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Abstract. Estimating distance metrics for given data samples is essen-
tial in machine learning algorithms with various applications. Accurately
determining the metric becomes impossible if there are observation noises
or missing values. In this work, we proposed an approach to calibrating
distance metrics. Compared with standard practices that primarily reside
on data imputation, our proposal makes fewer assumptions about the
data. It provides a solid theoretical guarantee in improving the quality of
the estimate. We developed a simple, efficient, yet effective computing
procedure that scales up to realize the calibration process. The experi-
mental results from a series of empirical evaluations justified the benefits
of the proposed approach and demonstrated its high potential in practical
applications.
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1 Introduction

In data processing, a distance metric, or a distance matrix, is used to measure
the pairwise dis-similarity relationship between data samples. It is crucial and
lays a foundation in many supervised and unsupervised learning models, such as
the K-means clustering algorithm, the nearest neighbor classifier, support vector
machines [18,9,30,35].

Calculating pairwise distance is straightforward if the data samples are clean
and fully observed. Unfortunately, with observation noises or missing values,
which are natural and common in practice, obtaining a high-quality distance
metric becomes a challenging task, and nontrivial challenges arise to learning
algorithms based on the distance estimation between data samples.

Significant research attention has been devoted to handling the difficulty
brought by missing values. Various imputation techniques were designed as a
routine treatment, which has greatly influenced the progress in various disciplines
[25,11]. These techniques complete the data by replacing the missing values with
substituted ones based on various assumptions. Based on the imputed data, the
pairwise distances can be calculated accordingly.

Despite the popularity received by data imputation approaches, nontrivial
challenges still exist. When the assumptions made by the imputation techniques
are violated, there is no guarantee at all on the quality of the imputed values,
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needless to say, the impact on subsequent data analysis tasks. Furthermore, with
a large portion of missing values, the imputation can be highly demanding or
even prohibitive in computation, which becomes another serious concern.

As a remedy, we carried out a series of work in two directions. Firstly and
as the main contribution of this paper, our work proposed a metric calibration
model that avoids data imputation in Section 3.2. It starts from an approximate
metric estimated from incomplete samples or prior knowledge and then calibrates
the metric iteratively. The calibrated metric is guaranteed to be better than the
initial metric in terms of a shorter Frobenius distance to the accurate unknown
metric, except in rare cases, the two metrics are identical. Secondly, our work
applied Dykstra’s projection algorithm to realize the calibration process and
designed a cyclic projection algorithm as a more scalable alternative.

Compared with the popular imputation methods in handling missing data, the
calibration approaches seemed to rely less on the assumption of the correlation
among data features or the data’s intrinsically low dimension/rank. As a result
of the less dependency, the approaches reported more robust and reliable results
in empirical evaluations. The improvement from the calibration approaches is
especially significant when the missing ratio is high, or the noisy level is high,
which exhibited their high potential in handling missing and noisy data in
practical applications.

The paper is organized as follows. Section 2 introduces the background.
Section 3 presents our model and algorithms. Section 4 reports the experimental
results, followed by the conclusion in Section 5.

2 Background

2.1 Missing Data and Imputation

Missing observations are everywhere and pose nontrivial challenges to numerous
data analysis applications in science and engineering. Developing techniques to
process incompletely observed data becomes one of the most critical tasks in
statistical sciences [25,11].

A common approach to dealing with missing observations is through data
imputation. A missing value may be replaced by a zero value, the feature’s mean,
median, or the most frequent value among the nearest neighbor samples or all
observed samples.

A more rigorous treatment is based on the expectation-maximization (EM)
algorithm [6]. The approach assumes the existence of specific latent structures
and variables. By alternatively estimating the model parameters and the missing
values with the fitted model parameters, the approach generates a maximum
likelihood or a maximum a posterior estimate for each missing observation.

Another imputation approach, the low-rank matrix completion approach
developed more recently, makes assumptions on the rank of the data matrix to be
completed. Efficient algorithms were designed to achieve exact reconstruction with
high probability and reported quite successful results, such as in recommender
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systems [3,19]. In recent work, based on the assumption that two random batches
from the same dataset share the same distribution, a measure of optimal transport
distances is applied as an optimization objective for missing data imputation,
which achieves excellent performances on some practical tasks [27].

