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Abstract. Popular graph neural networks are shallow models, despite
the success of very deep architectures in other application domains of
deep learning. This reduces the modeling capacity and leaves models
unable to capture long-range relationships. The primary reason for the
shallow design results from over-smoothing, which leads node states to
become more similar with increased depth. We build on the close con-
nection between GNNs and PageRank, for which personalized PageR-
ank introduces the consideration of a personalization vector. Adopting
this idea, we propose the Personalized PageRank Graph Neural Net-
work (PPRGNN), which extends the graph convolutional network to an
infinite-depth model that has a chance to reset the neighbor aggregation
back to the initial state in each iteration. We introduce a nicely inter-
pretable tweak to the chance of resetting and prove the convergence of
our approach to a unique solution without placing any constraints, even
when taking infinitely many neighbor aggregations. As in personalized
PageRank, our result does not suffer from over-smoothing. While doing
so, time complexity remains linear while we keep memory complexity
constant, independently of the depth of the network, making it scale well
to large graphs. We empirically show the effectiveness of our approach
for various node and graph classification tasks. PPRGNN outperforms
comparable methods in almost all cases. !
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1 Introduction

Graph-structured data is found in many real-world applications ranging from
social networks [26] to biological structures [28]. Steadily growing amounts of
data lead to emerging solutions that can extract relevant information from these
data types. Tasks like providing recommendations [41], predicting the state of
traffic [8] or the classification of entire graphs into distinct categories [39] are
some of the tasks of research interest. Approaches based on deep learning have
found great success for grid-structured data, e.g., in image processing [20] and
natural language processing [34]. Graph Neural Networks (GNNs) [21] adopt

! Our code is available at: https://github.com/roth-andreas/pprgnn
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the ideas from convolutions in euclidean space for irregular non-euclidean do-
mains. These methods directly consider the graph structure when performing
convolution operations.

One of the challenges of GNNs is to capture long-range dependencies. Re-
cently popular methods use an aggregation scheme, in which & layers of graph
convolutions combine the information from k-hops around each node [21,35].
Several issues, most dominantly over-smoothing [24, 38] and memory consump-
tion [17,6,42] were found to prevent deep models, as in image processing [20].
Several recent efforts explore options to enable more layers and even formu-
late infinite-depth equations. However, previous work still only allows a limited
depth [30, 38] or places hard constraints on the parameters [16] or the architec-
ture [2].

As identified by [22], GNNs are closely related to PageRank [27], which in
its basic version only depends on the graph structure, not on the initial distri-
bution. Personalized PageRank [27] introduces a chance to reset PageRank to a
teleportation vector, allowing the result to depend not only on the graph struc-
ture but also on an initial distribution. We show how the idea of personalization
can be adopted to GNNs and propose the Personalized PageRank Graph Neu-
ral Network (PPRGNN), an infinitely deep GNN that adds a chance to reset
the neighbor aggregation back to the initial state. In order to prove the conver-
gence of PPRGNN to a unique solution when iterating infinitely many times,
we modify the chance of resetting to be dynamic based on the distance to the
root node. As in personalized PageRank, our approach does not suffer from over-
smoothing and the locality of node features around their root nodes is preserved.
Due to the large depths, far distant information still influences resulting node
representations.

In addition, we provide rich theoretical intuition for the success of our for-
mulation and our design choices. While the depth is theoretically always infinite,
the practically effective depth is adaptive and varies depending on the learned
parameters, the graph structure, and the observed features. We also provide
a way to control the convergence rate since different levels of localization are
effective for different types of graphs [1,15]. Furthermore, contrary to previous
infinite-depth approaches, we do not impose any constraints on parameters or the
model’s architecture. To allow scaling to large graphs despite the infinite depth,
we design an efficient gradient computation that remains constant in memory and
execution time. We validate our proposed approach against comparable meth-
ods on various inductive and transductive node and graph classification tasks.
Our approach outperforms related methods in almost all cases by considerable
margins, while most other approaches are within a competitive range only for
individual tasks. The experimental execution time is also improved compared to
previous infinite-depth approaches.

