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Abstract. Constrained clustering that integrates knowledge in the form
of constraints in a clustering process has been studied for more than
two decades. Popular clustering algorithms such as K-means, spectral
clustering and recent deep clustering already have their constrained
versions, but they usually lack of expressiveness in the form of constraints.
In this paper we consider prior knowledge expressing relations between
some data points and their assignments to clusters in propositional
logic and we show how a deep clustering framework can be extended
to integrate this knowledge. To achieve this, we define an expert loss
based on the weighted models of the logical formulas; the weights depend
on the soft assignment of points to clusters dynamically computed by
the deep learner. This loss is integrated in the deep clustering method.
We show how it can be computed efficiently using Weighted Model
Counting and decomposition techniques. This method has the advantages
of both integrating general knowledge and being independent of the
neural architecture. Indeed, we have integrated the expert loss into two
well-known deep clustering algorithms (IDEC and SCAN). Experiments
have been conducted to compare our systems IDEC-LK and SCAN-LK
to state-of-the-art methods for pairwise and triplet constraints in terms
of computational cost, clustering quality and constraint satisfaction. We
show that IDEC-LK can achieve comparable results with these systems,
which are tailored for these specific constraints. To show the flexibility
of our approach to learn from high-level domain constraints, we have
integrated implication constraints, and a new constraint, called span-
limited constraint that limits the number of clusters a set of points can
belong to. Some experiments are also performed showing that constraints
on some points can be extrapolated to other similar points.

Keywords: Deep Clustering · Knowledge Integration · Constrained
Clustering.

1 Introduction

Clustering is an important task in Data Mining, which aims at partitioning
data instances into groups (clusters) such that instances in the same cluster
are similar and instances in different clusters are dissimilar. Prior knowledge
has been integrated into the clustering process by means of constraints, leading
to a new field called Constrained Clustering. Constraints can be instance-level
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constraints, mainly must-link, resp. cannot-link constraints, which state that two
instances must be, resp. cannot be in the same cluster. Constraints can also specify
requirements that the clusters must satisfy. Many works have been developed to
integrate constraints: by enforcing constraints [25], by balancing clustering quality
and constraint satisfaction [8], or by learning a metric taking into account the
constraints [28,3]. Most clustering approaches are based on a distance between
objects leading to the difficulty of choosing the right representation of data. The
emergence of deep learning and its ability to learn new data representation in
a lower dimension space have led to deep clustering approaches [26,12,6]. The
integration of constraints into deep clustering has been studied in [14,30] but
most of the work focused only on instance-level constraints. To the best of our
knowledge few work consider the integration of different types of constraints,
such as [30], where a loss is defined for each type of constraints and the loss
criterion is therefore a combination of the loss for each kind of constraints. Such
a framework has two drawbacks: the integration of a new family of constraints
requires the design of the corresponding loss, and defining the global loss needs
to set the parameters to combine the different losses for the constraints.

In our work, we take another point of view which is to define a general
constraint satisfaction score. Then, an expert loss, based on this constraint satis-
faction score, is introduced into a deep clustering framework for backpropagation.
We show that the constraint satisfaction score can be computed through its
transformation into a Weighted Model Counting problem [21]. Based on logical
formulas, our approach has the advantage of being flexible, so that different types
of knowledge can be integrated without designing specific losses. The framework
is summarized in Figure 1.

Fig. 1. Overview of our DC-LK framework. The constrained clustering problem is
formulated in a logical form PC. A deep clustering framework is used to compute a
soft assignment S of data points X to clusters. The constrained score is computed
based on S and the constraint problem PC and is used to define the expert loss. It is
backpropagated to the deep clustering network.

Our contributions are:
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– We propose a logical formulation of the constrained clustering problem and a
unified definition of expert loss to integrate constraints into a deep clustering
framework.

– Given a constraint set, the expert loss is based on a constraint satisfaction
score, defined thanks to the notion of semantic models of a logical formulae,
thus making it independent from the type of constraints. Moreover, this can
be computed by Weighted Model Counting.

