Fast DEC: Clustering By Fast Dominance
Estimation

Geping Yang*!, Hongzhang Lv*!, Yiyang Yang**!, Zhiguo Gong**?, Xiang
Chen?, and Zhifeng Hao*

! Guangdong University of Technology, Faculty of Computer, China
2 University of Macau, State Key Laboratory of Internet of Things for Smart City
and Department of Computer and Information Science, Macau, China
3 Sun Yat-Sen University, School of Electronics and Information Technology, China
4 Shantou University, College of Engineering, China

Abstract. k-Nearest Neighbors (k-NN) graph is essential for the vari-
ous graph mining tasks. In this work, we study the density-based clus-
tering on the k-NN graph and propose FastDEC, a clustering framework
by fast dominance estimation. The nearest density higher (NDH) rela-
tion and dominance-component (DC), more specifically their integration
with the k-NN graph, are formally defined and theoretically analyzed.
FastDEC includes two extensions to satisfy different clustering scenarios:
FastDECp for partitioning data into clusters with arbitrary shapes, and
FastDECk for K-Way partition. Firstly, a set of DCs is detected as the
results of FastDECp by segmenting the given k-NN graph. Then, the
K-Way partition is generated by selecting the top-K DCs in terms of
the inter-dominance (ID) as the seeds, and assigning the remaining DCs
to their nearest dominators.

FastDEC can be viewed as a much faster, more robust, and k-NN based
variant of the classical density-based clustering algorithm: Density Peak
Clustering (DPC). DPC estimates the significance of data points from
the density and geometric distance factors, while FastDEC innovatively
uses the global rank of the dominator as an additional factor in the
significance estimation. FastDEC naturally holds several critical char-
acteristics: (1) excellent clustering performance; (2) easy to interpret
and implement; (3) efficiency and robustness. Experiments on both the
artificial and real datasets demonstrate that FastDEC outperforms the
state-of-the-art density methods including DPC.

Keywords: Density Estimation - Clustering - £ Nearest Neighbors.

1 Introduction

Density-based clustering is widely used in various fields such as computer vision
and outlier detection. As a fast pre-processing technology, it is used to partition

* Equal Contribution
** Corresponding Author: yyygou@gmail.com, fstzgg@um. edu.mo

2 Geping Yang et al.

Table 1. Characteristics of existing density-based methods. CC: Connected-
Component detection. OS: over-segmentation. K-Way: supports K-Way Partition.
Para: primary parameters. (DR: density reachable. DH: density-higher. NDH: near-
est density-higher.)

Method Connectivity CC Avoid OS K-Way Accuracy Efficiency| Para Robustness
DBSCAN DR X X X Low High |7, ming Low
Meanshift DH X X X Media Low T Media
Quickshift NDH X X X Media Media T Media
DPC NDH X X v High Low T Media
Quickshift+-+ mutual k-NN v v X High Low k, B Media
FINCH 1°-NN v X v Media High k=1 High
QuickDSC mutual k-NN v v High High k, B Media
FastDEC (Ours)|k-NN dominance v/ v v High High k High

the data into clusters with arbitrary shapes. Several classic and effective meth-
ods have been designed for such a task. This work aims to design an efficient,
robust, and effective density-based clustering method. In Table |1} we list several
perspectives that are significant to the density-based clustering, based on which,
analyze the relevant methods including the classical and state-of-the-art.

Density-based clustering algorithms conduct the connectivity between data
points. Meanshift [8], a mode-seeking procedure, iteratively shifts data points to
the location with local maximum density, while the density is estimated by Gaus-
sian Kernel. Such a mechanism makes use of a density-higher (DH) connectivity
as the cluster structure. DBSCAN [15] adopts a Flat Kernel [19] to identify the
density-reachable (DR) connectivity. It significantly reduces computational cost
but ignores the mode information. Rather than shifting to a location, Quick-
shift [29] only moves to the NDH data point if one exists within the 7-radius
ball. Both methods hill-climb to the local modes of density and cluster upon
these modes. Such processes asymptotically detect all modes individually, lead-
ing to over-segmentation (OS) [20]. That is the nearby modes are clustered
as distinctive clusters, although it is better to group them as a single cluster.

Quickshift++ [20] uses the mutual k-Nearest Neighbors (mutual k-NN) graph
to avoid the OS. Two points are merged into a connected-component (CC) if
a mutual k-NN edge is detected. Based on the obtained CCs, QuickDSC [36]
introduces a density-higher (DH) based way to generate a K-Way partition.
However, both methods still require an additional parameter to balance the
segmentation. On the other hand, Density Peak Clustering (DPC) [26] prevents
the OS by a new factor: geometric distance, that is the distance from a point to its
nearest density-higher (NDH) point. The higher this value, the less probability
the point to be a mode. Besides, DPC is extremely slow since it requires finding
every possible NDH connection. Cluster by First Integer Neighbor Hierarchy
(FINCH) |27] applies the first nearest neighbor (15°-NN) as the connectivity to
form the CCs, based on which conduct the K-Way partition. Although FINCH is
a parameter-free algorithm, it disregards the description of local modes, therefore
may suffer from the OS as well.

FastDEC: Clustering By Fast Dominance Estimation 3

To sum up (as Table , these perspectives are critical to our target. Con-
nectivity is used to model the relationships between data points. Similar to the
methods such as DBSCAN, and Meanshift, CCs can be returned directly as
the final result, which leads to clusters with arbitrary shapes, but meanwhile
makes the algorithm difficult to control, e.g., if K-Way partition is explicitly
required. On the other hand, CC is relevant to the algorithm efficiency because
the detected CCs as the densely connected points can be used to further form
the clusters. From this point of view, DPC completely ignores such a density
structure. Avoiding OS is key to the density-based methods as well. Finally,
besides the efficiency and effectiveness, the algorithm robustness is discussed
as well for some parameters are difficult to determine in practice [20}34]. For
example, Quickshift++ and QuickDSC are outstanding for their performances,
however, they need to tune two parameters, k and 3, for various datasets, which
diminishes the robustness of algorithms.

