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Abstract. Combinatorial optimization problems are encountered in
many practical contexts such as logistics and production, but exact
solutions are particularly difficult to find and usually NP-hard for
considerable problem sizes. To compute approximate solutions, a zoo of
generic as well as problem-specific variants of local search is commonly
used. However, which variant to apply to which particular problem is
difficult to decide even for experts.
In this paper we identify three independent algorithmic aspects of such
local search algorithms and formalize their sequential selection over an
optimization process as Markov Decision Process (MDP). We design a
deep graph neural network as policy model for this MDP, yielding a
learned controller for local search called NeuroLS. Ample experimental
evidence shows that NeuroLS is able to outperform both, well-known
general purpose local search controllers from the field of Operations Re-
search as well as latest machine learning-based approaches.

Keywords: combinatorial optimization · local search · neural networks.

1 Introduction

Combinatorial optimization problems (COPs) arise in many research areas and
applications. They appear in many forms and variants like vehicle routing[43],
scheduling[41] and constraint satisfaction[44] problems but share some general
properties. One of these properties is that most COPs are proven to be NP-hard
which makes their solution very complex and time consuming. Over the years
many different solution approaches were proposed. Exact methods like branch-
and-bound [26] attempt to find the global optimum of a COP based on smart
and efficient ways of searching the solution space. While they are often able to
find the optimal solution to small scale COPs in reasonable time, they require a
significant amount of time to tackle larger instances of sizes relevant for practical
applications. For that reason, heuristic methods were proposed which usually
cannot guarantee to find the global optimum but sometimes can define a lower
bound on the performance, which can be achieved at a minimum, and have shown
good empirical performance. One common and well-known heuristic method is
local search (LS)[1]. The main concept of LS is to iteratively explore the search
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space of candidate solutions in the close neighborhood of the current solution by
applying small (local) changes. Simple LS procedures, like hill climbing, easily
get stuck in bad local optima from which it cannot escape anymore. Therefore,
LS is commonly used in combination with meta-heuristics which enable the
procedure to escape from local optima and achieve better final performance. The
meta-heuristics introduced in section 2.2 are well established in the optimization
community and have demonstrated very good performance on a plenitude of
different COPs.

Since a few years however, there is an increasing interest in leveraging meth-
ods from the field of machine learning (ML) to solve COPs, as recent develop-
ments in neural network architectures, involving Transformers[47] and Graph
Neural Networks (GNNs)[52], have led to significant progress in this domain.
Most work based on ML is concerned with auto-regressive approaches to con-
struct feasible solutions[17,24,49,53], but there is also some work which focuses
on iterative improvement[6,28,51] or exact solutions[10,33] for COPs. While the
existing improvement approaches share some similarities with meta-heuristics
and local search, the exact formulation of the methods is often problem specific
and misses the generality of the LS framework as well as a clear definition of the
intervention points which can be used to control the meta-heuristic procedure.

In this work we present a consistent formulation of learned meta-heuristics in
local search procedures and show on two representative problems how it can be
successfully applied. In our experiments we compare our method to well-known
meta-heuristics commonly used with LS at the example of capacitated vehicle
routing (CVRP) and job shop scheduling (JSSP). The results show that our
GNN-based learned meta-heuristic consistently outperforms these methods in
terms of speed and final performance. In further experiments we also establish
our method in the context of existing ML solution approaches.

Contributions

1. We identify and describe three independent algorithmic aspects of local
search for COPs, each with several alternatives, and formalize their sequen-
tial selection during an iterative search run as Markov Decision Process.

2. We design a deep graph neural network as policy model for this MDP, yield-
ing a learned controller for local search called NeuroLS.

3. We provide ample experimental evidence that NeuroLS outperforms both,
well-known general purpose local search controllers from the Operations
Research literature (so called meta-heuristics) as well as earlier machine
learning-based approaches.