The rest of our work is structured as follows. Section 2 introduces our notation
and relevant basics in personalized PageRank and GNNs. We describe recent
related approaches in Section 3. Our method is detailed in Section 4, and a
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comprehensive evaluation is presented in Section 5. We discuss our results and
potential future directions in Section 6.

2 Preliminaries

We represent a graph G = (V, E) as the tuple of n nodes V' = {v1,v2,...,0,}
and a set of edges E between pairs of nodes. We construct an adjacency matrix
A € R™ "™ describing the connectivity between pairs of nodes from the F. Entries
a;; € A indicate the strength of an edge between nodes v; and vj, a zero-entry
indicates the absence of an edge. Our method assumes undirected edges, e.g.,
aj; = aj;, but it is straightforward to apply it to directed graphs. We use a
normalized version A = D~Y2AD~1/2 of the adjacency matrix, potentially
with self-loops. Each node vy, has a set of F features u;, € RY associated with
them. The feature matrix U € R"*¥ contains all nodes’ stacked feature vectors
uy. We define the node neighborhood N; = {vj|AZ-j > 0} as the set of all nodes
connected to v;.

2.1 Personalized PageRank

Our approach inherits basic concepts and intuition from personalized PageR-
ank [27], which we briefly describe here. PageRank [27] was originally introduced
to score the importance of webpages for web searches. In their work, webpages
represent individual nodes in a graph and links on these webpages are modeled
as directed edges between these nodes. The solution to PageRank is the fixed
point of the equation

r=Ar, (1)

with r € R™ being the dominant eigenvector of A. The vector r can be obtained
by power iteration with an arbitrary initial ro [27]. For an intuitive interpretation
of Eq. (1), we can interpret A as the stochastic transition matrix over the graph,
providing a connection to a random walk. Therefore the stationary probability
distribution induced by a random walk is the same as r in the limit [27]. This
also results in 7 only depending on the graph structure and not on prior infor-
mation available for nodes. Therefore, the authors also introduce personalized
PageRank [27]

r=(1-—a)Ar+au (2)

that adds a chance o as a way to teleport back to a personalization vector
u € R” representing an initial distribution over all pages. The corresponding
interpretation for a random walk is to introduce a chance to reset the random
walk to the personalization vector [27].

2.2 Graph Neural Networks

Another concept we build upon are Graph Neural Networks (GNNs), specifically
their subtype of Message-Passing Neural Networks (MPNNs) [13]. GNNs apply
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permutation equivariant operations to graph structured data in order to identify
task-specific features. Originating from spectral graph convolutions [18] as a
localized first-order approximation, each message-passing operation updates the
node states h; by combining the information of the direct neighborhood N; for
each node v; [36]. The general framework can be described as a node-wise update
function

+1 l l l
b = |, P wml n) |, (3)
JEN;

for each state h;, using some functions w and @ and a permutation invariant
aggregation function €. In this work, we will demonstrate our approach using
the very basic instantiation of this framework, namely the Graph Convolutional
Network (GCN) [21]. Making use of the normalized adjacency matrix A € R"*™,
the GCN can be expressed in matrix notation

HHD — ¢ ( AHa)Wm) (4)

using a linear transformation W € R4*? and ¢ as an element-wise activation
function. H® e R™*? contains the node states hgl) of all nodes after layer [. Each
layer aggregates information only from direct neighborhood N; for each node v;.
Thus, after k such layers, each node only has access to information a maximum
of k hops away. Given this property, choosing any number & of these layers leads
to information at k + 1 hops away being impossible to be considered for making
predictions. Moreover, even when the number of layers k& can be selected to be
sufficient for all potentially considered graphs, a large number k leads to various
additional issues that we will describe next.