In this work, FastDEC, clustering by fast dominance estimation, is proposed
to fulfill the requirements above. The advantages of FastDEC are highlighted as
follows:

1. Efficient, effective, and robust. It can be viewed as a k-NN graph based
variant of DPC. According to our analysis, all DPC needs is a k-NN graph.
Thus, FastDEC requires only one parameter, that is the number of nearest
neighbors k.

2. Easy to interpret. To further support K-Way partition, dominance-component
(DC) and inter-dominance estimation are formally defined and theoretically
analyzed. In the inter-dominance estimation, the global rank of the NDH
dominator is innovatively involved, which further enhances the performance
of the algorithm;

3. Experiments on distinctive datasets demonstrate that FastDE(T outper-
forms the state-of-the-art including Quickshift++ [20], FINCH [27], and
QuickDSC [36].

2 Related Work

Clustering is a critical analysis tool in data mining and machine learning fields.
Density-based clustering methods such as DBSCAN [15], MeanShift (8], Quick-
Shift [29], and so on [19], effectively identify the clusters with arbitrary shapes.
These methods use a 7-radius ball to estimate the density, which is difficult to
choose in practice. The k-NN DE based methods [2[201/36] are proposed recently
to compute the density efficiently.

However, the mode-seeking clustering suffers from over-segmentation [20].
The mutual k-NN graph [6}/7,/21] is proposed to overcome this problem. The
methods above cannot provide the K-Way partitions. BIRCH [35], Agglomer-
ative clustering |11], and FINCH |[27] are proposed to satisfy this requirement.

! FastDEC is released on https://github.com/gepingyang/FastDEC.

https://github.com/gepingyang/FastDEC

4 Geping Yang et al.

However, they do not utilize the density structure. The K-Mode [4] and the LK-
Mode [31] are able to provide a K-Way partition, but neither of them considers
the connected-component (CC).

DPC [26], an effective clustering algorithm, is proposed to address this lim-
itation. The idea is simple: the importance of each point is evaluated from two
aspects: (1) density; (2) geometric distance: distance to the NDH point. Based
on two aspects jointly, the most significant K points as selected as the seeds and
based on which clusters the remaining points. DPC suffers from two issues: (1)
parameter 7 is hard to determine; (2) computational expensive. Based on DPC,
several works [3]13}/2332] are designed to improve its effectiveness. Meanwhile,
several methods are proposed to accelerate the DPC by space technology [25] or
parallelization approach [1].

3 Preliminaries

Let X = {z1,22,...,2,} be the set of data points, where z; € R/ is an f-
dimensional feature vector, and n is the number of points. The Euclidean dis-
tance is considered exclusively for clustering. A k Nearest Neighbors (k-NN)
graph G = (V, E) is conducted on X, where V denotes the vertex set, and F de-
notes the edge set. Distinguished from the K (capital letter), which corresponds
to top-K significant points or K-Way partition, k-NN (lowercase letter) denotes
the k Nearest Neighbors. For each v € V, its k-NN is provided as N*(v), where
N*(v); denotes the j"-NN of v.

Let d(v) denote the density of vertex v, it is referred to as the degree in
spectral methods |28]. Given a k-NN graph G, d(v) can be computed through a
density estimator. Gaussian Kernel Density Estimator (GKDE) [9] is the most
robust but requires a predefined sphere (by 7). DBSCAN uses a Flat Kernel Den-
sity Estimator (FKDE), and Quickshift++ adopts a k**-NN Density Estimator
(k*"-NN DE).

In FastDEC, given a vertex v, its density is computed by a typical k-NN
Gaussian kernel density :

V—U 2
dw) = Y exp(— 2l 1)

202
ueNE(v)

where ||v — u|| denotes the Euclidean distance between vertices v and u, and o
is the global bandwidth parameter. We straightly set o as the mean value of all
k-NN distances. The definitions of k-NN Flat kernel density estimator and k"
kernel density estimator can be found in Supplement Material.

Based on a density estimator, the density-higher relation is defined as follows:

Definition 1. (density-higher) A vertex u is density-higher (DH) than v if
d(u) > d(v).

FastDEC: Clustering By Fast Dominance Estimation 5

Definition 2. (nearest density-higher) A vertex u is the nearest density-higher
(NDH) vertex of v if (1) w is DH than v and (2) there is no vertex w such that
w is DH than v, and ||v —w|| < ||v — ul].

Both DH and NDH relations are asymmetric.

A vertex with the highest density in a local region is referred to as the
mode [8]. However, depending on density only is insufficient to identify the modes
correctly because of the over-segmentation (OS), that is the nearby vertices
with local maximum densities are detected as distinctive modes [20]. From the
connectivity perspective, they should be grouped as one component for their
dense mutual relations. Quickshift++ [20] resolves this problem by introducing
an additional tolerance parameter S to adjust the “closeness” between modes.
Density Peak Clustering (DPC) addresses the OS by a new factor. For a vertex
v €V, g(v), the geometric distance from v to its NDH vertex is defined as:

min [lv—ul|l, if u exists
g(v) _) ueVid(u)>d(v) (2)
max g(u), otherwise
ueV

v is a local mode if its NDH vertex u exists; otherwise, v is a global mode.

The weight of a vertex is estimated by two factors: w(v) = d(v) - g(v). The
idea is intuitive: the density value (e.g., d(v)) indicates the intensity of density,
while geometric distance g(v) reveals the scope of density. Thus, w(v) jointly
reflects the weight of v from two factors. However, DPC searches for every pos-
sible NDH relation with extremely high time-complexity O(n?). QuickDSC [36]
uses a mutual k-NN graph [20] to reduce the search cost, but requires tuning a
new parameter . Our experiments demonstrate that the good settings of 3 are
diverse in different datasets.

