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Abstract. Graph Convolutional Network (GCN) has been one of the
most popular technologies in recommender systems, as it can effectively
model high-order relationships. However, these methods usually suffer
from two problems: sparse supervision signal and noisy interactions. To
address these problems, graph contrastive learning is applied for GCN-
based recommendation. The general framework of graph contrastive learn-
ing is first to perform data augmentation on the input graph to get two
graph views and then maximize the agreement of representations in these
views. Despite the effectiveness, existing methods ignore the differences
in the impact of nodes and edges when performing data augmentation,
which will degrade the quality of the learned representations. Meanwhile,
they usually adopt manual data augmentation schemes, limiting the gen-
eralization of models. We argue that the data augmentation scheme
should be learnable and adaptive to the inherent patterns in the graph
structure. Thus, the model can learn representations that remain invari-
ant to perturbations of unimportant structures while demanding fewer
resources. In this work, we propose a novel Graph Contrastive learn-
ing framework with Adaptive data augmentation for Recommendation
(GCARec). Specifically, for adaptive augmentation, we first calculate the
retaining probability of each edge based on the attention mechanism and
then sample edges according to the probability with a Gumbel Softmax.
In addition, the adaptive data augmentation scheme is based on the neu-
ral network and requires no domain knowledge, making it learnable and
generalizable. Extensive experiments on three real-world datasets show
that GCARec outperforms state-of-the-art baselines.

Keywords: Recommender systems · Graph neural network · Contrastive
learning · Self-supervised learning.

1 Introduction

Recommender systems have been an indispensable component in many online
services, such as E-commerce platforms and online entertainment applications,
for their effectiveness in alleviating information overloading. Recently, graph con-
volution network (GCN) has become a state-of-the-art method in recommender
systems [2, 10, 23, 24], as it can integrate high-order neighbors in the graphs.
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Despite the effectiveness, GCN-based recommendation models still suffer from
two problems [25]. (1) sparse supervision signal: most GCN-based methods fo-
cus on supervised settings [10, 23], where the supervision signal is derived from
the observed interactions. However, the observed interactions are very sparse
in comparison to the entire interaction space [1, 34], limiting the performance
of these methods. (2) noisy interactions. The interaction data usually contain
noises, since users often provide implicit feedback like clicks rather than explicit
feedback like ratings. There may be cases where users click or purchase items and
find they do not like them [28]. Since GCN-based models learn representations
by aggregating information from neighbors, noisy interactions will make GCNs
fail to learn reliable representations.

To address these problems, we apply graph contrastive learning [32] in GCN-
based recommendation. A general framework of graph contrastive learning is to
perform data augmentation on the input graph by uniform node/edge dropout
to generate two graph views and then maximize the agreement of representa-
tions in these views. It extracts additional supervised signals from the input
data and learns representations that remain invariant to the perturbations in-
troduced by the data augmentation, making it possible to solve both problems
mentioned above. Although several works [15, 25, 33] leverage graph constative
learning in GCN-based recommendation, data augmentation schemes, a key com-
ponent of contrastive learning [27] are still rarely explored in graph contrastive
learning-based recommendation methods. Specifically, there are currently two
main types of data augmentation schemes. (1)stochastic augmentation [25], such
as uniformly dropping a portion of edges or nodes from the input graph; (2) ar-
tificially designed augmentation [15, 33], which usually constructs views from
additional domain knowledge, such as social networks and knowledge graphs.
We argue that these augmentation schemes have two limitations:

First, they ignore the differences in the impact of nodes and edges when
performing data augmentation. Taking uniform edge dropout as an example,
dropping important edges (e.g., edges that connect items of great interest to
a user) for a user will degrade the quality of its representation. Besides, keep-
ing unimportant edges (e.g., the noisy interactions) can be harmful to repre-
sentation learning. Second, they choose augmentation schemes either based on
domain knowledge or performance evaluation on the validation set. However,
domain knowledge is not always available and performance evaluation is usually
expensive, limiting the generalization of the model to other datasets. Hence, we
propose that the data augmentation scheme should be learnable and adaptive to
the intrinsic patterns in the graph structure. Such that, it can guide the model
to keep the important connective structures while perturbing the unimportant
edges in the graph, as well as demanding fewer resources compared with manual
selection.