Over-smoothing. Recent work found that stacking many layers of Eq. (4)
leads to a degradation of experimental performance that is caused by an effect
called over-smoothing [21, 24, 38]. Li et al. [24] show that Eq. (4) is a special form
of Laplacian smoothing leading to node representation becoming more similar
the more layers are added. They prove that Laplacian smoothing converges to a
linear combination of dominant eigenvectors. While some smoothing is needed
to share information between nodes, representations eventually become indis-
tinguishable with too much smoothing, thus making accurate data-dependant
predictions harder [24].

On a similar note, [38] find a close connection between k layers of Eq. (4) and
a k-step random walk. They find that both to converge the limit distribution
of the random walk. In the limit, a random walk becomes independent of the
root nodes and therefore loses the locality property of individual nodes. There-
fore, representations become independent of the starting node and initial node
features, thus becoming indistinguishable [38]. In practice, the performance of
Eq. (4) already degrades with more than two layers in many cases [21].
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Memory Complexity. Another reason that prevents GNNs from being deep
models is the memory complexity. Graphs can quickly surpass a million nodes,
which leads to out-of-memory issues due to the linear memory requirements
O(kn) in the number of layers k and the number of nodes n. Several approaches
try to lower the memory complexity by only considering samples of nodes from a
local neighborhood [17]. Due to an effect known as the neighborhood explosion,
the number of nodes in the k-hop neighborhood O(d*) explodes, with d being the
average node degree. Thus, for a large number of layers k, the benefit vanishes.
Other approaches cluster the graph into subgraphs and use these for training [6,
42], but cannot leverage the full potential of the entire graphs relationships.
Therefore, this issue needs to be considered when designing deep graph neural
networks.

3 Related Work

Several approaches aim to increase the depth of MPNNs and simultaneously
deal with over-smoothing and memory consumption. Rong et al. [30] found
over-smoothing to occur faster for nodes with many incoming edges and pro-
pose DropEdge as the equivalent to dropout in regular neural networks. They
randomly sample edges to remove during each training epoch and show that
the effect of over-smoothing gets slowed down. Klicpera et al. [23] propose a
diffusion process that they find to be beneficial for semi-supervised node clas-
sification tasks for graphs with high homophily but encounters problems with
complex graphs. Zhu et al. [45] further discuss the issue of settings with low
homophily. Li et al. [24] co-train a random walk model that explores the global
graph topology. Inspired by the findings from ResNet [20], Chen et al. [4] pro-
pose GCNII that makes use of residual connections in two ways. In each layer,
they add an initial residual connection to the input state H(®) and an identity
mapping to the weights, which were shown to have beneficial properties [19].
Xu et al. [38] combine the results of all intermediate iterations in JKNet. Other
works find a rescaling of the weights to alleviate the over-smoothing problem [44,
25]. While these approaches help reduce the effect of over-smoothing, they are
limited in practical depth and the issue still arises.

3.1 Infinite-Depth Graph Neural Networks

Evaluating the option of repeating iterations infinitely many times have been
analyzed in various approaches [14, 11,22, 16]. These methods iterate some graph
convolution until convergence by employing weight-sharing and ensuring the
convergence of their formulations. When using an equation for an infinite-depth
GNN, the result needs to converge to a unique solution. We summarize this
under the following definition of well-posedness.

Definition 1. (Well-posedness). Given an input matriz X € RVN*P  an equa-
tion Y = g(X), with g being an infinitely recursive function is well-posed, if
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1. The solution Y is unique
2. g(X) converges to the unique solution Y .

While the GCN (Eq. (4)) is not generally well-posed, our work proposes a
similar equation that we prove to be well-posed. We start by reviewing two recent
approaches to infinitely deep graph neural networks that serve as the starting
point for our contribution. The first [22] is derivated from the PageRank [27]
algorithm, the other is the fixed-point solution of an equilibrium equation [16].