4 Proposed Framework

In this work, we propose FastDEC, a clustering framework by fast dominance
estimation. Its general procedure is described in Figure

1. k-NN density estimation: build the space index on X for the k-NN graph
retrieval. Based on the k-NN graph G, estimate the densities of vertices by
Equation [T}

2. Direct k-NN dominator (DkD) detection: identify the direct k-NN dominator
(DKD) of all vertices from the G; Based on the DkD, a set of dominance-
components can be explicitly identified, where the dominance-component
(DC) is a special form of Connected-Component;

3. DC significance estimation: the significance of DCs is estimated from three
factors. Based on which, the top-K DCs are selected as the seeds;

4. DC-based clustering: the remaining DCs are assigned to their Nearest Den-
sity Higher (NDH) DCs.

6 Geping Yang et al.

(U]
Inout k-NN density e k-NN DC DC inter-dominance DC-based
P estimation detection estimation clustering

Fig. 1. FastDEC consists four primary stages: (1) k-NN density estimation; (2) Direct
kE-NN dominator (DkD) detection; (3) DC significance estimation; (4) DC-based clus-
tering. Visualization is generated on Spiral. (n =312, k =7 and K = 3)

The first stage computes the vertex densities by accessing the k-NN graph G,
which is essential for all density-based methods. Note: FastDEC can adopt an
arbitrary density estimator. k-NN Gaussian Kernel DE (as Equation is used as
the default for several critical characteristics: (1) it is as robust as the 7-ball based
DE (as Table[)); (2) & is easy to control and the only parameter (so as the whole
framework FastDEC); (3) based on the sophisticated index technologies [10l[12],
FastDEC can retrieve a large-scale k-NN graph efficiently. In the second stage,
according to the given k, the DkDs of all vertices are captured as well. It is easy
to show the equivalence between DkD and DC (to be introduced later). In the
third stage, a significance estimation process is performed on the obtained DCs
from three factors including density, geometric distance, and the global rank
of the NDH vertex. The last stage follows the typical process of DPC and
QuickDSC . The DkD detection and the DC significance estimation are the
key components of FastDEC with k as the only control parameter.

4.1 Direct k-NN Dominator (DkD) Detection

Density alone is insufficient to correctly identify the modes/clusters because of
the OS. To overcome it, Quickshift++ is proposed to merge the nearby ver-
tices as the connected-component (CC) by mutual k-NN edges. While Sarfraz et
al. [27] utilize the symmetric 1° Nearest Neighbor (15-NN) relation to segment
the entire k-NN graph into CCs. The obtained CCs are used as the basic units
for further clustering, therefore preventing the OS since the nearby vertices with
high densities are grouped. Meanwhile, both methods enormously reduce the

FastDEC: Clustering By Fast Dominance Estimation 7

graph size from |V| = n to ¢, where ¢ is the number of CCs, therefore accelerate
the clustering process.

In FastDEC, a special CC, the dominance-component (DC) is defined by
combining the NDH relation and k-NN graph. For vertex v, FastDEC attempts
to find its NDH vertex from its k-NN only (i.e., N*(v)). Such a mechanism
results in the direct k-NN dominance, which is defined as follows.

Definition 3. (direct k-NN dominance) A vertez v is directly k-NN dom-
inated by verter u wrt. k if (1) u € N*(v), and (2) u is the NDH vertex of
v.

For better representation, we term v as the dominated vertex and u as the direct
k-NN dominator (DkD) of v. Furthermore, the k-NN dominance is defined
as follows:

Definition 4. (k-NN dominance) A vertez v is k-NN dominated by u wrt. k
if there exists a chain of vertices vi,...,u;, v1 = v, v; = u such that v; is directly
k-NN dominated by viyq.

k-NN dominance is a canonical extension of direct k-NN dominance. It is transi-
tive as the DH, meanwhile, it is not symmetric. The notion of k-NN dominance-
connected is introduced to guarantee symmetry.

Definition 5. (k-NN dominance-connected) A vertex v is k-NN dominance-
connected to a vertexr u wrt. k if there exists a vertex w such that both, u and
v are k-NN dominated by w.

k-NN dominance-connectivity is a symmetric relation. Through direct k-NN
dominance, a vertex iteratively reaches a vertex without DkD. The latter is
more significant and representative, because of the higher density value. We
define such kind of vertices as the k-NN mode:

Definition 6. (k-NN mode) A vertex without k-NN dominator wrt. k, is a k-
NN mode.

k-NN mode is a vertex with the highest density in the local region (i.e., k-NN).
The region is further expanded by the direct k-NN dominance. Intuitively, the
vertices dominated by a k-NN mode have strong affiliations. Now, we define the
E-NN dominance-component (DC).