To this end, we propose a novel Graph Contrastive learning framework with
Adaptive data augmentation for Recommendation (GCARec). Specifically, we
design a learnable data augmentation scheme based on the neural network, whose
parameters are learned from data during the optimization of the contrastive
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objective. Meanwhile, as introduced above, the data augmentation scheme should
preserve important edges while perturbing unimportant ones. To achieve this
goal, we make the preserving probability of important edges higher and the
probability of unimportant ones lower. Specifically, the probability is calculated
based on the attention mechanism to reflect the importance of each edge. After
getting the probability, we sample edges according to them. However, the random
sampling strategy is not differentiable and will make the model cannot be trained.
Hence, we propose a view generation method based on a Gumbel Softmax [11],
which introduces a continuous distribution to approximate categorical samples,
to address this issue. After that, we apply contrastive learning based on node
self-discrimination to maximize the agreement between the representations in
the generated views. Finally, we leverage the contrastive learning task (i.e., node
self-discrimination) as the auxiliary task to the recommendation task and jointly
train them using the multi-task training strategy.

In summary, the contributions of our work are as follows:

1. We propose a novel graph contrastive learning framework with adaptive data
augmentation, which encourages the model to learn important structural
information in the graph.

2. We designed a learnable data augmentation scheme that not only requires
less human effort but also easily generalizes to different graph-based recom-
mendation scenarios.

3. Extensive experiments are conducted on three real-world datasets. The re-
sults indicate that our model outperforms the state-of-art methods and
demonstrates the effectiveness of the adaptive data augmentation scheme.

The remainder of this paper is organized as follows. We first introduce the
notations and GCN-based recommendation in Section 2. We then present details
of our model in Section 3. Settings and results of conducted experiments are
introduced in Section 4. We summarize the related work in Section 5. Finally,
we conclude this work and future work in Section 6.

2 Preliminaries

Notations. Let U = {u1, u2, · · · , um}(|U| = m) and I = {i1, i2, · · · , in}(|I| =
n) denote the set of users and items, respectively. Let O+ = {yu,i|u ∈ U , i ∈ I}
denote the observed interactions, where yu,i indicates that user u has interacted
with item i. Moreover, a user-item interaction graph is constructed, denoted as
G = (V, E), where V = U ∪ I is the set of nodes and E = {(u, i)|yu,i ∈ O+, u ∈
U , i ∈ I} is the edge set.

Recap GCN. Generally, at each layer of GCN-based recommendation models,
two key computations, i.e., aggregate and update, are involved to generate the
node representations, which can be formulated as follows:
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Fig. 1. Overall framework illustration of our proposed GCARec. The upper is the rec-
ommendation task, which predicts the preference score of users on items. The bottom is
the contrastive learning task, which aims to maximize the agreement of representations
in different views.

a(l)u = faggregate({z(l−1)i |i ∈ Nu}),
z(l)u = fupdate(z

(l−1)
u , a(l)u ),

(1)

where Nu denotes the neighbors of node u and a(l)u is the aggregated representa-
tion of Nu. z

(l)
u is the representation of node u at the l-th layer. z(0)u is initialized

by the learnable embedding. To generate the representation of node u, it first
aggregates the representations of Nu and then updates the representation of u
from its representation at (l − 1)-th layer and the aggregated representations.
It can be seen that z(l)u encodes the l-hop neighbors of u. To produce the final
representation for the recommendation, a readout function may be used:

zu = freadout

({
z(l)u | l = [0, · · · , L]

})
, (2)

where L is the number of layers in the GCN-based model.
After getting the final representations, a prediction layer is built to calculate

the preference score, which indicates how likely user u would adopt item i. For
fast retrieval, the inner product usually is adopted:

ŷu,i = zTu zi, (3)

where zu and zi are final representations of u and i, respectively.

3 Methodology

In this section, we introduce our method in detail. Firstly, in Section 3.1, we
describe the overall framework of GCARec. Then in Section 3.2 and Section 3.3,
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we present the adaptive data augmentation method to generate different views
and the contrastive learning based on node self-discrimination. Finally, in Sec-
tion 3.4, the multi-task training strategy is introduced.