APPNP. Klicpera et al. [22] propose a propagation scheme derived from person-
alized PageRank [27]. They identify the connection between the limit distribution
of MPNNs and PageRank, with both losing focus on the local neighborhood of
the initial state. As personalized PageRank was introduced as a solution to this
issue for PageRank [27], they adopt this idea for MPNNs. They set the personal-
ization vector r from Eq. (2) to the hidden state of all nodes H(®). A chance « to
teleport back to the root node preserves the local neighborhood with the tunable
parameter. Klicpera et al. [22] transfer this idea to MPNNs with Approximate
Personalized Propagation of Neural Predictions (APPNP) [22]

H"*D = (1 - a)AHY + oHO) (5)

that repeatedly, potentially infinitely many times, aggregates the neighborhood.
They also add a chance of going back to the initial state H(® = fo(U), that
is be the output of previous layers fo. They show that Eq. (5) is well-posed for
any a € (0,1],H® ¢ RVXD A € RNXN with det(.&) < 1. Typical normaliza-
tions A of the adjacency matrix satisfy this property. Notably, Eq. (5) does not
utilise any learnable parameters. They rather propose to separate the propaga-
tion scheme in Eq. (5) from the learnable part, by making H(®) = f,(U) as node-
wise application of a MLP. This method is proposed only for semi-supervised
node classification tasks, with a softmax activation employed to transform the

output of the last iteration H¥) of Eq. (5) to class predictions.

Implicit Graph Neural Networks. Independently, Gu et al. [16] propose
the Implicit Graph Neural Network (IGNN) by adapting the general implicit
framework [10] for graph convolutions. They obtain the fixed-point solution of a
non-linear equilibrium equation

X = ¢(WXA + fo(U)) (6)

by iterating it until convergence. While not being well-posed in general, they
prove the well-posedness of Eq. (6) for the specific case that A\, ;(|AT @ W) < 1
with A, being the Perron-Frobenius (PF) eigenvalue. They make use of the
Kronecker product ® and the Perron-Frobenius theory [3]. Since A s fixed, the
matrix of parameters W needs to be strictly constrained to fulfill A, ;(JAT ®
W|) < 1. The set M of allowed matrices W forms an £;-ball, with any weight
matrix outside the ball not leading to convergence. Remaining inside this ball



Personalized PageRank Graph Neural Network 7

cannot be guaranteed by regular gradient descent. Instead, after each step of
regular gradient descent, they project the result to the closest point on the
ball using projected gradient descent, for which efficient algorithms exist [9].
While their inspiring work shows great experimental results, we identify a couple
of shortcomings with. Many weight matrices cannot be used given the strict
constraint on W, hindering the model capacity. Further, the projection onto
the £1-ball changes the direction of the gradient update away from the steepest
descent. Therefore optimization steps are less effective in reducing the models’
loss. The strict constraint and the resulting projection step also add complexity
to the method’s theoretical derivation and practical implementation. Considering
different neighborhood sizes was found to be important when applying graph
algorithms to varying graph types [1, 15], not having a way to control the effective
depth of the model is also unsatisfying.

4 PageRank Graph Neural Network

The solution of PageRank is the stationary probability distribution that is inde-
pendent of the input. Given the close relation between PageRank (Eq. (1)) and
MPNNs (Eq. (4)), the locality of the data and the influence of the input features
also diminish with a MPNN, as identified by [22]. As personalized PageRank was
introduced to prevent the loss of focus for PageRank [27], we introduce the Per-
sonalized PageRank Graph Neural Network (PPRGNN) based on personalized
PageRank, that similarly assures the locality of the node states in the limit. Using
the initial state fy(U) as personalization matrix for teleportation [22], PPRGNN
can be understood as repeatedly applying graph convolutions with a chance to
teleport back to this initial state. We assure the convergence of PPRGNN to a
unique solution, so our method allows an arbitrary amount of layers - poten-
tially infinitely many - without suffering from over-smoothing. Practically, we
iterate graph convolutions until further iterations have negligible impact and
our solution is close to the limit distribution. In this work, we adopt GCNs [21],
which are the basic version of MPNNs, but these are directly replaceable by
more advanced types.