Despite the success and the popularity that has been achieved, an inherent
challenge exists. All imputation approaches, either explicitly or implicitly, have
assumed the low dimensionality or the low-rank structure of the data. However,
when the assumption does not hold, all these approaches will lose the performance
guarantee on the imputation quality.

2.2 Metric Calibration

Instead of imputations, a matrix calibration approach can be applied to improve
a metric obtained from incomplete or noisy data. As an example, let us consider
the metric nearness model [2]. Denote the set of all n×n matrices byMn, which
is a closed, convex polyhedral cone. Assume we are given n incomplete samples
and an estimate of their distance matrix D0 =

{
d0ij
}n
i,j=1

∈Mn. The estimate
is inaccurate and might violate the triangle inequality property that the true
metric possesses. As a remedy, we consider the following model:

min
D∈Mn

∥∥D −D0
∥∥2
F

(1)

s.t.,
dij ≥ 0, dii = 0, dij = dji, and dij ≤ dik + dkj ,

for all 1 ≤ i, j, k ≤ n.
The model above seeks a new matrix D = {dij}ni,j=1 that best approximates

the input matrix D0 in Frobenius norm, from a feasible region of matrices that
meet the desired constraints. After calibration, the result will restore the property
that the true distance metric should possess.

The calibration approach has an implicit but key benefit [23]. Suppose the
feasible region of the distance matrix of interest is appropriately defined. In that
case, although the factual matrix is never known to us, the new calibrated matrix
can be guaranteed to be nearer to the ground truth than the initial estimate D0,
except in rare cases that they are identical.

The metric nearness model defined in Eq. (1) can be formulated as a quadratic
program and solved by modern convex optimization packages [1]. Besides, an
elegant triangle fixing algorithm [2] was developed, which exploited the inherent
structure of the triangle inequalities and improved running efficiency. Besides, we
can also consider a stochastic sampling of constraints or Lagrangian formulations
to seek an algorithmic solution [31]. Despite the partial success that has been
achieved along this line, however, the intrinsic complexity from O

(
n3
)
inequality

constraints to Eq. (1) makes the model hard to scale up, which significantly limits
the application of the model.
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3 Model

3.1 A Kernel’s Trick

Our work resides on a mild assumption that the data samples in the study are
isometrically embeddable in a real Hilbert space, or equivalently, the samples can
be represented as real vectors. Recall the definition of isometrical embedding.

Definition 1. Consider a separable metric space X with a distance function ρ,
having the properties that ρ(x, x′) = ρ(x′, x) ≥ 0 and ρ(x, x) = 0 for all points x
and x′ in X . (X , ρ) is said to be isometrically embeddable in a real Hilbert space
H (or embeddable, for short) if there exists a map φ : X 7→ H such that

‖φ(x)− φ(x′)‖ = ρ(x, x′)

for all points x and x′ in X .

A classical result on isometrical embedding [29,34] states that:

Theorem 2. Assume (X , ρ) is embeddable. Then, for each γ > 0 and 0 < α < 1,

n∑
i,j=1

exp
(
−γρ2α(xi, xj)

)
ξiξj ≥ 0

holds for every choice of points x1, · · · , xn in X and real ξ1, · · · , ξn.

For any finite subset {x1, · · · , xn} ⊆ X (n ≥ 2), denote by D∗ =
{
d∗ij
}n
i,j=1

with d∗ij = ρ(xi, xj) for each i, j and exp (−γD∗) =
{
exp

(
−γd∗ij

)}n
i,j=1

. By
choosing α = 1

2 , we have, if (X , ρ) is embeddable, the matrix exp (−γD∗) is
positive semi-definite and we also say that the matrix D∗ is embeddable.

In the machine learning area, the positive definite function exp (−γ ‖x− x′‖)
is known as the Laplacian kernel, popularly used in the context of kernel-based
algorithms [30]. In our application, the function connects an embeddable metric
D∗ and a positive semi-definiteness matrix exp (−γD∗).