– We show that our framework can be integrated into different clustering
frameworks by considering two well-known deep clustering methods, namely
IDEC and SCAN, and extending them to integrate knowledge.

– Experiments on five datasets with randomly generated constraint sets show
that our framework is competitive with state-of-the-art deep constrained
clustering systems on pairwise and triplet constraints.

– To illustrate the genericity of our approach, we introduce a new type of
constraints, called a span-limited constraint.

– We analyze the efficiency of our framework both on runtime and on constraint
satisfaction for complex constraints.

– We show that satisfying constraints when training the model allows to improve
the satisfaction of unseen constraints on test data.

The rest of the paper is organized as follows. Related work is reviewed in
Section 2. The formulation of the constrained clustering problem and of the expert
loss is presented in Section 3. Section 4 presents knowledge integration into two
deep clustering frameworks IDEC and SCAN using the expert loss. Section 5
describes the experiments and analyzes the results and Section 6 concludes and
discusses future work.

2 Related Work

Constrained clustering. Many approaches have now been developed for con-
strained clustering. Most of them focus on pairwise (must-link/cannot-link)
constraints and the early work consisted in adapting classic methods such as
k-means or spectral clustering to enforce them [5,18]. Other constraints have
been introduced as for instance cardinality constraints [22]. Nevertheless all these
approaches are usually designed for one kind of constraints whereas the expert
knowledge is often multiform including both pairwise constraints, cardinality
constraints and much more complex constraints as given for instance in [9], thus
requiring new frameworks for constrained clustering. It has been shown that
declarative frameworks such as ILP [1,19], SAT [11] or Constraint Program-
ming [8] allow to integrate a large variety of constraints, while satisfying all the
constraints.

Deep clustering. Recently, deep clustering approaches have been extensively
proposed following the success of deep neural networks in supervised learning.
Several research directions have been considered: adapting to clustering well-
known supervised learning architectures such as convolutional neural network
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[6], changing data representation through an autoencoder and then enforcing
the clustering structure on the latent space [26,12]. Another approach is to mine
the nearest neighbor based on pretext features (an embedding for a specific task
such as inpainting patches, predicting noise, instance discrimination). It helps
to promote similar predictions of the neighbors, thus, improving the clustering
quality [23]. More ambitious approaches have been proposed as for instance
generative models that both cluster data and generate samples for a given
clustering [15,20], but they usually suffer from relatively low performances.

Deep learning with knowledge. Knowledge integration can be seen as a general-
ization of semi-supervised learning. While label information is easy to represent,
expert knowledge can be various and thus expressed in many different ways.
To tackle this problem, several work [27,29] have studied the integration of
knowledge expressed in logic in Deep Supervised Learning: knowledge is then
enforced on each individual input instance. [29] gives a precise formulation of
the loss regardless of the logical form (whether it is represented in CNF, DNF
or in a arbitrary form) at the price of a high computational complexity. [27]
learns a knowledge loss (using a logic graph embedder) for a specific logical form
(d-DNNF), which is much faster but requires a substantial amount of constraints.

In a clustering setting, even if each point receives a label, the output on all
the data is expected to represent a partition (or another structure). This means
that the constraints are not put on the output of a single point, but they can
link several outputs, which is much more challenging.

[14] integrates triplet constraints in a deep clustering framework. DCC [30]
has proposed a deep clustering framework, which can integrate several types
of constraints such as pairwise, triplet or cardinality. However for each type of
constraint, a specific loss is designed. This differs from our approach, where the
same definition of expert loss is given for any type of constraints, as soon as the
constraint can be expressed using a logical formulation.