3.1 The Contrastive Learning Framework

Our framework follows the general contrastive learning paradigms, which seek to
achieve maximum agreement between representations of different views. Figure 1
is the illustration of the framework. The basic idea is two folds. On the one hand,
we generate two graph views by performing data augmentation on the input
graph. On the other hand, we employ a contrastive loss function to conduct
the contrastive learning task (i.e., node self-discrimination), which encourages
representations of the same nodes in the two different views to be similar, while
representations of different nodes in those views to be distinct.

Firstly, we generate two graph views using adaptive data augmentation T (·),
denote as G̃1 = T (G̃) and G̃2 = T (G̃), where G is the input graph. Then, G̃1
and G̃2 are fed to the GCN encoder f(·), after which the encoder outputs rep-
resentations of nodes in the two generated views. Z1 = f(G̃1) and Z2 = f(G̃2)
denote the representations in the two views, respectively. Specifically, we adopt
LightGCN [10] as the GCN encoder in this work.

Next, we perform the contrastive learning task on the representation of gen-
erated views. Since we focus on the data augmentation, we simply treat the same
nodes in different views as positive pairs and different nodes in different views
as negative pairs. To be specific, for a node u ∈ U , {(zu,1, zu,2)|u ∈ U , zu,1 ∈
Z1, zu,2 ∈ Z2} is the positive pair and {(zu,1, zu′,2)|u, u′ ∈ U , u′ 6= u, zu,1 ∈
Z1, zu′,2 ∈ Z2} are the negative pairs. Technically, we adopt the InfoNCE [7] as
the contrastive loss.

Finally, we adopt a multi-task training strategy to improve the recommen-
dation performance. In specific, the recommendation task is the main task and
the contrastive learning task is the auxiliary task.

3.2 Adaptive Augmentation

The user-item interaction graph contains several collaborative filtering signals,
as it is constructed based on observed interaction. For example, the first-order
neighbors reflect user interest and the second-order neighbors exhibit behavior
similarity. Hence, it is useful to mine the inherent patterns in the user-item
interaction graph structure. In addition, contrastive learning that maximizes the
agreement between views aims to learn representations that remain invariant to
the perturbations introduced by data augmentation [30]. Therefore, the data
augmentation scheme should preserve important connective structures in the
user-item interaction graph while perturbing unimportant ones.

To achieve this goal, we propose an adaptive data augmentation scheme that
tends to retain the important edges and perturb possibly unimportant edges in
the user-item interaction graph. To be specific, we sample edges in the graph
with lower preserving probability for unimportant edges and higher preserving
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probability for important ones. Compared with methods that randomly corrupt
views, our method puts more emphasis on important structures, which can guide
the model to mine the inherent patterns in the graph structure. Two main pro-
cesses are included in our proposed adaptive data augmentation: probability
calculation and view generation.

Formally, we first calculate the preserving probability of each edge (u, i) as
pu,i. Then, we sample two subsets Ẽ1 and Ẽ2 from the original edge set E with
the probability of each edge to generate two views. We will introduce the details
as follows.

Probability Calculation. As we aim to corrupt unimportant edges and keep
important structures in the user-item interaction graph, pu,i is required to reflect
the importance of edge (u, i). In GCARec, we calculate the preserving probability
of each edge based on the attention mechanism, which has been shown to be
effective in modeling the importance of the edge. Following GAT [20], we perform
self-attention on the nodes using a Multi-Layer Perception (MLP), and then
calculate pu,i according to the following equations:

αu,i = W(z(0)u ⊕ z(0)i ) + b,

pu,i =
exp(αu,i)

1 + exp(αu,i)

(4)

where αu,i is the attention coefficient, which indicates the importance of i to u.
⊕ is the concatenation operation. W and b are trainable parameters. z(0)u and
z
(0)
i are representations initialized by the learnable embeddings.