3.2 Direct Calibration

For given samples {x1, · · · , xn} in X , let D0 =
{
d0ij
}n
i,j=1

be an input distance
matrix between the samples. Assume that, due to observation noise or missing
values, the metric D0 is not accurate. From the relationship between isometrical
embedding and positive semi-definiteness in Section 3.1, we naturally investigate
the following model to calibrate the matrix D0 to a better estimate:

min
D∈Mn

∥∥D −D0
∥∥2
F
, (2)

s.t.

exp(−γD) � 0, dii = 0 (1 ≤ i ≤ n), and dij ≥ 0 (1 ≤ i 6= j ≤ n),
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where � 0 denotes the positive semi-definiteness constraint on a matrix.
Solving the optimization problem in Eq. (2) is not straightforward. Here

we develop an efficient approximation. Let µ = max {ρ(xi, xj), 1 ≤ i, j ≤ n} be
a normalizing factor, and γ = ε

µ where ε is a small positive number1. Denote
E0 =

{
e0ij
}n
i,j=1

= exp(−γD0), and we reach a known problem in literature [23]:

min
E∈Mn

∥∥E − E0
∥∥2
F

(3)

s.t.

E � 0, eii = 1 (1 ≤ i ≤ n), and eij ∈ [1− ε, 1] (1 ≤ i 6= j ≤ n).

Let R = {X ∈ Mn|X � 0, xii = 1, xij ∈ [1− ε, 1] for all i, j} be a closed
convex subset ofMn. The optimal solution to Eq. (3) is the projection of E0 onto
R, denoted by E0

R. Let E∗ = exp(−γD∗), where D∗ is the true but unknown
metric. Obviously E∗ ∈ R, and∥∥∥E∗ − E0

R
∥∥∥2
F
≤
∥∥∥E∗ − E0

R
∥∥∥2
F
− 2

〈
E∗ − E0

R, E
0 − E0

R
〉

≤
∥∥∥(E∗ − E0

R
)
−
(
E0 − E0

R
)∥∥∥2

F
. (4)

The first “≤” holds due to Kolmogrov’s criterion [7], which states that the
projection of E0 onto R is unique and characterized by:

E0
R ∈ R and

〈
E − E0

R, E
0 − E0

R
〉
≤ 0, for all E ∈ R.

The equality holds if and only if E0
R = E0, i.e., E0 ∈ R.

Eq. (4) gives
∥∥∥E∗ − E0

R
∥∥∥2
F
≤
∥∥E∗ − E0

∥∥2
F
, which shows that E0

R is an

improved estimate towards the unknown E∗. Next, let D0
R be obtained from

E0
R = exp(−γD0

R). From Taylor-series expansion:

ez = 1 + z +O
(
z2
)
≈ 1 + z, for |z| � 1,

we have: ∥∥∥E∗ − E0
R
∥∥∥2
F
=
ε2

µ2

∥∥∥D∗ −D0
R
∥∥∥2
F
+O(ε4), (5)

and ∥∥E∗ − E0
∥∥2
F
=
ε2

µ2

∥∥D∗ −D0
∥∥2
F
+O(ε4). (6)

If E0 /∈ R, we have
∥∥∥E∗ − E0

R
∥∥∥2
F
<
∥∥E∗ − E0

∥∥2
F
. For a sufficiently small ε,

we have
∥∥∥D∗ −D0

R
∥∥∥2
F
<
∥∥D∗ −D0

∥∥2
F

based on Eqs. (5) and (6). If E0 ∈ R, we

1 We set µ = max
{
d0ij

}
and ε = 0.02 in the study.
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have E0
R = E0, which implies D0

R = D0. Considering both cases, we have:∥∥∥D∗ −D0
R
∥∥∥2
F
≤
∥∥D∗ −D0

∥∥2
F
. (7)

The equality holds if and only if exp(−λD0) � 0. The result shows that, except
in the special case D0

R = D0 that happens when E0 ∈ R, the calibrated D0
R is

a better estimate than the input D0 in terms of a smaller Frobenius distance to
the true but unknown metric D∗.

3.3 Dykstra’s Algorithm

Solving Eq. (3) to find the projection of E0 onto set R is well-studied in the
optimization community. Several algorithms are available with quite good perfor-
mances [28]. Similarly to the work of [16,23], we resort to a simple and flexible
procedure based on Dykstra’s alternating projection algorithm [10], also called
direct calibration in the sequel.

Equip the closed convex set Mn with an inner product that induces the
Frobenius norm:

〈X,Y 〉 = trace
(
XTY

)
, for X,Y ∈Mn.

Define two nonempty, closed and convex subsets ofMn:

S = {X ∈Mn|X � 0} , and T = {X ∈Mn|xii = 1, xij ∈ [1− ε, 1] for all i, j} .