3 Expert loss for knowledge integration

3.1 Expert knowledge representation

In this paper, we are interested in integrating knowledge in a deep clustering
system. We suppose that we have n points x1, . . . , xn and that we want to learn
a partition of them into k clusters. We also have expert knowledge on the desired
partition, which is expressed by expert constraints and written in propositional
logic. Let βij , i ∈ {1, ..., n}, j ∈ {1, ..., k} be formulas, such that βij is True when
point i is assigned to cluster j. Using β, the predicate meaning that two points
u, v are in the same cluster can be expressed by

Together(u, v)
def
= ∧i∈[1,k]((βui ∧ βvi) ∨ (¬βui ∧ ¬βvi))

and the predicate meaning that two points i, j are in different clusters:

Apart(u, v)
def
= ∧i∈[1,k](¬βui ∨ ¬βvi)
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The constraints we consider are:

– must-link (cannot-link) constraints stating that two points u, v must be (resp.
cannot be) in the same cluster are expressed by the statement Together(u, v)
(resp. Apart(u, v)).

– triplet constraints (a, p, n) expressing that a is closer to p than to n:

Together(a, n) =⇒ Together(a, p)

– more complex implication constraints, as for instance:

Together(a, b)∧Together(c, d)∧Apart(a, e)⇒ Together(e, f)∧Apart(c, e)

– a new type of constraints, called span-limited constraint that expresses that
a given group I of points cannot be dispatched in more than a given number
m of clusters.

∨J⊂{1,...,k},|J|=m ∧i∈I ∨j∈Jβij

3.2 Constraint-satisfaction score

We consider a deep clustering algorithm that produces a soft assignment S of
points to clusters, where Sij denotes the soft assignment value of point i to
cluster j. We aim at integrating in this system a new loss, called expert loss
that takes into account the satisfaction of constraints. This loss has to be generic
so as to integrate different kinds of constraints, this explains why we rely on
propositional logic. This expert loss is based on the weighted models of the logical
formulas, where the weights depend on the soft assignment of points to clusters
dynamically computed by the deep learner.

Given a partition p and the soft assignment matrix S, we define the partition
score between the partition and S by:

Score(p, S) =
∏

i∈[1,n]

Sipi
(1)

where pi denotes the assignment of i in the partition p.
Given a set of constraints C, we denote by PC the set of partitions that satisfy

all the constraints in C. To measure how likely the soft assignment S is with
respect to the constraint set C, we define a constraint-satisfaction score as follows:

Score(C, S) =
∑
p∈PC

Score(p, S) (2)

To illustrate this, let us suppose that we have only 2 points and 2 clusters.
Then the score of the partition that assigns each point to cluster 1 is S11 ∗ S21.
If we add a must-link constraint betwwen the two points, then two partitions
satisfy this constraint, and Score(C, S) = S11 ∗ S21 + S12 ∗ S22.
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3.3 Constraint-satisfaction score computed by a WMC problem

The constraint-satisfaction score (2) can be computed directly. However, enumer-
ating all the partitions in PC is expensive (O(kn)). We show that this problem
can be converted into a Weighted Model Counting problem with an appropriate
choice of formulas and of weights.

Let us recall that if α is a logical formula defined on a set of variables Y,
where each variable Yi is associated with a weight wi, then the weighted model
counting (WMC) of α is defined by [21]:

WMC(α,w) =
∑
y|=α

∏
i:y|=Yi

wi
∏

i:y|=¬Yi

(1− wi) (3)

In (3), the weights wi and (1−wi) can occur several times. Sentential Decision
Diagrams (SDD) [10] can be used for a more efficient representation to compress
the computation into an arithmetic tree.

Theorem 1. Let B be a set of logical variables {Bij : i ∈ [1, n], j ∈ [1, k]}. We
define βij as follows:

βij
def
= Bij ∧

∧
t∈[1,j−1] ¬Bit for all j ∈ [1, k − 1],

βik
def
=
∧
t∈[1,k−1] ¬Bit

(4)

Let wB the weight for the variables defined by:

wB(Bij) =

{
Sij/(1−

∑
t∈[1,j−1] Sit) if

∑
t∈[1,j−1] Sit < 1

1 otherwise
(5)

Given a set of constraints C expressed using β. Then we have:

Score(C, S) =WMC(β ∧ C, wB) (6)

Theorem 2. With the definition of β by (4), the formula stating that each point
belongs to a single cluster is expressed by (7) and is a tautology, i.e. (7) ≡ >.∧

i

(βi1 ∧ . . . ∧ βik
∧

j,l∈[1,k]:j 6=l

(¬βij ∨ ¬βil)) (7)

In (4), βij true means the point i is assigned to cluster j and not to any
other cluster j′ such that j′ < j. In Theorem 2, the fact that (7) is a tautology
means using β we ensure the result is a partition, which is required in a clustering
problem. The proofs of the two theorems are given in the supplementary material1.