We denote the chance of traversing the graph further by a;. Rewriting the
formulation of the GCN in a similar way to personalized PageRank, we come up
with our formulation

HH = ¢ (AHOW + f,(U)) (7)

with H(®) = 0 that utilizes shared and unconstrained parameters W. Due to
the recursive nature and no constraints, exponential growth in W prevents well-
posedness for any fixed a;. The issue with having no guarantees for convergence
is that the furthest distant nodes are multiplied with the highest exponential of
‘W, which potentially dominates the result. As in PageRank, these only depend
on the graph structure and not on the node features, leading to the loss of locality
of the resulting node features.
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Our core idea to guarantee convergence of Eq. (7) without constraining the
parameters as in [16] is to reduce the chance of expanding further «; with the
distance to the root node. As the message-passing formulation is connected to
a random walk on the graph, another interpretation is to increase the chance of
resetting the random walk with the number of steps taken. When n is the number
of steps taken in that walk, we find using a decay of a,, = % to be sufficient for
converging to a unique solution. The recursive nature of our formulation leads to
a multiplication of all «,, resulting in the influence to decay by % Because the
recursive application of W only leads to an exponential W™ growth, the equation
converges. For control over the effective depth, i.e., the speed of convergence and
numerical stability, we use ﬁ and formally prove its convergence for any € > 0
later. We set the value for teleporting back to fy(U) fixed to 1 because in the
limit the chance (1 — a;) would become very small for close neighbors, leading
to the same issues of over-smoothing that we described in section 2.2.

Setting «; in Eq. (7) accordingly to our findings, the following issue arises:
The most distant nodes are processed first in Eq. (7), and the direct neighbors
are processed in the last iteration. This results from recursively applying the
adjacency matrix A on the input, leading to the initial state being transformed
k times by A. Thus, for calculating H(?), the expansion factor ag needs to be
minimal, which is the opposite of using the iteration [ as n.

In case we are interested in a fixed number k of total iterations, we can
directly set o; = m for each layer [. When using a fixed number of
iterations, this approach is ready for usage directly. Since we are interested in
the case when k — oo, starting with ag poses a challenge.

For a theoretical analysis of the convergence of Eq. (7), an equation that
can be iterated infinitely-deep independently of k is desired. We achieve this by
setting the index variable to n = k — [ resulting in the flipped equation

G =0 (8, AGIW + f, (U)) ®)

with 8, = ap_;_1 that is semantically unchanged, i.e., G(© = H® for any k
used for both G and H. Calculating G from a given G("*t1) can be performed
without knowing k£ beforehand, helping us in the theoretical analysis by expand-
ing the recursive equation infinitely deep without the need to set a fixed value
for k. It also leads to a cleaner proof of convergence, which we will provide next.
We further simplify our notation by denoting G(*) as the result of k iterations
performed by setting G*++1 = 0, resulting in GO,

Theorem 1. The result of G%) using the equation G = ¢ <6nAG(”“)W + B)
with B, = ﬁ converges to a unique solution when k — oo for any | € R
W e Réxd, A e R™" B e R neN,e>0, any Lipschitz continuous activa-
tion function ¢.

We refer to the supplementary material for all proofs.
Practically, for either Eq. (7) or Eq. (8) processing starts at the furthest
distant nodes, for which k£ needs to be known. This a challenge, because we do
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not know beforehand when our convergence criterion is satisfied. As our interest
is in the limit state G(%*%) when k — 0o, we make use of a convergence threshold
€ to identify the number of required iterations

k=min{M | GO — GOk+1D) < ¢} (9)

until our solution is close to the limit and iterating further has negligible impact.
Because even the initial iteration G®*~11 £ G®1) ig different, intermediate
results from G(%*=1 cannot be reused for computing G (%), A full recalculation
is needed, which requires k! iterations.

Instead, we take a different route to determine k. Determining at which
iteration the difference of expanding further on the graph becomes negligible is
approximately the same as determining how far the influence of nodes in the
graph reach using our message passing scheme. To determining this, we ignore
the teleportation term and estimate the influence of the initial state fo(U) on
the result of [ iterations G(*" with the equation

EFY) = ¢(oy 1 AEDW) (10)

by setting E(®) = fy(U). Unlike in Eq. (7) where we reversed the equation, the

result E("™) is equal for oy = and a; = —~ when we use ReLU as ¢.