View Generation. After getting the preserving probabilities, we can randomly
sample edges according to their preserving probabilities. However, random sam-
pling is not differentiable and makes model cannot be trained well via back-
propagation. Inspired by [17], we adopt Gumbel Softmax to be the differential
surrogate to address this issue. It can be described as follows:

g(u, i) =
exp ((log(pu,i) + g1)/τ1)∑1

y=0 exp ((log(p
y
u,i(1− pu,i)1−y) + gy)/τ1)

, (5)

where gy is the noise, which is i.i.d sampled from a Gumbel distribution: g =
− log(− log(x)) and x ∼ Uniform(0, 1). τ1 is the temperature parameter. When
τ1 → 0, G approximates to a one-hot vector. The edge subset of the generated
view is Ẽ = {(u, i)|g(u, i) > p, (u, i) ∈ E}, where the threshold p is a hyperpa-
rameter to control the removal of unimportant edges.

3.3 Contrastive Learning

As we introduced in Section 3.1, we treat the same nodes in the different views
as positive pairs and different nodes in the different views as negative pairs. The
loss function of the contrastive learning task can be described as follows:
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Lgcl = Luser
gcl + Litem

gcl , (6)

Luser
gcl =

∑
u∈U
− log

exp(sim(zu,1, zu,2)/τ)

exp(sim(zu,1, zu,2)/τ) +
∑

u′ 6=u,u′∈U sim(zu,1, zu′,2)/τ)
, (7)

Litem
gcl =

∑
i∈I
− log

exp(sim(zi,1, zi,2)/τ)

exp(sim(zi,1, zi,2)/τ) +
∑

i′ 6=i,i′∈I sim(zi,1, zi′,2)/τ)
, (8)

where Luser
gcl and Litem

gcl are the contrastive losses of the user side and item side,
respectively. sim(·, ·) is the discriminator function, which takes two vectors as
the input and then scores the similarity between them. In this work, we set it
as cosine similarity function, i.e., sim(z1, z2) =< z1, z2 > /(||z1|| · ||z2||). τ is the
temperature to amplify the effect of discrimination.

3.4 Multi-task Training

We leverage a multi-task training strategy to optimize the main recommendation
task and the auxiliary contrastive learning task jointly.

L = Lmain + λ1Lgcl + λ2||Θ||22, (9)

where Θ is the set of model parameters. λ1 and λ2 are hyperparameters to control
the strengths of contrastive loss and L2 regularization, respectively. Lmain is the
loss function of the main recommendation task. In this work, we adopt Bayesian
Personalized Ranking (BPR) loss [19]:

Lmain =
∑

(u,i,j)∈O

− log σ (ŷu,i − ŷu,j) , (10)

where ŷu,i = zTu zi is the preference score. σ(·) is the sigmoid function. O =
{(u, i, j) | (u, i) ∈ O+, (u, j) ∈ O−} denotes the training data, and O− is the un-
observed interactions.

4 Experiments

To evaluate the effectiveness of our proposed GCARec, we conduct extensive
experiments by answering the following questions:

– RQ1: Does GCARec outperform state-of-the-art methods for the top-K
recommendation?

– RQ2: What are the benefits of our proposed adaptive data augmentation
scheme for recommendation performance?

– RQ3: Is our model sensitive to hyperparameters? How do different hyper-
parameters influence the recommendation performance?
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4.1 Experimental Setup

Datasets. We adopt three real-world datasets, including MovieLens-1M1, Re-
tailrocket2 and Yelp2018 [23]. Detailed statistics of them are summarized in
Table 1.

Table 1. Statistics of the datasets.

Dataset #Users #Items #interactions Density
MovieLens-1M 5,949 2,810 571,531 0.03419
Retailrocket 259,531 86,053 931,549 0.00004
Yelp2018 31,668 38,048 1,561,406 0.00130

• MovieLens-1M. This dataset contains the ratings (1-5 stars) of users for
movies, which were collected through the MovieLens website.

• Retailrocket. This dataset contains the interactions of users on a real-
world e-commerce website. The interactions include clicks, adding to carts
and transactions with items.

• Yelp2018. This dataset is the 2018 edition of the Yelp challenge. It contains
businesses, reviews and user data. We view the businesses such as restaurants
as items.