Translation of expert constraints in terms of B The constraints are expressed
in terms of β. For sake of efficiency, expert knowledge is expressed with B. For
instance, a cannot-link constraint is written:
∧i∈[1,k](¬βui ∨ ¬βvi) ⇐⇒ ∧i∈[1,k]

[
¬Bui ∨ ¬Bvi ∨t∈[1,i−1] (But ∨Bvi)

]
1 https://github.com/dung321046/Knowledge-Integration-in-Deep-Clustering
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3.4 Decomposition of the problem

The score that we have defined in (2) takes into account all the constraints of C
together in a single loss term. In order to have a greater impact when learning
but also for complexity reasons, the whole problem is decomposed into a set of
sub-problems c, one for each expert constraint c ∈ C. Given a constraint c ∈ C,
we define Score(c, S) in the same way as in (2):

Score(c, S) =
∑
p∈Pc

Score(p, S)

where Pc is the set of partitions satisfying c, and we define Score(C, S) by:

Score(C, S) =
∏
c∈C

Score(c, S) (8)

3.5 Expert loss

The expert loss Lexpert is defined as

Lexpert = − logScore(C, S) = −
∑
c∈C

logScore(c, S) (9)

4 Integrating knowledge in deep clustering frameworks

We present here our framework called DC-LK (Deep Clustering with Logical
Knowledge), whose general scheme is shown in Figure 1. Given X a set of n points,
k a number of clusters and C a set of constraints expressing expert knowledge,
it computes a cluster assignment p = {p1, p2, ..., pn}, pi ∈ {1, . . . , k}, expressing
that point i belongs to cluster pi, guided by the expert constraints. First, expert
constraints are formulated in logic and represented as SDD structures. Data X
is processed through a deep clustering network thus computing a soft cluster
assignment S = (Sij) that represents the likelihood of point i to belong to
cluster j. The expert constraint loss depending on S is computed by Weight
Model Counting and this loss is integrated with the deep learner loss for back-
propagation. Any deep clustering learner [12,4,23] that computes a soft cluster
assignment S could be used.

We consider two methods for integrating the expert loss in a deep clustering
learner. Since at each epoch there are two objectives, one is for the clustering
task, the other one is to satisfy the constraint, we propose two main methods to
combine them: separated back-propagation and joined back-propagation. The
separated back-propagation calculates and backpropagates the clustering loss
(which depending on the architecture can be composed of several losses) and the
expert loss separately. In contrast, the joined method combines all the losses into
a weighted sum for back-propagation.

In this work, we have integrated our expert loss into two deep clustering
frameworks IDEC [12] and SCAN [23].
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4.1 IDEC-LK

IDEC The neural structure of IDEC is an autoencoder, which allows to learn
new representation of data Z = encode(X). K-means is applied to find the cluster
centers (µ1, . . . , µk) in the embedding space. The soft cluster assignments of all
points (to all clusters) is computed based on Student’s t-distribution:

Sij =
(1+ ‖ zi − µj ‖2)−1∑
j′(1+ ‖ zi − µj′ ‖2)−1

(10)

For learning, IDEC uses the clustering loss and the reconstruction loss. The
reconstruction loss is the mean square distance between the original data X and
the reconstructed output X̃ = decode(encode(X)).