Definition 7. (k-NN dominance-component) Let V' be the vertex set, and m €
V be a k-NN mode. A k-NN dominance-component DC of m wrt. k is a non-
empty subset of V' satisfying the following conditions:

(1) Yu,v : if u € DC and v is k-NN dominance-connected to u wrt. k, then
v € DC. (Mazimality & Connectivity)

(2) Yv are k-NN dominated by m wrt. k, then v € DC. (Dominance)

Note that the £-NN DC has several critical characteristics:

8 Geping Yang et al.

Algorithm 1 Direct k-NN Dominator (DkD) Detection
Input: X, DB, &
Output: DkD

1: G < Conduct k-NN graph of X by querying DB; > k-NN graph
construction
2: d < Estimate k-NN densities via Equation > k-NN density estimation
3: Initialize DkD(v) as None for v € V; > DkD Initialization
4: for v € V do
5: for j:=1,...k do > search from near to far by varying j in [1, k]
6: if d(v) < d(N*(v)};)) then > N*(v)(;] denotes the j** nearest
neighbor of v
T: DkD(v) := N*(v)1;: > v is dominated by its j*-NN
8: break;
9: end if
10: end for
11: end for

12: Return DkD

1. a DC has only a k-NN mode, that is the vertex with the highest density in
the DC

2. the density values along the path, that starts from a vertex to the k-NN
mode, are guaranteed to be monotonically increasing;

3. the k-NN mode is an excellent representative of DC

4. DCs are mutually disjoint;

The corresponding proofs are omitted because of the space limitation. Note:
noise filtering [15] is compatible with FastDEC, although it is insignificant to
the results of this work. It is disabled in all applicable methods [8,[19,34] by
setting ming,; = 0.

Our concern is to identify the DkD from X. The procedure is described as
Algorithm [I} with the dataset X, the space index DB, and k as input. First,
conduct the k-NN graph (Line 1), and then for each vertex v € V, compute
its density by an arbitrary DE (Line 2), and initialize its DkD as None (Line
3). Second, for each vertex v, we attempt to find its DkD (Lines 4-11), where
J\/k(v)m denotes the j"-NN of v. Finally, the identified DkD information is
returned. In this stage, the vertex without DkD is referred to as a k-NN mode.
Based on the DkD, we can extract the dominance-components (DCs) explicitly
by performing a Hill-Climbing search on all vertices (as Algorithm .

4.2 DC Dominance Estimation

Fundamentally dominator-component (DC) is a set of vertices that are com-
pactly linked through the nearest density-higher (NDH) relations. In Fig. [2] (a),

FastDEC: Clustering By Fast Dominance Estimation 9

Algorithm 2 Hill-Climbing: convert the DkD to DCs DC* and the correspond-
ing modes M* explicitly
Input: DkD
Output: DC*, M*
: MF <« 0;
c:=0; > Count the number of DCs
for v € V do
if DkD(v) is None then
MFE «— MF U wv;
c:=c+1;
DCr {w}; > Initialize DC"
end if
end for
for v € V do
for m:=1,...,cdo
if v is k-NN dominated by M*(m) then;
DCF « DCE U,
end if
end for
: end for
: Return DC*, M*

e e e el
PRSI A R el

Algorithm 3 FastDECp: Typical Density-based Method

Input: X € R"*™, DB, k
Output: clusters C

1: DkD <« Algorithm X DB, k); > DkD Detection
2: DCF, M* + Algorithm (DkD); > Extract DCs from DkD explicitly
3: Return C < DC*. > Return DCs as the Clusters

the change rates of NDH relations of three k-NN relevant density estimatorsE]
are shown, where k varies from 5 to 15. For instance, assume we obtain n NDH
relations if set k& = 10. If we set k = 11, n’ NDH relations are changed, then the
change rate is reported as n’/n for k = 11. Results on change rate demonstrate
that the k-NN Gaussian Kernel based NDH relation is more stable, so it is set
as the default DE.

Besides, NDH is adopted by Quickshift [29], DPC [26], and QuickDSC [36].
The former two methods explicitly search all possible NDH relations and lead
to a huge amount of search cost; the latter uses an additional parameter [
together with a mutual k-NN graph to “avoid” the unnecessary search. Our
proposed k-NN dominance-component is conducted on NDH relation as well
but with the restriction of k-NN. The idea is intuitive: obtain the majority of

2 Density-Reachable (DR) in DBSCAN |[15| is equivalent to 7 based Flat Kernel. For
the sake of comparison, we use a k-NN based one.

10 Geping Yang et al.

=23 NDH by k-NN Flat Kernel === NDH by k'™ -NN Kernel == NDH by k-NN Gaussian Kernel

T T T T T T T T T
60 - -
X L, 200f
2 o)
)
g a0 1 g
& 3
E S 100
O 2 |
\‘\‘\/\/‘\’_‘\‘. %‘
O | | | | | | | | | 0 | | A4 s L o Y 7 S 7Y 9
7 9 11 13 15 5 7 9 11 13
k k

Fig. 2. The change rate of NDH relation and the No. of DCs (¢) on Spiral by varying
k.

such relations from the given k-NN graph, and perform the extra NDH search
for the k-NN modes only. In Fig. [2[(b), the number of obtained DCs ¢ is shown,
with k£ varying from 5 to 15, where c is obtained by counting the number of k-NN
modes. Again, NDH by k-NN Gaussian Kernel is the stablest. More interestingly
and significantly, & can be used to control the number of DCs.

Based on the obtained components (e.g., CC/DC), the computational com-
plexity is heavily reduced, and the algorithm is further enhanced with the capa-
bility of K-Way partition: select top-K significant DCs as the initial seeds/centers
from the obtained ¢ DCs. For CC-enabled methods, several strategies are pro-
posed to find an ideal value of ¢. QuickDSC uses the parameter tuning in a
brute-force manner, while FINCH applies the BIRTH [35] to identify the hierar-
chy structure of CCs, and according to which, generates K clusters. Regarding
FastDEC, as k increases, the number of DCs ¢ — cgiopat, Where cgiopar is the
number of global modes. If k& approaches 0, ¢ — n.

Algorithm [I] returns the DkD of all vertices. By revoking Algorithm [2] a
set of DCs DC" = {DC4,DCs,...,DC.} and the corresponding k-NN modes
M* = {my,ma,...,m.} are obtained for the given k. If ¢ > K, the obtained
DCs are sufficient for the subsequent process (e.g., DC dominance estimate).
Otherwise, it is necessary to reduce the value of k£ to obtain at least K DCs.
Fortunately, this step is extremely efficient by directly accessing the retained
space index DB. Its detail is omitted for the space limitation.