ObviouslyR = S∩T . Directly projecting E0 ontoR is expensive, while projecting
it onto S and T respectively is easier. Denote by PS the projection onto S, and
PT the projection onto T . For PS and PT , we have the following two results.

Fact 1 Let X ∈Mn and UΣV T be its singular value decomposition with Σ =
diag (λ1, · · · , λn). The projection of X onto S is given by: XS = PS (X) =
UΣ′V T where Σ′ = diag (λ′1, · · · , λ′n) and each λ′i = max {λi, 0}.

Fact 2 The projection of X ∈ Mn onto T is given by: XT = PT (X) ={(
xT
)
ij

}n
i,j=1

where
(
xT
)
ij
= med {1− ε, xij , 1}, i.e., the median of the three

numbers.

Dykstra’s projection algorithm can be applied to find the minimizer to Eq. (3).
Starting from E0, it generates a sequence of iterates

{
EtS , E

t
T
}

and increments{
ItS , I

t
T
}
, for t = 1, 2, · · · , by:

EtS = PS
(
Et−1T − It−1S

)
(8)

ItS = EtS −
(
Et−1T − It−1S

)
(9)

EtT = PT
(
EtS − I

t−1
T
)

(10)

ItT = EtT −
(
EtS − I

t−1
T
)

(11)
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where E0
T = E0, I0S = 0, I0T = 0 and 0 is an all-zero matrix of proper size. The

sequences
{
EtS
}

and
{
EtT

}
converge to the optimal solution E0

R as t→∞.

3.4 Cyclic Calibration

Based on the proposed calibration model and the Dykstra’s alternating projec-
tion algorithm presented in Sections 3.2 and 3.3 respectively, a more scalable
calibration algorithm, called cyclic calibration [24] in the sequel, can be designed
based on the following result.

Fact 3 Let R be a closed convex subset ofMn and E∗ ∈ R. Let C be a closed

convex superset of R and C ⊆ Mn. For any E0 ∈Mn, we have
∥∥∥E∗ − E0

C
∥∥∥2
F
≤∥∥E∗ − E0

∥∥2
F
. The equality holds if and only if E0

C = E0, i.e., E0 ∈ C.

This result can be obtained similarly to Eq. (4). It states that the projection of
E0 onto C provides an improved estimate towards E∗. Based on the observation,
we can design a domain decomposition algorithm that avoids factorizing the full
n×n matrix. Let C1, · · · , Cr be r closed convex sets that satisfy R ⊆

⋂r
k=1 Ck and⋃r

k=1 Ck ⊆Mn. Starting from E0 ∈ Mn, again we apply Dykstra’s projection
which generates the iterates {Etk} and the increments {Itk} cyclically by:

Et0 = Et−1r (12)
Etk = PCk

(
Etk−1 − It−1k

)
(13)

Itk = Etk −
(
Etk−1 − It−1k

)
(14)

where k = 1, · · · , r and t = 1, 2, · · · . The initial values are given by E0
r = E0 and

I0k = 0 (1 ≤ k ≤ r). The sequences of {Etk} converges to the projection of E0

onto
⋂r
k=1 Ck [10].

Theorem 3. Let C1, · · · , Cr be closed and convex subsets ofMn such that C =⋂r
k=1 Ck is not empty. For any E0 ∈ Mn and any k = 1, · · · , r, the sequence

{Etk} converges strongly to E0
C = PC

(
E0
)
, i.e.,

∥∥∥Etk − E0
C
∥∥∥2
F
→ 0 as t→∞.

To realize the cyclic calibration approach, we define the r supersets C1, · · · , Cr
of R as follows. Denote r nonempty index sets by I1, · · · , Ir, which satisfies⋃r
k=1 Ik = {1, · · · , n}. For any matrix A ∈ Mn, denote by Ak the principal

submatrix formed by selecting the same rows and columns of A indicated by Ik.
Then for each Ik (1 ≤ k ≤ r), define

Sk = {A ∈Mn|Ak � 0} , and, Ck = Sk ∩ T .

Recall that a matrix is positive semi-definite if and only if all its principal
submatrices are positive semi-definite [14,17], and we know thatR ⊆ C =

⋂r
k=1 Ck.