Lrecon =

n∑
i=1

‖xi − x̂i‖2 (11)

The clustering loss is based on the Kullback–Leibler difference between the
soft-assignment Sij and an "ideal" target assignment P , which amplifies the
separation between the clusters, defined by: Pij = (S2

ij/fj)/(
∑
j′ S

2
ij′/fj′) where

fj =
∑n
i=1 Sij , j = 1, . . . , k are the soft cluster frequencies. Then, the clustering

loss is:

Lclustering =
∑
i

∑
j

Pij log
Pij
Sij

(12)

Expert integration We have implemented separated back-propagation for IDEC-
LK, in order for constraints to have a stronger impact on learning. It may be
less efficient in run time, since forward and backward are done twice, but this is
not a problem, given the simple architecture of IDEC. Moreover, for efficiency
reasons, we use mini-batch learning for constraint sets. So, the loss of IDEC-LK
model is defined as:

L1 = λr × Lrecon + λc × Lclustering
L2 = λe × Lexpert

(13)

where λr, λc and λe are coefficients controlling each loss, Lrecon is the reconstruc-
tion loss for the autoencoder, Lclustering is the IDEC clustering loss based on KL
divergence, Lexpert is our expert loss. The detailed algorithm is given in 1.

4.2 SCAN-LK

SCAN The neural structure of SCAN is a convolutional neural network (CNN),
which is pretrained by SimCLR[7] using contrastive learning. With a suitable
K value, it is observed that the K nearest neighbors of a point in the pretext
embedding are instances of the same cluster. Let us denote Si ∈ Rk[0,1] the soft
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Algorithm 1 Training process of IDEC-LK
Input: Input data: X, Number of clusters: k, Constraint set: C, Maximum

iterations: MaxIter; Coefficients: λr, λe, λc
Output: Cluster assignment p
1: Initialize parameters with pre-trained autoencoder
2: Initialize µ with K-means on the representations learned by pre-trained

autoencoder
3: Generate T - a set of SDD structures from all c ∈ C
4: for iter := 1 to MaxIter do
5: for batch := 1 to NumConstrainedBatches do
6: Xbatch = {x : x ∈ Cbatch}
7: Calculate Zbatch = encode(Xbatch)
8: Forward distribution S via t-distribution with Z, µ; (Eq. (10)) from

the set of points x ∈ Cbatch
9: Feed S to SDD structures T to calculate Lbatchexpert

10: Backpropagate L2 and update parameters
11: end for
12: for batch := 1 to BatchAllInputs do
13: Calculate Zbatch = encode(Xbatch)
14: Forward distribution Sbatch via t-distribution with Zbatch, µ (Eq. (10))
15: Calculate target distribution Pbatch
16: Feed Zbatch to the decoder to obtain the reconstruction X̃batch

17: Calculate Lbatchrecon, Lbatchclustering, (Eq. (11), (12), respectively)
18: Backpropagate L1 and update parameters
19: end for
20: end for
21: p = {argmaxj∈[1,k]Qij : i ∈ [1, n]}
22: Return p

assignment vector of xi and Nxi
the neighborhood of xi. The loss function is

defined by:

L = λnn ×
1

n

n∑
i=1

∑
xj∈Nxi

log〈Si · Sj〉+ λentropy ×
k∑
h=1

S∗h logS
∗
h (14)

where λnn, λentropy are the coefficients, 〈·〉 is the dot product operator, S∗h =
1
n

∑n
i=1 Sih. The first term enforces the similarity in predictions of xi with its

neighbors while the second term enforces the even distribution of points to all k
clusters.

Expert integration In this case, we chose joined back-propagation because forward
and backward operations are too expensive in SCAN architecture. This leads to a
more complicated handling of constraints involved in batches (which are randomly
generated in SCAN architecture). For each batch, the algorithm searches for
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expert constraints containing points in the batch and completes the batch by
the points involved in these constraints. To limit the size of the batch, for each
point at most one constraint involving it is chosen at random. The total loss of
SCAN-LK model is defined as:

L = λnn × Lnearest + λentropy × Lentropy + λexpert × Lexpert (15)

where λnn, λentropy and λexpert are coefficients controlling each loss. When the
stopping condition is reached (for instance the change of the loss is under a given
threshold), a final assignment is computed for all i by taking pi = argmaxj Sij .