1
1+(m—1—1)e 1+le
Note, that we start with ;11 because this is the first « that is applied to the
teleportation matrix fp(U). Eq. (10) converges for similar reasons as Eq. (8),

only towards 0 € 09", which we proof with the following theorem.

1+
to 0 € 049%™ for any W € RI%d A € R"™" [ € N,e > 0, any initial E© and
the ReLU activation function ¢. The solution can be obtained by iterating the
equation. For any fized number of iterations m, the solution E™) is the same
as using oy =

Theorem 2. The equation EHD = ¢ (alAE(l)W> with o = % converges

1
14+(m—1—-1)e"

Since we can evaluate Eq. (10) directly by iterating until our convergence
criterion is met, we find the required number of steps with

k' = min{l | EO < ¢}. (11)

At this point the effect of the initial state on nodes of distance [ is negligible.
We use k' as k in Eq. (8) and execute the forward pass. The result H*) gets
passed onto the next operation in our model, as with other graph convolutions.

4.1 Efficient Optimization

While we do not use Eq. (10) for gradient computation, even tracking only Eq. (7)
with autograd software would still lead to memory consumption that is linear
in the number of layers. Similarly as in the forward pass, the gradients converge
to 0 for distant nodes. We iterate the computation of gradients until the same
convergence criterion is met. Because of faster converge in the backward pass,
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this allows the optimization of the model with reduced memory consumption. We
will further limit the iterations to guarantee constant complexity, independently
of the number of iterations performed.

For calculating derivatives we use the reformulation from Eq. (8). We in-
troduce additional notation and set Y = fa(G(O)) as the output of our model,
Y as the target, and £ = [(Y,Y) to be our loss calculated with any differ-
entiable loss function [. We are interested in the partial derivatives of our loss
L with respect to the parameters W and the input state B. We let autograd
solve the derivation % and apply the chain rule for other partial derivatives.
To simplify our notation for the application of the chain rule, we further define
Z" = 0, AGtDW + B and G = ¢(Z(™). All further partial derivatives
can be calculated by using the following equations:

oL ~, 0L

o T
agm ~ A gz W (12)
oL i oL
oy =4 (anAG( W B) © sat (13)
oL ad - T 9L

oL _ (nt+1)
oW ~ 2" (AG ) BYAC) (14)

L = 0L
9B = 2= oz 15)

The partial derivatives 80—‘%, and g—é converge for similar reasons as before, so we

iterate Eq. (14) and Eq. (15) until our convergence criterion is met. The conver-
gence rate turns out to be much faster than the convergence rate of the forward
pass, which results in reduced practical memory consumption. To theoretically
guarantee constant memory consumption, we only consider a fixed amount n
of elements in the sum, similarly to the effectiveness of Truncated Backpropa-
gation Through Time (TBPTT) [33] for sequential data. This also reduces the
time complexity of the backward pass to be constant. We found this restriction
to have negligible impact even for small values of N. Depending on available
memory, we either store the intermediate results for gradient computation or
use gradient checkpointing [5] with a few additional forward iterations. Note,
that for the backward step the solutions of G(9, ... G are needed explicitly.
We assure the convergence of all used GV by using the fact that G (") < G(0:k)
and therefore compute G +7) instead of G(%) in the initial forward pass.