Evaluation Metrics. To evaluate all methods, we randomly split the interac-
tions into training, validation, and testing sets with a ratio of 7:1:2. Items that
the user has not interacted with are treated as negative items. For each user
in the test set, each method produces users’ preference scores for all items, ex-
cluding the positive items used in the training set. We employ the widely-used
Recall@K and NDCG@K as evaluation metrics for the top-K recommendation,
where K is set to 2, 6 and 10.

Compared Methods. We compare GCARec with the following methods:

• POP. This method recommends items according to item popularity. The
popularity of an item is the number of its interactions. This is a non-
personalized method but is still adopted in some scenarios.

• BPR [19]. This is a matrix factorization method. It is optimized by Bayesian
personalized ranking (BPR) loss to make the preference score of positive
items higher than negative items.

• NGCF [23]. This is a graph-based recommendation method, which incor-
porates the second-order neighbors.

1 https://grouplens.org/datasets/movielens/
2 https://www.kaggle.com/retailrocket/ecommerce-dataset
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Table 2. Performance comparison of all compared methods on three datasets. The
best results are bolded and the best results of baselines are underlined.* indicates the
significance level p-value<0.01 compared with the best baseline.

Dataset Metric POP BPRMF NGCF LightGCN SGL GCARec Improve.

MovieLens-1M

Recall@2 0.0212 0.0404 0.0420 0.0452 0.0487 0.0517* +6.16%
NDCG@2 0.1540 0.2585 0.2663 0.2796 0.2938 0.3080* +4.83%
Recall@6 0.0518 0.0989 0.1004 0.1104 0.1170 0.1238* +5.81%
NDCG@6 0.1418 0.2358 0.2422 0.2565 0.2675 0.2799* +4.64%
Recall@10 0.0781 0.1446 0.1464 0.1587 0.1689 0.1772* +6.43%
NDCG@10 0.1388 0.2310 0.2342 0.2520 0.2600 0.2711* +3.17%

Retailrocket

Recall@2 0.0018 0.0210 0.0471 0.0650 0.0782 0.0861* +10.10%
NDCG@2 0.0017 0.0393 0.0442 0.0600 0.0732 0.0800* +9.29%
Recall@6 0.0050 0.0631 0.0635 0.1352 0.1616 0.1742* +7.78%
NDCG@6 0.0031 0.0615 0.0635 0.0908 0.1103 0.1182* +7.16%
Recall@10 0.0071 0.1253 0.1277 0.1830 0.2131 0.2272* +6.63%
NDCG@10 0.0038 0.0730 0.0754 0.1056 0.1288 0.1358* +5.43%

Yelp2018

Recall@2 0.0026 0.0099 0.0105 0.0130 0.0150 0.0158* +5.33%
NDCG@2 0.0112 0.0463 0.0512 0.0620 0.0707 0.0742* +4.95%
Recall@6 0.0063 0.0245 0.0256 0.0318 0.0366 0.0377* +3.01%
NDCG@6 0.0104 0.0413 0.0444 0.0545 0.0622 0.0645* +3.70%
Recall@10 0.0095 0.0374 0.0383 0.4660 0.0535 0.0548* +2.43%
NDCG@10 0.0109 0.0439 0.0465 0.0564 0.0647 0.0665* +2.78%

• LightGCN [10]. This is a graph-based recommendation method, which sim-
plifies the design of GCN. It discards the feature transformation and nonlin-
ear activation in GCN and only uses the neighbor aggregation.

• SGL [25].This is a state-of-the-art graph-based recommendation method us-
ing graph contrastive learning. It designs three data augmentation methods,
including node dropout, edge dropout and random walk. In our experiments,
we adopt the edge dropout.

Parameter settings All models are trained from scratch and optimized by
the Adam optimizer. The learning rate is fixed to 0.001 and the batch size is
1024. Parameters are initialized by Xavier initializer [6]. The early stopping
strategy is adopted, i.e., models are stopped if the Recall@10 on the validation
data does not increase for 50 consecutive epochs. The embedding size is fixed
to 64 for all models. For NGCF3, LightGCN4 and SGL5, we use the imple-
mentation provided by their authors on Github. For all baselines, we tune the
parameters and report the best performance. We tune λ1, λ2, τ and p within the
ranges of {0, 0.1, 0.2, · · · , 0.5}, {0.005, 0.01, 0.05, 0.1, 0.5, 1.0}, {0.1, 0.2, 0.5, 1.0}
and {0, 0.1, 0.2, · · · , 0.5}, respectively. The temperature τ1 in Gumbel Softmax