Straightforwardly, similar to the typical density-based methods [8,/15,/19,20],
the obtained DCs with arbitrary shapes can be reported as the clustering out-
come. We term this method the FastDECp, its procedure is described as Al-
gorithm 3] Except for the K-Way partition, FastDECp satisfies most require-

FastDEC: Clustering By Fast Dominance Estimation 11

Algorithm 4 FastDECg: K-Way Partition Method
Input: X e R"*™ Lk K
Output: clusters C
1: DB <« Build the space index on X;
> Stage 1:DkD Detection for X
2: DkD <« Algorithm X, DB, k);
> Stage 2: DC dominance estimation
3: DCF, M* «+ Algorithm (DkD); > Detect DCs and the corresponding
modes explicitly
4: DkDps < Algorithm Mk7 DB,n); > Mode-based DkD Detection for M*
by setting k =n
> Estimate the k-NN significance of modes only.
5: for m; € M* do
6: s(m;) + estimate m; by DkDjys(m;) via Equation
7: end for
> Stage 3: DC-based clustering.
8: C <+ top-K DCs;
9: for DC; € DC and DC; is not top-K DCs do
10: Assign DC; to the cluster C' € C' that includes DkDy;(m;);
11: end for
12: Return C.

ments listed in Table [I} To further support the K-Way partition, FastDECy is
designed.

Similar to DPC and QuickDSC, the density and geometric distance are in-
volved in estimation (as Equation . Additionally, an interesting and novel
factor: the rank of the NDH neighbor is considered as well. For a vertex v € V,
its significance is defined as:

s(v) = d(v) - g(v) - (v) 3)

where r(v) denotes the rank of its NDH neighbor in N*(v). Clearly, r(v) ranges
from 1 to n. The larger r(v), the more significant v is. This factor can be viewed
as global rank information for weighting the dominance of v.

The mode in existing density-based methods [8[26] is 7-based. In QuickDSC
[36], the geometric distance (e.g., g(v)) works as a special form of 7 that is
highly adaptive to the data point (e.g., v). For the significance estimation, the
global rank information in terms of the r(v) is involved. This factor indicates
the relative position of v in the whole dataset X. As a result, our decision map
evolves from 2-dimensional to 3-dimensional (as Figure [1f).

On the other hand, it seems that the involvement of r(v) heavily aggravates
the search cost of estimation. Fortunately, the significance (s(v)) is consistent to
the vertex weight (w(v)) adopted in DPC and QuickDSC.

Theorem 1. Given a k-NN dominance component DC with its k-NN mode m,
its significance value s(m) > s(v) for all vertices v € DC' if w(m) > w(v).

12 Geping Yang et al.

Proof. Rewrite s(v) = w(v) - r(v). It is easy to infer that r(m) > r(v) definitely
for all v € DC, because r(v) < k and r(m) > k. The theorem holds since
r(m) > r(v) and w(m) > w(v) for all v € DC.

Regarding the vertex weight w(v), it is easy to infer that d(m) > d(v) for all
v € DC since m is the k-NN mode. For the geometric distance, g(m) > g(v) in
the majority of the cases [36]. Therefore, once the DCs and the corresponding
modes are obtained, we only need to estimate the significance of the
modes.

The general procedure is described as Algorithm (4l First, a space index DB
is built on X (Line 1). Based on this, the DkD detection is executed for X (Line
2). Second, the DCs and the corresponding modes are explicitly found (Line 3).
For each mode m;, since its density is known, its geometric distance and the
global rank are computed by querying the DB (Line 4). Meanwhile, the DkD
information of the modes, denoted as DkD,,, is detected as well. Therefore, it
is possible to estimate the “n-INN significance” of modes (Lines 5-7). The
last stage of FastDEC follows the general process of DPC and QuickDSC: top-
K significant modes are selected as the seeds (Line 8). The remaining DCs are
assigned to the clusters according to the DkDy, (Lines 9-11).

4.3 Complexity Analysis and Implementation

FastDECg consists of an initial stage, and three major stages. FastDECp in-
cludes the initial stage, DkD detection, and a hill-climbing process. The initial
stage requires building a space index (e.g., DB), and the DkD detection stage
utilizes it to construct a k-NN graph. We use KD-Tree as the default space in-
dex, and Random Project Tree [10] + Nearest Neighbor Descend [12] are used to
obtain the approximate k-NN by considering the scalability. Both ways require a
complexity of O(nlog(n)k). The DkD detection requires a complexity of O(nk).
DC significance estimation costs a complexity of O(clog(n)k + cn) where ¢ is the
number of DCs. The last stage needs a complexity of ¢K. The most consuming
step is the k-NN graph retrieval, the whole framework is still near-linear to n
and k. FastDEC is implemented by Python, NumPyﬂ is used for acceleration.
We might further speed up our framework with parallel technologies.

5 Evaluation

To evaluate the performance of FastDEC, experiments are conducted on several
artificial and real-world datasets of different sizes.

Datasets. The artificial and real-world datasets are selected from various
sources. Details of the employed datasets are described in Table 2] and Principal
Component Analysis (PCA), as a typical preprocessing of step dimension reduc-
tion, is applied on MNIST to reduce the number of feature dimensions from 784
to 20.

3 https://numpy.org/

FastDEC: Clustering By Fast Dominance Estimation 13

Table 2. Datasets In Evaluation.

