that the detector does not know the attacks at the testing time and
is evaluated based on simultaneous attack strategies. Our experiments showed
that the SOTA detectors for adversarial examples (both supervised and unsu-
pervised) mostly fail when evaluated in MEAD with a remarkable deterioration
in performance compared to single-armed settings. We enrich the proposed eval-
uation framework by involving three new objective functions to generate adver-
sarial examples that create adversarial examples which can simultaneously fool
the classifier while not being successfully identified by the investigated detec-
tors. The poor performance of the current SOTA adversarial examples detectors
should be seen as a challenge when developing novel methods. However, our eval-
uation framework assumes that the attackers do not know the detection method.
As future work we plan to enrich the framework to a complete whitebox scenario.
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