3 https://github.com/xiangwang1223/neural_graph_collaborative_filtering
4 https://github.com/kuandeng/LightGCN
5 https://github.com/wujcan/SGL
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Fig. 2. Performance comparison over different user groups.

is initialized to 10. Following [11], we adopt the following annealing schedule:

τ1 ← max(0.3, exp(−rt)), (11)

where t is the global training step. r is the decay rate and set to 10−4. In addition,
τ1 is updated every 500 batches. The code is released at https://github.com/my-
jing/GCARec.

4.2 Performance Comparison (RQ1)

The performance comparison of our proposed GCARec and compared methods
on three datasets is shown in Table 2. From this, we can find that: (1) Graph-
based methods achieve better performance compared with conventional meth-
ods, i.e., POP and BPR. This shows that incorporating the high-order neighbors
helps to improve recommendation performance. LightGCN outperforms NGCF
on all datasets, demonstrating the effectiveness of removing the feature trans-
formation and nonlinear activation. (2) SGL and GCARec consistently perform
better than other baselines, which shows the effectiveness of graph contrastive
learning. (3) Overall, GCARec consistently outperforms other baselines on all
datasets. Compared with SGL, it shows the effectiveness of the adaptive data
augmentation than the uniform dropout.

4.3 Further Study of GCARec

In this section, we first study the benefits of GCARec from two aspects: (1) data
sparsity and (2) robustness to noises. Then, we investigate the effect of hyperpa-
rameters including τ , λ1 and p. Due to the space limitation, we only report the
results on MovieLens-1M and Retailrocket, while having similar observations in
Yelp2018.

Effect of Data sparsity (RQ2). To verify the effectiveness of GCARec to
solve the data sparsity problem, we divide users into five groups according to
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their interaction numbers and make the total number of interactions in each
group the same. The larger the GroupID, the larger the average number of
user interactions, i.e., the lower the sparsity level. Figure 2 shows the results of
Recall@10 on these five groups. From it, we can see that our GCARec consis-
tently outperforms LightGCN and SGL, showing its effectiveness in solving the
problem of data sparsity. In addition, as the sparse lever increases, the perfor-
mance improvement from GCARec increases. This shows that the adaptive data
augmentation scheme facilitates GCARec to make recommendations on sparse
data.

Robustness to Noisy Interactions(RQ2). To further verify the robustness
of GCARec against noisy interactions, we add 5%, 10%, 15% and 20% adversar-
ial examples (negative interactions) to the training set. The testing set is kept
unchanged. The results are shown in Figure 3. We can observe that adding noise
data degrades the performance of all models, but the degradation of the perfor-
mance of GCARec is smaller than that of GCARec and LightGCN. Moreover,
the larger the ratio of noise data, the larger the performance degradation gap
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between GCARec and LightGCN. This shows that adaptive data augmentation
schemes can identify inherent patterns in the graph structure more effectively.

Parameter Sensitivity Analysis (RQ3). There are three important hyper-
parameters used in GCARec: (1) τ defined in Eq. 7 and Eq. 8; (2) p which
determines the generation of graph views; (3) λ1 which controls the strength
of contrastive learning loss. To analyze the parameter sensitivity of GCARec,
we select representative values for them. When investigating the effect of τ , we
fix p = 0.4, λ = 0.01 on MovieLens-1M and p = 0.2, λ = 0.1 on Retailrocket.
When investigating the effect of p, we fix λ = 0.01 on MovieLens-1M, λ = 0.1 on
Retailrocket, τ = 0.2 on both datasets. When investigating the effect of λ1, the
settings of p and τ are as the same as those in the previous cases. The results
are shown in Figure 4, Figure 5 and Figure 6.