Name # instances|# features|# classes type
banana-ball [24] 2,000 2 3 Artificial
Flame [17] 240 2 2 Artificial
R15 [30] 600 2 15 | Artificial
Spiral [5] 312 2 3 Artificial
S2 [16) 5,000 2 15 Artificial
seeds [14] 210 7 3 Real-World
Banknote [14] 1,372 4 2 Real-World
Segmentation |14]| 2, 310 19 7 Real-World
Phonemes [18§] 4,509 258 5 Real-World
MFCCs [14] 7291 22 10 |Real-World
MNIST [22] 70,000 20 10 |Real-World

Table 3. ARI Comparison (%) on Artificial and Real-world datasets. The best and
second best results are highlighted by bold and underline respectively.

Typical Density-based Methods K-Way Partition Methods
Datasets |DBSCAN Meanshift Quickshift Quickshift++ FastDECp |[FINCH DPC QuickDSC SNN-DPC FastDEC
banana-ball | 47.70 62.70 90.57 99.67 99.83 74.96 69.66 99.50 99.83 99.83
Flame 19.93 7.41 98.81 100.00 100.00 0.00 72.78 100.00 95.02 100.0C
R15 26.37 98.21 92.78 99.28 99.28 |99.28 73.94 99.28 99.28 99.28
Spiral 1.00 10.22 100.00 58.77 100.00 | 0.01 98.56 58.76 100.00 100.0C
S2 0.00 93.83 92.64 92.80 93.67 88.01 48.15 93.47 92.89 93.67
seeds 38.39 72.37 61.66 70.76 70.76 39.10 68.23 77.27 78.36 76.64
Banknote 82.60 17.81 28.33 95.39 95.67 10.86 89.25 95.39 83.53 96.53
Segmentation| 40.38 51.27 47.17 49.23 59.66 42,99 57.80 60.59 60.26 60.94
Phonemes 42.36 40.82 71.10 74.95 76.51 65.59 79.59 74.60 73.37 76.51
MFCCs 13.65 35.74 17.17 43.69 47.02 24.35 15.77 23.99 27.04 31.74
MNIST 6.74 21.98 N/A 46.41 46.84 N/A N/A 35.96 N/A 45.05

Baselines. FastDECp is compared with typical density-based methods: DB-
SCAN [15], Meanshift [8], Quickshift [29] and Quickshift++ [20]. FastDECg
is compared with the methods that support K-Way partition: FINCH |[27],
DPC [26], SNN-DPC [23], and QuickDSC [33]. More specifically, some recent
DPC-based methods [1}3,|13}25,[32] are not involved, for the unavailability of
their implementations.

Evaluation Metric. We use the Adjusted Rand Index (ARI), Normalized
Mutual Information (NMI) and Adjusted Mutual Information (AMI) to evaluate
the clustering results. For all metrics, the higher value indicates better perfor-
mance. AMI-based results can be found in Supplement Material.

Experiment Setup. All experiments are executed on a Win-10 64-bits ma-
chine with Intel(R) Core i5—9400F CPU(2.90GH z), and 16 GB of main memory.
For the k-NN based methods: Quickshift++, QuickDSC, FastDECp, SNN-DPC
and FastDECg, k is varied from 5 to 200 with step size 5 in all datasets. Re-
garding 7-ball based methods: DBSCAN, Meanshift, Quickshift, and DPC, 7

14 Geping Yang et al.

Table 4. NMI (%) on Artificial and Real-world datasets. The best and second best
results are highlighted by bold and underline respectively.

Typical Density-based Methods K-Way Partition Methods
Datasets |DBSCAN Meanshift Qucikshift Quickshift++ FastDECp |FINCH DPC QuickDSC SNN-DPC FastDE!
banana-ball | 67.98 61.72 88.53 99.30 99.65 80.17 68.73 99.10 99.65 99.6!
Flame 37.45 32.88 97.06 100.00 100.00 | 15.25 79.76 100.00 89.94 100.0
R15 74.25 98.65 97.97 99.42 99.42 | 99.42 92.02 99.42 99.42 99.4:
Spiral 100.00 45.44 100.00 59.57 100.00 | 40.10 98.05 59.57 100.00 100.0
S2 0.00 94.62 93.85 94.08 94.52 93.20 77.18 94.38 94.09 94.5:
seeds 46.17 69.00 64.33 67.97 67.97 50.79 65.03 73.23 74.10 73.2€
Banknote 73.58 26.63 44.63 91.94 92.35 13.19 83.00 91.94 78.49 93.5¢
Segmentation| 60.16 62.37 65.44 71.13 73.03 59.71 70.78 72.45 68.34 73.8:
Phonemes 60.28 60.75 73.12 84.00 85.41 72.10 88.65 83.53 82.74 85.41
MFCCs 52.30 68.00 66.06 74.83 74.22 61.51 49.35 58.27 61.27 63.1(
MNIST 23.52 39.40 N/A 64.80 66.56 N/A N/A 54.74 N/A 66.2!
Table 5. Overall runtime (secs) on Artificial and Real-world datasets. The best and
second best results are highlighted by bold and underline respectively.
Typical Density-based Methods K-Way Partition Methods
Datasets |DBSCAN Meanshift Quickshift Quickshift++ FastDECp |[FINCH DPC QuickDSC SNN-DPC FastDEC
banana-ball 0.02 9.17 0.40 0.05 0.04 0.15 2.63 0.15 25.55 0.04
Flame 0.00 0.54 _0.01 0.00 0.00 0.03 0.01 0.00 0.34 0.00
R15 0.00 1.01 0.03 0.01 0.00 0.03 0.07 0.01 1.94 0.00
Spiral 0.00 0.38 0.04 0.00 0.00 0.11 0.02 0.00 0.49 0.00
S2 0.05 12.44 1.66 0.05 0.04 0.57 4.56 0.07 207.52 0.04
seeds 0.00 0.16 0.01 0.00 0.00 0.04 0.02 0.00 0.43 0.00
Banknote 0.01 6.49 0.15 0.08 0.03 0.13 0.39 0.05 19.95 0.02
Segmentation| 0.09 8.68 0.30 0.21 0.14 0.14 1.08 0.17 41.38 0.14
Phonemes 0.27 180.57 1.08 7.71 7.12 0.59 4.17 7.46 123.40 7.02
MFCCs 0.74 30.36 2.96 1.02 0.96 1.11 10.74 1.28 413.45 1.08
MNIST 31.00 8306.19 N/A 237.38 200.43 N/A N/A 210.05 N/A 178.4¢

varies from 0.05 to 2 with step size 0.05 in all datasets. DBSCAN requires an
additional parameter min,; that corresponds to the noise filtering. Regarding
PCA, we also use the implementation provided by Scikit-Learn. Besides, Quick-
shift++ and QuickDSC need a parameter 8, we vary it from 0.1 to 0.3 with step
size 0.1.