Algorithm 2 Training process of SCAN-LK
Input: Input data: X, Number of clusters: k, Constraint set: C, Maximum

iterations: MaxIter; Coefficients: λnn, λentropy, λexpert
Output: Cluster assignment p
1: Initialize parameters with SimCLR
2: Generate T - a set of SDD structures from all c ∈ C
3: for iter := 1 to MaxIter do
4: for batch := 1 to BatchAllInputs do
5: Load Xbatch - points in the batch
6: Load Cbatch - expert constraints containing Xbatch and Xconstrained

batch -
all points in Cbatch

7: Forward Xconstrained
batch to obtain Sconstrainedbatch

8: Feed Sconstrainedbatch to SDD structures T to calculate Lbatchexpert

9: Calculate Lbatchnearest, Lbatchentropy

10: Backpropagate L = λnn × Lbatchnearest + λentropy × Lbatchentropy + λexpert ×
Lbatchexpert and update parameters

11: end for
12: end for
13: Forward all data X to obtain S.
14: p = {argmaxj∈[1,k] Sij : i ∈ [1, n]}
15: Return p

5 Experiments

Experiments are conducted to address the following aims: (i) to evaluate IDEC-
LK and SCAN-LK on clustering quality and to compare them with other systems
on pairwise and triplet constraints; (ii) to evaluate our system on constraints
that have never been used in deep clustering experiments, namely implication
constraints and span-limited constraints. Our experiment could be reproduced
using the avaiable source2.
2 https://github.com/dung321046/Knowledge-Integration-in-Deep-Clustering
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5.1 Experiment Settings

Datasets. We use five datasets, which are challenging and also used in many
recent deep constrained clustering methods [14,30]. MNIST contains 70,000
handwritten single-digits from 10 classes. Among them 60,000 images are used
to perform clustering, the remaining ones are used to evaluate the interest of
span-limited constraints. Similarly, STL10 has 5,000 color images for clustering
and expert learning and 8,000 images for testing. Fashion has 60,000 images
associated to a label from 10 classes. CIFAR10 consists of 50,000 color images
in 10 classes. Reuters contains around 810,000 English news stories labeled with
a category tree [17].

Experiment setting. For all the experiments, we first run SDAE[24] and SimCLR[7]
for learning a new representation space. The same pre-trained model is given as
input to the clustering algorithms. We compare our system to IDEC [12] (un-
constrained), PCK-means [2] (pairwise constraints), MPCK-means [3] (pairwise
constraints), and DCC [30] (pairwise and triplet constraints).

No supervised information is used for setting the parameters, therefore for
SDAE, IDEC, SCAN and DCC, we use the default parameters. Our hyper-
parameters are detailed in the supplementary. We put two stopping conditions:
either when the maximum number of epochs is reached or when the percentage
of assignments that differ from the previous epoch is less than 0.01%.

Experiments are run on a 2.6 GHz Intel Core i7 processor and a NVIDIA
GeForce RTX 2060 graphics card.

5.2 Experiments and Analysis for Clustering quality

In this section, we study the impact of pairwise and triplet constraints on the
clustering quality. For all datasets, the true class of objects is available and we
use it to evaluate the accuracy of the clustering. We consider two measures:
Normalized Mutual Information (NMI) and clustering accuracy (ACC), with a
one-to-one mapping between clusters and labels, computed by the Hungarian
algorithm [16].

For testing the influence of pairwise constraints, we consider 4 numbers of
constraints (10, 100, 500, 1000). For each test case, we randomly generate five
sets of constraints, we run the system only once for each set of constraints and
we report the mean and the standard deviation in Table 1 and Table 2. We
do the same for triplet constraints (see Figure 2). All results are given in the
supplementary materials.

Pairwise constraints. In MNIST, Fashion and Reuters datasets, IDEC-LK has
competitive performances to the state-of-the-art methods. In terms of complexity,
the times to run each epoch of DCC and of IDEC-LK are quite the same. However,
the convergence of IDEC-LK is slower than for DCC (See Table 1).