From Figure 4, we can observe that GCARec is sensitive to τ . Too large (e.g.,
1.0) or too small a value (e.g., 0.1) of τ will reduce the performance of the model.
This is consistent with the experimental results in [25]. From Figure 5, it can
be found that the performance of GCARec is relatively stable when p is not too
large. Therefore, overall, our model is not sensitive to p. When p > 0.9, almost all
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edges of the graph will be dropped, resulting in isolated nodes in the augmented
graph views. In this case, it is difficult to aggregate useful information from
neighbors. As a result, the representations learned in generated views are not
sufficiently distinctive, and this will make it difficult to optimize the contrastive
learning objective. From Figure 6, it can be seen that GCARec is sensitive to λ1.
We need to choose λ1 carefully for different datasets. Moreover, a small value of
λ1 can lead to desirable performance, while a too large value of λ1 can lead to
huge performance degradation.

5 Related Work

In this section, we summarize the related works in two research lines: graph-
based recommendation and self-supervised learning in recommender systems.

5.1 Graph-based Recommendation

Graph neural networks (GNNs) have gained considerable attention in recom-
mender systems due to their effectiveness in handling structural data and explor-
ing structural information. In particular, GCN, which propagates user and item
embedding over the user-item interaction graph, has driven numerous graph-
based recommendation models, such as NGCF [23] and LightGCN [10]. Re-
cently, attention mechanisms are introduced into GCN-based recommendation
models [4], which learn different weights to different neighbors, to model the im-
portance of the different neighbors to represent the node. In addition to models
that only utilize the user-item interaction graph, some graph-based recommen-
dation models use other graphs like DHCN [29] over the session-based graph and
DiffNet [26] over the social network. Knowledge graph has also attracted a surge
of attention recently [22].

All of these works focus on supervised settings for model training. However,
supervised learning relies heavily on expensive labeled data, making them usually
suffer from the problem of sparse supervision signal and noisy interactions. Our
work explores graph contrastive learning for solving these problems.

5.2 Self-supervised Learning in Recommender Systems

Self-supervised learning [14] is a new paradigm to learn prior knowledge from
unlabeled data. It was firstly used in the field of computer vision [3, 9, 35] and
natural language processing [5, 12] for tasks like image classification and text
classification. Inspired by the success of these works, SSL has been applied in
graph representation learning recently [8, 16, 18, 21]. In this line of research,
graph contrastive learning is the dominant method, which maximizes agreement
between multiple views that are generated from the raw graph through data
augmentation.
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Inspired by the success of graph contrastive learning, several works apply
self-supervised learning in recommendation. S3-Rec [36] proposes four optimiza-
tion objectives to learn attributes, item, subsequence and subsequence correla-
tions. DNN-SSL [31] adopts a two-tower DNN architecture using uniform fea-
ture masking and dropout. SGL [25] utilizes uniform node/edge dropout and
random walk on user-item interaction graph and applies contrastive learning to
the graph-based recommendation. NCL [13] incorporates structural neighbors
and semantic neighbors into contrastive pairs. It should be noted that our re-
search focus is different from that of NCL. NCL focuses on sampling strategies,
while we focus on data augmentation schemes. They are separate components
of contrastive learning. In addition, some studies apply self-supervised learning
in other recommendation scenarios such as social recommendation [33].

In this work, we focus on applying graph contrastive learning in the graph-
based recommendation method. Compared with SGL, we propose an adaptive
and flexible data augmentation scheme that tends to keep the important struc-
tures and perturb possibly unimportant edges in the graph. This adaptive aug-
mentation is helpful for the model to preserve the fundamental structure pattern
in the graph.

6 Conclusion and Future Work

In this work, we propose a graph contrastive learning for recommendation with
adaptive data augmentation. In particular, we propose a learnable and adap-
tive data augmentation scheme, which tends to retain the important structures
and perturb possibly unimportant edges in the user-item interaction graph while
generaling easily to other graph-based recommendation. To make the data aug-
mentation scheme learnable, we design it based on the neural network. In specific,
we first identify the importance of each edge based on the attention mechanism
and calculate the preserving probability based on the importance. Then, edges
are sampled according to the importance with a Gumbel Softmax. Extensive ex-
periments on three public datasets demonstrate the effectiveness of our proposed
GCARec.

In future work, we will explore other scenarios such as sequential recommen-
dation to apply our work. Besides, we will consider the other part of contrastive
learning, i.e., neighbor sampling, to improve the recommendation performance.
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