5.1 Comparison on Artificial and Real-World Datasets

The evaluation of the clustering results on real-world datasets is shown in Ta-
ble 3] Table[d] and Table[5] The bold represents the best result, and the second-
best result is highlighted by underline, “N/A” denotes we cannot obtain the
clustering result on the experimental host (e.g., Out-of-Memory). By varying
the control parameters, for each method, the best clustering result and the cor-

FastDEC: Clustering By Fast Dominance Estimation 15

responding execution time is reported. The runtime 0.00 indicates that the run-
time is less than 0.005 seconds. Note: rather than the Nearest Density Higher
(NDH) relation, FastDEC adopts the Nearest Density Higher or Equal (NDHE)
relation in the Segmentation.

Based on the tables above, several findings are drawn:

1. FastDEC (two versions) always achieves the best or the second-best results
among all datasets. The performance of the 7-ball based methods (DBSCAN,
DPC, Meanshift, Quickshift) is relatively poor. The performance of Quick-
shift++ and QuickDSC are competitive. The former is a typical density-
based method, while the latter is a K-Way partition method;

2. Both Quickshift++ and QuickDSC need an additional parameter 8 which
requires extra effort in tuning. FINCH is parameter-free by ignoring the
mode information, thus its performance is relatively poor. For our method,
only FastDECp needs to tune the k, but still, the overall performance by
varying k is outstanding and robust;

3. Regarding the algorithm runtime, there is no doubt that DBSCAN is the
fastest method. FINCH is quite fast as well by utilizing the 15-NN graph.
On the contrary, SNN-DPC is rather slow for extracting shared-nearest-
neighbor relations. However, the methods above ignore the DH information
and lead to a substantial reduction in clustering quality. FastDEC obtains
the best or the second-best result in terms of the runtime on almost all
datasets, which demonstrates its efficiency.

To sum up, FastDEC provides a balanced yet excellent solution that considers
effectiveness, efficiency, and parameter-tuning.

5.2 Robustness Testing

Now, we test the robustness of the algorithm parameters. We only demonstrate
the experiments on two datasets MFCCs and MNIST, more results are attached
as Supplement Material. Again, comparisons are conducted for typical density-
based methods and K-Way partition methods separately. For the former, Mean-
shift, Quickshift, DPC and DBSCAN use the primary parameter 7, but the
remaining use the k. We convert them into the same granularity: for example,
setting k£ = 1 is identical to setting 7 = 0.01. For parameter 3, we use the sug-
gested setting 0.3 [20]. Specifically, Figure 3| (a) and Figure [3| (b) show the NMI
results of the typical density-based methods in the MFCCs and MNIST respec-
tively. Figure [3| (¢) and Figure [3| (d) are that of the K-Way partition methods
respectively. According to Figure [3] (a) and Figure[3] (b), 7-based algorithms are
parameter sensitive, so it is difficult to capture the best setting. On the other
hand, the performance of k-based algorithms, especially the FastDECp, is quite
stable. It again demonstrates our method is robust. Regarding the K-Way par-
tition, the performance of FastDEC g is compromised as well. It completely out-
performs the other algorithms including the parameter-free algorithm FINCH.

16 Geping Yang et al.

E= DBSCAN =] Meanshift E2=1 Quickshift === Quickshift++ E®= FastDECp
E= FINCH E= DPC [SNN-DPC E0 QuickDSC [E& FastDECk

80\\\\\\\\\\\\\\\\\\\\ T T T T T T T T T T I T T T T T T 711

NMI

NMI

) Y Y Y) Y Y Y
0 40 80 120 160 200 O 40 80 120 160 200

(c) k, 7 (d) k, 7

Fig. 3. Robustness Testing of parameters k and 7 on MFCCs, MNIST.

6 Conclusion

In this paper, we propose FastDEC, a novel density-based clustering framework.
It provides two versions to satisfy different requirements: FastDECp for iden-
tifying the clusters with arbitrary shapes, and FastDECg for K-Way partition.
FastDEC detects the nearest density higher (NDH) relation from a k-NN graph
and forms the dominance-component (DC), based on which, conduct the clus-
ters. The experiments on real-world datasets demonstrate that our method has
excellent performance, meanwhile, it is efficient and easy to tune. In the future,
we consider a distributed version of FastDEC to handle the extremely large
datasets.

FastDEC: Clustering By Fast Dominance Estimation 17

Acknowledgment We thank the anonymous reviewers for their constructive
comments and thoughtful suggestions. This work was supported in part by: Na-
tional Key D&R Program of China (019YFB1600704, 2021Z2D0111501), NSFC
(61603101, 61876043, 61976052), NSF of Guangdong Province (2021A1515011941),
State’s Key Project of Research and Development Plan (2019YFE0196400),
NSF for Excellent Young Scholars (62122022), Guangzhou STIC (EF005/FST-
GZG/2019/GSTIC), NSFC-Guangdong Joint Fund (U1501254), the Science and
Technology Development Fund, Macau SAR (0068/2020/AGJ, 0045/2019/A1,
SKL-IOTSC(UM)-2021-2023, GDST (2020B1212030003).