So by projecting E0 onto each Ck successively with Dykstra’s procedure, we will
obtain the projection onto C, which provides an improved estimate towards the
unknown E∗, with the following steps:
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1. For given r, randomly generate index sets I1, . . . , Ir;
2. Calibrate the matrix by projecting it onto C1, · · · , Cr cyclically;
3. Repeat steps 1 and 2 until convergence.

Cyclic calibration can be regarded as an extension of the direct calibration
presented in Section 3.3. When r = 1, the cyclic algorithm reduces exactly to the
direct algorithm.

Let D0
C be obtained from E0

C . Similarly to the result in Eq. (7), we have:∥∥∥D∗ −D0
C
∥∥∥2
F
≤
∥∥D∗ −D0

∥∥2
F
, (15)

which shows that D0
C improves D0 and gets nearer to the unknown D∗.

3.5 Complexity Analysis

To project an n×n matrix directly onto the convex set S via SVD, the complexity
is O

(
n3
)
per iteration [15,5]. With cyclic calibration, we set the cardinality of

Ik to O (n/r) and project an input matrix onto Sk (1 ≤ k ≤ r) successively. We
need to decompose r principal submatrices in each iteration. The complexity
is O

(
n3/r3

)
to decompose one submatrix, and O

(
n3/r2

)
for r decompositions,

which significantly improves the complexity of the direct approach.
For the number of iterations to converge, theoretically, the convergence rate of

Dykstra’s alternating projection for polyhedral sets is known to be linear [10,12].
Empirically the direct approach converged in around 20 iterations, and the cyclic
approach converged in around 40 iterations on a problem with n = 10, 000 and
r = 10 in our evaluation.

For memory requirement, if the whole distance matrix is stored in memory,
both calibration approaches have a storage complexity of O

(
n2
)
. For the cyclic

approach, it is also possible to reduce the storage complexity to O
(
n2/r2

)
by only

keeping the working principal submatrix in memory, at the cost of swapping-in
and swapping-out operations on other matrix elements from time to time.

4 Evaluation

4.1 Settings

We carried out empirical studies to evaluate the proposed model and calibration
algorithms, specifically with the objectives of investigating their effectiveness in:

– reducing the noise of distance matrices;
– computing distance metrics from incomplete data;
– performances in classification applications;
– running speed and scalability.

We used five benchmark datasets that are publicly available. These datasets
cover a reasonably wide range of application domains, including:
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Table 1. Relative Squared Deviations on Calibration of Noisy Distance
Metrics. Each item has two values, corresponding to ζ = 0.1 and 0.5 respectively:
the smaller RSD value, the better performance. Direct calibration reported the best
calibration quality on almost all experiments.

Dataset TRIFIX DIRECT CYCLIC
MNIST .976/.362 .137/.034 .164/.039
CIFAR10 .904/.369 .146/.031 .181/.037
PROTEIN .992/.358 .178/.031 .222/.025
RCV1 .999/.356 .184/.023 .233/.023
SENSEIT .778/.351 .103/.032 .123/.045

– MNIST: images of handwritten digits with 28× 28 pixels each [21];
– CIFAR10: ten classes of color images with 32× 32 pixels each [20];
– PROTEIN: 357-dimensional sparse binary bio-samples in three classes [4];
– RCV1: 47, 236-dimensional sparse newswires from Reuters in two classes [22];
– SENSEIT: 100-dimensional samples from a vehicle net in three classes [8].

We implemented the calibration approaches in the MATLAB platform. For
the cyclic calibration approach, the number of partitions was set to r = 10 unless
otherwise specified. All results were recorded on a server with 28 CPU cores and
192GB memory enabled for computation.

4.2 Noise Reduction on Distance Metrics

One specific application scenario of the proposed approaches is noise reduction in
given distance metrics. In each run of the experiment, we randomly chose 1, 000
samples from the MNIST dataset and computed their pairwise Euclidean distance
matrix (D∗) as the ground truth metric. Next we added certain amounts of white
noise to D∗ and obtain a noisy metric D0 with each d0ij = max

{
0, d∗ij + ζµv

}
,

where µ is the mean of all elements in D∗, ζ was set to 0.1/0.5 respectively and
v ∼ N (0, 1) is a standard Gaussian random variable.