5 Experiments

We evaluate the effectiveness of PPRGNN on various public benchmark datasets
and compare these results to popular methods and other infinite-depth ap-
proaches. We evaluate our approach on an inductive node classification task, a
transductive node classification task, and five graph classification tasks. Table 1
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Table 2: Micro-F;-Scores

Table 1: Properties of datasets used for evaluation. for PPL.
Dataset ‘# of Graphs‘Avg. # of nodes‘# of classes Method ‘Micro—Fl—Score
Amazon 1 334863 58 MLP 46.2
PPI 22 2373 121 GCN 59.2
MUTAG 188 17.9 2 SSE 83.6
PTC 344 25.5 2 GAT 97.3
COX2 467 41.2 2 IGNN 97.6
PROTEINS 1113 39.1 2 APPNP 44.8
NCI1 4110 29.8 2

PPRGNN| 98.9

shows detailed properties of all used datasets. We closely follow the experimental
settings of IGNN [16] and inherit their architectures, only replacing their for-
mulation directly with ours. Thus the number of parameters is the same, so the
comparison with their approach is the most meaningful for us. We apply APPNP
to all tasks using their setup with 10 iterations. We further compare PPRGNN
with a series of other popular methods for the tasks of node classification and
graph classification and reuse the results reported in [16]. Due to the increased
modeling capacity, we use gradient clipping and weight decay. Additionally, we
tune ¢, the learning rate and whether self-loops are taken into account for A for
the three different tasks. We set n = 5 for the backward pass. We reduce the
learning rate when the training loss plateaus. All experiments are executed on a
single Nvidia Tesla P100.

PPI We consider the task of role prediction of proteins in graphs of protein-
protein interactions (PPI) [17]. In this inductive node classification task, we use
18 graphs for training our model, 2 for validation, and 2 for testing. Our data
split matches that in previous work [17]. As taken over from IGNN, our model
consists of 5 stacked layers, each iterating until convergence. We set ¢ = 0.25 and
find self-loops detrimental to our approach. In addition to IGNN and APPNP,
reference methods are a MLP, GCN [21], SSE [7], GAT [35]. The Micro-F}-Scores
for all considered approaches are presented in Table 2. PPRGNN outperforms all
of these approaches and reduces the error by more than 50% compared to IGNN.
Our trained PPRGNN uses a total of 82 message passing iterations in testing,
while GCN and GAT use a maximum of 3 iterations. We also compare the
time needed for PPRGNN to surpass the Micro-Fj-Score of IGNN in Figure 3.
PPRGNN needs fewer iterations and also takes less time per Epoch. This comes
from accurate gradient descent steps without projection and being able to adjust
the speed of convergence with e. We find APPNP to underfit the data due to
the limited modeling capacity, even when the number of parameters uses all
available memory.
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Table 3: Time and epochs needed until PPRGNN surpasses the best epoch of
IGNN on the validation set.

Dataset ‘ Method ‘Epochs‘Avg. Time per Epoch‘Total Time

IGNN | 872 14s 3h 21m
Amazon (0.05) ‘PPRGNN 175 11s 32m
PPI IGNN 58 26s 25m
PPRGNN| 47 18s 14m

Amazon To test the scalability of our approach, we apply it to the Amazon
product co-purchasing network data set [40]. Following the settings from [7],
product types with at least 5000 different products are selected. This results
in 334 863 nodes representing products and 925 872 edges representing products
that have been purchased together. The task is to predict the correct product
type for each node. Nodes do not have any features, so predictions are made
solely based on the graph structure. We use the same data split as [7], leading
to a fraction of nodes used for training varying between 5% and 9%. A fixed
set consisting of 10% of the nodes is used for training, the rest for validation.
The main challenge of this task is not the prediction complexity but rather
dealing with the sparsity of the available labels. Our architecture consists of our
PPRGNN layer combined with a linear operation before and after. We compare
our results with APPNP and reuse the result found in [7,16] for IGNN [16],
SSE [7], struct2vec [29] and GCN [21]. Micro-F;-Scores and Macro-F;-Scores
are shown in Figure 1 for varying fractions of labels used. While we outperform
IGNN, SSE, struct2vec and GCN across all settings by at least 1%, APPNP
performs the best. We find the low modeling capacity of APPNP to be better
suited for generalizing in this scenario. Again, we compare the execution time
needed for PPRGNN to outperform IGNN (Figure 3) and find PPRGNN to
converge in fewer epochs, with each epoch executing faster. This further adds to
our point of benefiting from applying gradient descent without projection and
controlling convergence speed.