In CIFAR10 and STL10, all the systems based on SDAE (IDEC, DCC, IDEC-
LK) have a poor performance. The performance of IDEC with CIFAR10 data is
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reported in the supplementary material. With 1000 pairwise constraints, SCAN-
LK helps to improve the clustering performance of CIFAR10 and STL10, with a
ratio of 3% and 6% respectively.

Table 1. Comparison on clustering quality with 1000 pairwise constraints. Green (blue)
numbers are for the best (second-best) values, respectively.

Data Models NMI ACC Time (s)
MNIST DCC 0.8689 ± 0.0008 0.8815 ± 0.0007 277 ± 9
MNIST MPCK-means 0.7589 ± 0.0171 0.7788 ± 0.0413 211 ± 3
MNIST PCK-means 0.7463 ± 0.0228 0.7698 ± 0.0543 32.97 ± 15.90
MNIST IDEC-LK 0.8680 ± 0.0017 0.8826 ± 0.0012 388 ± 27
Fashion DCC 0.6000 ± 0.0019 0.5241 ± 0.0039 140 ± 16
Fashion MPCK-means 0.5749 ± 0.0138 0.5312 ± 0.0292 205 ± 4
Fashion PCK-means 0.5714 ± 0.0212 0.5314 ± 0.0293 37.02 ± 13.19
Fashion IDEC-LK 0.6009 ± 0.0019 0.5230 ± 0.0034 358 ± 17
Reuters DCC 0.5655 ± 0.0086 0.7477 ± 0.0030 3.46 ± 0.41
Reuters MPCK-means 0.5262 ± 0.0330 0.7251 ± 0.0412 167 ± 2
Reuters PCK-means 0.5174 ± 0.0288 0.7343 ± 0.0377 14.80 ± 2.34
Reuters IDEC-LK 0.5927 ± 0.0105 0.7563 ± 0.0079 27.52 ± 9.88

Table 2. Comparison on clustering quality between the baselines and SCAN-LK with
1000 pairwise constraints.

Data Models NMI ACC #Unsat
CIFAR10 SCAN 68.30 79.39 183 ± 17
CIFAR10 SCAN-LK 71.81 ± 0.19 82.11 ± 0.27 55 ± 12.77

STL10 SCAN 65.11 75.58 194.67 ± 2.52
STL10 SCAN-LK 72.48 ± 0.79 83.57 ± 0.95 4.33 ± 0.58

Triplet constraints. The triplet constraints have less impact on the clustering
quality than the pairwise ones because they convey conditional information on
the points. Relying on a Kolmogorov-Smirnov test with p = 0.05 [13], IDEC-LK
has better clustering quality in Reuters while it has similar performances with
DCC in the other datasets.

5.3 Experiments and Analysis for Constraint Satisfaction

In this section, we aim at illustrating two points: first our method can leverage
complex domain knowledge and second, it can learn from it, that is, it does
not only aim at satisfying the constraints but it is also able to satisfy unseen
constraints of the same type. The second point is crucial because acquiring
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Fig. 2. The clustering performances with triplet constraints on Fashion (left) and
Reuters (right) dataset

constraints is expensive, and the set of training constraints is only a minute
fraction of all possible interpretations of the domain knowledge.

Implication Constraint. Introduced in Section 3.1, the first part (if-clause) is
denoted as P and the second part (then-clause) as Q. To study the interest of
such constraints, we generate 5 sets of 100 constraints at random based on the
ground truth. For each constraint, the number of Together/Apart constraints
in P is 3, the number of Together/Apart in Q is 1 and we define the notion of
P-Q distribution: around 20% constraints satisfy P = ⊥, the remaining 80% is
(P = >, Q = >).

Table 3. Comparison between IDEC and IDEC-LK on the satisfaction of implication
constraints.