We applied the direct calibration approach (denoted by DIRECT) and the
cyclic calibration approach (denoted by CYCLIC) on D0 and obtained two cali-
brated matrices (D0

R). The relative squared deviation (RSD) from D∗, calculated

as

∥∥∥D0

R−D
∗
∥∥∥2

F

‖D0−D∗‖2F
, was recorded to measure the performance of each calibration

method.
We repeated the experiment for ten runs and reported the mean of the results

in Table 1. Compared with the noisy matrix D0, the direct calibration reduced
more than 86% of squared deviation when ζ = 0.1 and more than 96% when
ζ = 0.5, and the cyclic calibration reported comparable improvements.
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Table 2. Relative Squared Deviations on Calibration of Approximate Metrics
from Incomplete Samples. Each item has two values, corresponding to p = 0.1 and
0.5 respectively: the smaller RSD value, the better performance. Direct calibration
reported the best performances on almost all experiments.

Imputation Calibration
Dataset MEAN kNN SVT TRIFIX DIRECT CYCLIC
MNIST 2.80/8.20 7.96/18.5 2.51/8.57 1.00/.998 .998/.767 1.12/.813
CIFAR10 765./243. 119./292. 25.1/61.5 1.00/1.00 .991/.979 1.37/.997
PROTEIN 53.0/17.7 1.77/3.40 1.79/3.12 .994/.924 .975/.506 1.05/.464
RCV1 1.48/3.00 1.52/3.07 1.44/2.89 .999/.931 .806/.429 .975/.430
SENSEIT 82.8/27.9 .908/1.13 .890/.861 .922/.502 .874/.489 .917/.543

We also recorded the performance of triangle fixing (TRIFIX) algorithm2 (cf.
Section 2.2), which calibrates the noisy metric to restore the triangle inequalities.
The triangle fixing algorithm reduced around 2% and 64% squared deviations,
respectively. As a comparison, our proposed approaches reported significantly
superior calibration results. In addition to the MNIST dataset, we carried out
the same experiment on the other datasets and found very similar results.

4.3 Distance Metrics from Incomplete Data

The second experiment was on estimating the distance metric from incomplete
observations. In each of the ten runs, we randomly chose a subset of 1, 000 samples
from the MNIST dataset and computed the pairwise distance matrix D∗ as the
ground truth.

Then, we randomly marked different portions (p = 0.1/0.5 respectively) of
features as missing for each sample. For any two incomplete samples xi and xj
in the dataset, denote xi(xj) a new vector formed by keeping those features
of xi that are observed in both xi and xj . Based on the common features, an
approximate distance for the two incomplete samples was given by:

d0ij = ‖xi(xj)− xj(xi)‖
√

q

qij

where q = 784 is the dimension of the MNIST samples and qij is the number of
features observed in both samples.

Let a distance matrix D0 =
{
d0ij
}n
i,j=1

. The matrix is often not embeddable,
which leaves potential room for further calibration. Accordingly, we calibrated
D0 to a new estimate D0

R by our proposed approaches, and computed their RSD
values from the ground truth D∗ as described in Section 4.2.

The two proposed approaches were compared with the triangle fixing algorithm
(cf. Section 2.2) on the quality of the calibration. In addition, the results from
2 Implementation downloaded from http://optml.mit.edu/software.html.

http://optml.mit.edu/software.html
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several imputation methods, which were popularly used in practice, were also
included as a baseline. These imputation methods include:

– MEAN: Replacing missings by the observed mean of the feature;
– kNN: Replacing missings by weighted mean of k = 5 nearest samples [33];
– SVT: Low-rank matrix completion with singular value thresholding 3 [3].

We applied these imputation methods to replace the missing features with
substituted values, calculated the distance matrix based on the imputed data, and
recorded the corresponding RSD values. In the experiment, we also tested two
implementations [26,13] of the classical expectation-maximization algorithm and
the recent optimal transport algorithm [31] to impute the data. Unfortunately,
different from their known excellent performances on low-dimensional data, both
algorithms failed to execute on most of these high-dimensional data samples with
a large portion of missing values. So their results were not available.

The results are given in Table 2. Compared with the un-calibrated D0, we
can see that the calibration approaches brought significant drops in squared
deviations from the true D∗. Direct calibration reported the best results in
RSD values on most of the datasets and the settings. When p = 0.5, it reduced
around 23% to 57% squared deviations on most datasets. The only exception
is on the CIFAR10 dataset, where the reduction of squared deviations is not
that significant. However, the improvement from calibration approaches over the
imputation methods is still significant.