References

1. Amagata, D., Hara, T.: Fast density-peaks clustering: Multicore-based paralleliza-
tion approach. In: SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021. pp. 49-61. ACM (2021)

2. Angelino, C.V., Debreuve, E., Barlaud, M.: Image restoration using a knn-variant
of the mean-shift. In: ICIP. pp. 573-576. IEEE (2008)

3. Cai, J., Wei, H., Yang, H., Zhao, X.: A novel clustering algorithm based on DPC
and PSO. IEEE Access 8, 88200-88214 (2020)

4. Carreira-Perpinan, MA7 Wang, W.: The k-modes algorithm for clustering. CoRR,
abs/1304.6478 (2013)

5. Chang, H., Yeung, D.: Robust path-based spectral clustering. Pattern Recognit.
41(1), 191-203 (2008)

6. Chaudhuri, K., Dasgupta, S.: Rates of convergence for the cluster tree. In: NIPS.
pp. 343-351. Curran Associates, Inc. (2010)

7. Chaudhuri, K., Dasgupta, S., Kpotufe, S., von Luxburg, U.: Consistent procedures
for cluster tree estimation and pruning. IEEE Trans. Inf. Theory 60(12), 7900-7912
(2014)

8. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal.
Mach. Intell. 17(8), 790-799 (1995)

9. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space
analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603-619 (2002)

10. Dasgupta, S., Freund, Y.: Random projection trees and low dimensional manifolds.
In: STOC. p. 537-546 (2008)

11. Davidson, I., Ravi, S.S.: Agglomerative hierarchical clustering with constraints:
Theoretical and empirical results. In: PKDD. vol. 3721, pp. 59-70. Springer (2005)

12. Dong, W., Charikar, M., Li, K.: Efficient k-nearest neighbor graph construction
for generic similarity measures. In: WWW. pp. 577-586. ACM (2011)

13. Du, M., Ding, S., Jia, H.: Study on density peaks clustering based on k-nearest
neighbors and principal component analysis. Knowl. Based Syst. 99, 135-145
(2016)

14. Dua, D., Graff, C.: UCI machine learning repository (2017), http://archive.ics.
uci.edu/ml

15. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD. pp. 226-231 (1996)

16. Franti, P., Virmajoki, O.: Iterative shrinking method for clustering problems. Pat-
tern Recognit. 39(5), 761-775 (2006)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

18

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Geping Yang et al.

Fu, L., Medico, E.: Flame, a novel fuzzy clustering method for the analysis of DNA
microarray data. BMC Bioinform. 8 (2007)

Hastie, T., Friedman, J.H., Tibshirani, R.: The Elements of Statistical Learning;:
Data Mining, Inference, and Prediction. Springer Series in Statistics, Springer
(2001)

Hinneburg, A., Keim, D.A.: An efficient approach to clustering in large multimedia
databases with noise. In: KDD. pp. 58-65 (1998)

Jiang, H., Jang, J., Kpotufe, S.: Quickshift++: Provably good initializations for
sample-based mean shift. In: ICML. vol. 80, pp. 2299-2308. PMLR (2018)

Jiang, H., Kpotufe, S.: Modal-set estimation with an application to clustering. In:
AISTATS. vol. 54, pp. 1197-1206. PMLR, (2017)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278-2324 (1998)

Liu, R., Wang, H., Yu, X.: Shared-nearest-neighbor-based clustering by fast search
and find of density peaks. Inf. Sci. 450, 200226 (2018)

Myhre, J.N., Mikalsen, K.Q., Lgkse, S., Jenssen, R.: Robust clustering using a knn
mode seeking ensemble. Pattern Recognit. 76, 491-505 (2018)

Rasool, Z., Zhou, R., Chen, L., Liu, C., Xu, J.: Index-based solutions for efficient
density peak clustering (extended abstract). In: 37th IEEE International Confer-
ence on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021. pp.
2342-2343. IEEE (2021)

Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science
344(6191), 1492-1496 (2014)

Sarfraz, M.S., Sharma, V., Stiefelhagen, R.: Efficient parameter-free clustering us-
ing first neighbor relations. In: CVPR. pp. 8934-8943 (2019)

Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22(8), 888-905 (2000)

Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: ECCV.
vol. 5305, pp. 705-718. Springer (2008)

Veenman, C.J., Reinders, M.J.T., Backer, E.: A maximum variance cluster algo-
rithm. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1273-1280 (2002)

Wang, W., Carreira-Perpindn, M.A.: The laplacian k-modes algorithm for cluster-
ing. CoRR abs/1406.3895 (2014)

Xie, J., Gao, H., Xie, W., Liu, X., Grant, P.W.: Robust clustering by detecting
density peaks and assigning points based on fuzzy weighted k-nearest neighbors.
Inf. Sci. 354, 1940 (2016)

Yang, Y., Deng, S., Lu, J., Li, Y., Gong, Z., U, L.H., Hao, Z.: Graphlshc: Towards
large scale spectral hypergraph clustering. Inf. Sci. 544, 117-134 (2021)

Yang, Y., Gong, Z., Li, Q., U, L.H., Cai, R., Hao, Z.: A robust noise resistant
algorithm for POI identification from flickr data. In: IJCAI. pp. 3294-3300. ijcai.org
(2017)

Zhang, T., Ramakrishnan, R., Livny, M.: SIGMOD. pp. 103-114. ACM Press
(1996)

Zheng, X., Ren, C., Yang, Y., Gong, Z., Chen, X., Hao, Z.: Quickdsc: Clustering
by quick density subgraph estimation. Inf. Sci. 581, 403-427 (2021)

	FastDEC: Clustering By Fast Dominance Estimation