Data Models Score #Unsat
MNIST IDEC 0.8777 ± 0.0118 13.6 ± 1.5
MNIST IDEC-LK 0.8856 ± 0.0130 12.4 ± 1.7
Fashion IDEC 0.7620 ± 0.0442 24.8 ± 4.6
Fashion IDEC-LK 0.7743 ± 0.0449 23.2 ± 4.5
Reuters IDEC 0.8290 ± 0.0376 17.8 ± 4.7
Reuters IDEC-LK 0.8357 ± 0.0381 17.0 ± 5.0

In Table 3, IDEC-LK shows the improvement of the average constrained
scores, denoted by Score, compared to the value of IDEC. In all three datasets,
the constraint satisfaction score has been improved, and the number of unsatisfied
constrained is reduced.
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Span-limited Constraint. In this experiment, we run IDEC-LK algorithm with
MNIST and SCAN-LK with STL10. We aim at testing the interest of span-limited
constraints that state that a group of points can be dispatched on a fixed number
of clusters. For generating such constraints for MNIST dataset, we have selected
four groups from the labels: G = {G(3, 9), G(6, 8), G(1, 7), G(2, 5)} (pairs of digits
that share some similar shapes) and stated that elements in each group must
be dispatched into two clusters. To create a group G(u, v), we have selected
randomly 100 images of either digit u or digit v . To test whether such constraints
have a true impact, we chose them so that a quarter of them have been assigned
to a wrong cluster by SDAE+K-Means (without constraints). For generating
span-limited constraints for STL10 dataset, we have applied the same process
with G = {G(airplane, bird), G(cat, dog), G(deer, horse)} and we have randomly
selected 1,000 images for each group. Because the matching between labels and
clusters is unknown, for each group G(u, v), we set the two clusters to be the
ones with the highest number of points in G(u, v).

Figure 3 shows the changes in satisfaction of span-limited constraints. A
quarter of the images in each spanning group initially does not belong to the two
major clusters obtained with IDEC. After training with IDEC-LK with all points
in all the four groups, the points that were already in these clusters remain, while
the other points have changed to belong to one of the two clusters.

Fig. 3. Training results with span-limited constraints of cluster 6 and 8 in MNIST.
IDEC (Without) vs IDEC-LK (With)

Let us notice that the model is learned using constraints on the train set. In
order to analyse the capacity of generalizing constraints, we study the ability of
the model to satisfy constraints on the test set. Figure 4 presents the satisfaction
of span-limited constraints from a test set, which are unknown when training
the model: we consider two datasets MNIST (10, 000 test points, IDEC) and
STL10 (8, 000 test points, SCAN) and for each we compare the behavior of two
models, respectively learned without/with the constraints on the train set. All
data in the test set are neither used in the clustering process, nor in knowledge
integration. We can observe that the number of unsatisfied constraints in the test
set is reduced by 85.7% for MNIST and 46.79% for STL10.



Knowledge Integration in Deep Clustering 15

Fig. 4. Study on the effect of learning on constraints on test data: MNIST with IDEC-
LK and STL10 with SCAN-LK, span-limited constraints

6 Conclusion

Our work is the first proposal of a general framework for integrating knowledge in
constrained clustering problems. We propose an expert loss for integrating expert
constraints and we show how it can be computed through Weight Model Counting.
Relying on logic allows to express many kinds of constraints and we show the
flexibility and adaptability of our method by considering new constraints such
as implication constraints or span-limited constraints. This general framework
has been embedded in deep clustering systems such as IDEC and SCAN. In our
experiments, we obtain similar performance to other systems with well-known
constraint types, but we also show the ability to integrate new constraints and
even to generalize the constraints to unseen points. We plan to embed our proposal
in other deep clustering architectures to show the generality of our approach.

The main limitation of this work is the complexity for computing the SDD
trees, so that it prevents from incorporating cluster-level constraints or construct-
ing a single loss for the whole constraint set. So we aim at reducing complexity by
introducing new formulations or approximation schemes. However, let us notice
that SDD trees are computed only once at the beginning of the learning process.
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