At the same time, we can see that the imputation approaches had no guarantee
of the quality of RSD values. The imputed data’s distance matrix may be far
from the ground truth. For example, naïvely filling the mean to the missing
values on the CIFAR10 dataset produced a distance matrix that was more than
seven hundred times away from the ground truth than that of D0. Comparatively,
the calibration approaches consistently reduced the squared deviation from the
ground truth by calibrating the input matrix as expected.

4.4 Classification on Incomplete Samples

Having justified the capability of removing metric noises by the proposed ap-
proaches, we would like to investigate whether the calibrated results benefit real
applications. Specifically, we applied the calibrated metrics in nearest neighbor
classification tasks. Given a training set of samples with class labels, we tried
to predict the labels of the samples in the testing set. For each testing sample,
its label was predicted by the label of the nearest neighbor in the training set.
Then the predicted label was compared against the accurate label to measure
the classification performance.

We carried out one-versus-all cross-validation on the classification task. Each
sample was used, in turn, as the testing sample, while all other samples formed the
training set. We averaged all testing samples’ classification errors and recorded
the mean of average classification errors (MCE) over ten runs. Similar to the RSD
3 Implementation downloaded from https://candes.su.domains/software/.

https://candes.su.domains/software/
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Table 3. Ten-Fold Mean Classification Errors on Incomplete Samples by
Nearest Neighbor Classifier. Each item has two values, corresponding to p = 0.1
and 0.5 respectively: the smaller MCE values, the better performance. Direct calibration
reported the best performances on almost all experiments.

Imputation Calibration
D0 MEAN kNN SVT TRIFIX DIRECT CYCLIC

MN .127/.203 .145/.503 .132/.272 .150/.450 .127/.200 .126/.192 .127/.191
CI .767/.765 .786/.878 .781/.842 .780/.838 .767/.765 .751/.757 .771/.758
PR .581/.615 .604/.634 .638/.698 .595/.620 .581/.624 .573/.610 .574/.617
RC .339/.442 .324/.432 .324/.435 .334/.437 .338/.463 .321/.419 .327/.427
SE .299/.377 .394/.503 .299/.389 .292/.402 .292/.362 .288/.357 .301/.366

Table 4. Ten-Fold Mean Classification Errors on Incomplete Samples by
Hard-Margin SVM with Gaussian Kernel and Default Parameters. One-
versus-all strategy was applied for classifying more than two classes. Each item has
two values, corresponding to p = 0.1 and 0.5 respectively: the smaller MCE values, the
better performance. Direct calibration reported the best performances on almost all
experiments.

Imputation Calibration
D0 MEAN kNN SVT TRIFIX DIRECT CYCLIC

MN .100/.141 .105/.158 .098/.894 .105/.159 .100/.142 .096/.136 .097/.138
CI .661/.664 .671/.694 .785/.903 .665/.691 .661/.664 .656/.658 .658/.670
PR .516/.606 .399/.485 .401/.686 .400/.486 .516/.610 .452/.550 .397/.484
RC .247/.370 .127/.287 .497/.523 .138/.258 .136/.384 .124/.237 .135/.248
SE .373/.478 .239/.293 .249/.741 .240/.291 .369/.473 .264/.388 .231/.289

results in Table 2, the calibration approaches reported improved MCE results in
Table 3. With different missing ratios p = 0.1 and p = 0.5, the calibration ap-
proaches consistently reduce the classification errors over the approximate metric
D0 on all datasets, among which the direct calibration approach performed the
best. Comparatively, the metrics from imputation-based approaches sometimes
performed even worse than D0.

We further experimented with the support vector machines (SVM) algorithm
[30]. SVM seeks a linear boundary with the maximum margin to separate two
classes of samples in the feature space. To apply SVM, a positive semi-definite
kernel matrix needs to be provided as the input to the algorithm. In the evaluation,
we used the popular Gaussian kernel to construct the kernel matrix, exp

(
−αD2

)
,

where D2 is the element-wise square of the metric obtained from each algorithm
and α is the default kernel parameter set by the LibSVM package [4]. In case the
kernel matrix constructed is not positive semi-definite (namely, D0 and TRIFIX),
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a small positive number will be added to the diagonal elements to shift the
matrix to be positive semi-definite. The one-versus-all strategy was applied for
classifying more than two classes.