Graph Classification We now evaluate our approach for the task of graph
classification on five open graph datasets, namely MUTAG, PTC, COX2, PRO-
TEINS, and NCI1. Following the same setup from previous work, we conduct a
10-fold cross-validation for each dataset and report the mean and standard de-
viation of the folds validation sets. We integrate our formulation with e = 1 into
the architecture from IGNN, consisting of 3 stacked iterations until convergence.
For regularization, we add a weight decay of 1le—6 and gradient clipping of 25 to
all datasets. For NCI1, we find removing self-loops to be helpful for generaliza-
tion. For comparison, we use several graph kernel approaches (GK [32], RW [12],
WL [31]) and GNN approaches (DGCNN [43], GCN [21], GIN [37]) in addition to
IGNN and APPNP. We reuse reported results from [16]. PPRGNN outperforms
all other approaches across 4 out of 5 datasets by at least 1% and is the second-
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Fig. 1: Comparison of results on the Amazon dataset. The fraction of labels used
for optimization varies between 0.05 and 0.09.

Table 4: Comparison of accuracies on various graph classification tasks.

Dataset | MUTAG | PTC | COX2 |PROTEINS| NCI1

GK 81.4 £1.7|55.7 £0.5 - 71.4 £0.3 |62.5 £0.3
RW 79.2 £2.1]55.9 £0.3 - 59.6 £0.1 -
WL 84.1 £1.9|58.0 £2.5|83.2 £0.2| 74.7 £0.5 |84.5 £0.5
DGCNN 85.8 58.6 - 75.5 74.4
GCN |85.6 £5.8|64.2 £4.3 - 76.0 £3.2 |80.2 £2.0
GIN |89.0 £6.0(63.7 £8.2 - 75.9 £3.8 |82.7 £1.6
IGNN |89.3 £6.7|70.1 £5.6|86.9 £4.0| 77.7 3.4 |80.5 £1.9
APPNP |87.7 £8.6|64.5 £5.1|82.2 £5.5| 78.7 £4.8 |65.9 £2.7

PPRGNN|90.4 +7.2|75.0 £5.7|89.1 £3.9| 80.2 +3.2 |83.5 +1.5

best performing model with competitive accuracy on the fifth dataset. Despite
using the same e = 1 across all experiments, the effective depth ranges from 22
to 41 for different datasets. Depth is adaptive even within individual datasets,
depending on learned parameters, the examined graph and present node fea-
tures. These results further demonstrate the effectiveness of our approach and
the potential to create deeper models on a wide variety of datasets.

6 Conclusion

We introduced PPRGNN, a reformulation of MPNNs based on personalized
PageRank that assures localization and prevents over-smoothing of node features
even when using infinitely many layers. Theoretically based on the personalized
version of PageRank which allows teleporting back to the initial state, we adopt
this idea for MPNNs, specifically for the basic type GCNs [21]. Starting from
the classic algorithm, we follow intuitive steps to introduce learnable parameters
and still converge to a limit distribution. Compared to previous infinite-depth
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GNNs, our approach has a higher modeling capacity as we do not place any con-
straints. Our empirical evaluation on tasks for graph classification, and inductive
and transductive node classification confirm our theoretical base. Against regu-
lar GCNs that have no way to teleport back to the initial state, we find large
improvements across all datasets. We even outperform other comparable ap-
proaches, including previous infinite-depth models, across almost all datasets by
decent margins. Despite the theoretical infinite-depth, we introduced a path for
efficient optimization, running linearly in the number of layers and only using
constant memory. Our formulation allows controlling the convergence rate, lead-
ing to considerable improvements in experimental execution time compared to
IGNN, a previous infinite-depth model. While we show that our formulation al-
lows infinitely many layers, even fixed sized models should benefit from adopting
our idea. Our approach is directly applicable to other types of MPNNs, for which
our proofs of convergence should hold.
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