The MCE results are shown in Table 4. The proposed calibration methods
reported similarly improved accuracies over the un-calibrated metric and the
imputation approaches. The most significant improvement over the performance
of D0 was on the RCV1 dataset, from 0.247 to 0.124 and from 0.370 to 0.237
respectively. Consistent improvements were observed on the other datasets. Simi-
larly, the calibration approaches reported superior results over the imputation
approaches on most experiments. In the evaluation, we found that when the
missing ratio is high, the performances of the imputation approaches become
relatively unstable. For example, when p = 0.5, the misclassification error with
kNN imputation significantly increased to 0.894 on the MNIST dataset and 0.903
on the CIFAR10 dataset, like a random guess. Comparatively, the calibration
approaches’ performances are much more reliable.

When comparing the proposed calibration approaches with the triangle fixing
algorithm, we can find a similar trend of improvement in classification errors,
although not as significant as the improvement over the imputation approaches.
The improved classification accuracies are consistent with the results reported in
Sections 4.2 and 4.3, which again justifies the benefits from the better-calibrated
metrics to the unknown ground truth metric.

4.5 Scalability
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TRIFIX DIRECT CYCLIC

Fig. 1. Running Time on the MNIST Dataset with Different Sample Sizes.
For n = 1K/5K/10K, r = 10; for n = 50K, r = 50. |Ik| ≈ 2n

r
(1 ≤ k ≤ r). The triangle

fixing algorithm failed to execute other than n = 1K. Cyclic calibration exhibited
evidently improved scalability when the sample size is large.
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The last experiment was to evaluate the scalability. Similarly to the setting
described in Section 4.2, white noise was added to the factual distance matrix,
and then the calibration approaches were carried out. Fig. 1 shows the running
time in seconds of our two proposed approaches and the triangle fixing algorithm
on the MNIST dataset with different numbers of training samples from n = 1, 000
to n = 50, 000.

With n = 1, 000 training samples, the direct calibration approach took around
three seconds, about a hundred times faster than the triangle fixing algorithm
with the default parameter setting. When n = 2, 000 (not shown in the figure)
or larger, the triangle fixing algorithm failed to execute on our platform due to
prohibitive memory requirement caused by the O

(
n3
)
triangle inequalities, so

the results were not available here.
When comparing the direct and the cyclic calibration approaches, we can see

that the cyclic approach did not report advantage with a small number of samples.
However, when the number of samples got sufficiently large, e.g., n = 10, 000,
the cyclic approach began to exhibit its superiority. When n = 50, 000, the cyclic
approach was around twenty times faster than the direct approach to converge,
being consistent with the complexity analysis in Section 3.5 and confirming a
more scalable solution.

5 Conclusion

Estimating distance metrics between samples is a fundamental problem in data
processing with various applications. To deal with the challenge, we suggested
calibrating an approximate metric, which avoids the difficulty in imputation and
returns an improved estimate with a solid guarantee. By connecting isometrical
embedding and positive semi-definiteness of a distance matrix, the proposed
approach provides a simple yet rigorous model for missing data processing, which
forms the main contribution of our work. Computationally, Dykstra’s alternating
projection algorithm provides a natural solution to our proposed model and can
be applied directly. Besides, our work also designed a cyclic projection algorithm
that provided better scalability in the way of divide and conquer.

Compared with popular imputation methods, the proposed calibration ap-
proaches make fewer assumptions on the correlations among data features and the
intrinsic data dimensions/ranks. As a result, the proposed approaches reported
more reliable empirical results in our empirical evaluations of noise reduction and
classification applications. Compared with existing models that can be applied
for calibration purposes, such as the triangle fixing algorithm, the proposed
approaches also reported significantly improved speed and accuracy. Although
preliminary, all the results clearly justified the proposed approaches’ benefits and
demonstrated their high potential in practical tasks.

Despite the achieved results, more work along this line deserves to be inves-
tigated. The improved performance of our work relies on the assumption that
the data samples can be isometrically embeddable in a Hilbert/Euclidean space.
However, this assumption may not hold for general metrics. For example, the
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Robinson-Foulds distance metric [32] defined on trees satisfies the triangle in-
equalities but is typically not embeddable. Can we extend the proposed approach
to calibrate such metrics? It deserves our investigation. Another potential topic,
although the cyclic calibration approach exhibited better scalability, it still seems
demanding when handling big data, and the scalability issue deserves further
consideration.
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