2 Related Work

There is a plenitude of approaches and algorithms to tackle combinatorial op-
timization problems. One common heuristic method is Local Search (LS)[1]. In
the classical discrete optimization literature it is often embedded into a meta-
heuristic procedure to escape local optima.
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2.1 Construction Heuristics

Construction algorithms are concerned with finding a first feasible solution for a
given COP. They usually start with an empty solution and consecutively assign
values to the respective decision variables to construct a full solution. Well-known
methods are e.g. the Savings heuristic[7] for vehicle routing problems or priority
dispatching rules (PDR)[5] for scheduling. Most improvement and meta-heuristic
methods require a feasible initial solution from which they can start to improve.

2.2 Meta-Heuristics

Meta-heuristics are the go-to method for complex discrete optimization prob-
lems. They effectively balance the exploration of the solution space and the
exploitation of promising solutions. There are two major types of methods:

Trajectory-based Methods Trajectory-based methods include many well-
known approaches which are used in combination with LS. During the search
they only maintain a single solution at a time which is iteratively changed and
adapted. Simulated Annealing (SA) is a probabilistic acceptance strategy based
on the notion of controlled cooling of materials first proposed in [22]. The idea
is to also accept solutions which are worse than the best solution found so far
to enable exploration of the search space but with a decreasing probability to
increasingly focus on exploitation the further the search advances. Iterated Local
Search (ILS)[27] alternates between a diversification and an intensification phase.
In the diversification step the current solution is perturbed while the alternating
intensification step executes a greedy local search with a particular neighbor-
hood. Variable Neighborhood Search (VNS)[31] employs a similar diversification
step but changes the type of the applied LS move after each perturbation (in a
predefined order) to systematically control the LS neighborhood in the intensifi-
cation phase. Tabu Search (TS) was proposed by Glover[12] and is based on the
possible acceptance of non-improving moves and a so called tabu list, a kind of
filter preventing moves which would keep the search stuck in local optima. This
list acts as a memory which in the simplest case stores the solutions of the last
k iterations and prevents changes which would move the current solution back
to solutions encountered in recent steps. Instead of using a tabu list, Guided Lo-
cal Search (GLS)[50] relies on penalties for different moves to guide the search.
These penalties are often based on problem specific features in the solution, e.g.
the edges between nodes in a routing problem, and are added to the original
objective function of the problem when the LS gets stuck.

Population-based Methods In comparison to trajectory-based
approaches population-based methods maintain a whole pool of different
solutions throughout the search. Methods include different evolutionary
algorithms, particle swarm optimization and other bio-inspired algorithms such
as ant colony optimization [11]. Their main idea is based on different adaption,
selection and recombination schemes to refine the solution pool during search in
order to find better solutions. While a learned population based meta-heuristic
is interesting and potentially promising, in this paper we focus on the impact
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and effectiveness of a learned trajectory-based approach. More information on
advanced meta-heuristics can be found in [11].

2.3 Machine Learning based Methods

In recent years an increasing number of ML-based methods has been proposed.
While some work relies on supervised[19,42,49] or unsupervised[20] learning,
most current state-of-the-art methods use reinforcement learning (RL). A large
fraction of the work focuses on auto-regressive models which learn to sequentially
construct feasible solutions from scratch. Such methods have been proposed for
many common COPs including the TSP[3,21], CVRP[24,25,34], CVRP-TW[9]
and JSSP[15,36,37,53]. The second type of methods is concerned with improve-
ment approaches. Hudson, Malencia and Prorok[18] propose an LS approach
guided by an underlying GNN for the TSP. Chen and Tian[6] design a model
to rewrite sub-sequences of the problem solution for the CVRP and JSSP based
on a component which selects a specific element of the solution and a second
component parameterizing a heuristic move to change that part of the solution.
However, their model is limited to specific problem settings with a fixed number
of jobs and machines or customers while our approach works seamlessly for dif-
ferent problem sizes, as we show in the experiments in section 5.3. In contrast,
the authors in [28] learn a policy that selects a specific LS move at each iteration.
However, their method incurs prohibitively large computation times and for this
reason is not competitive with any of the recent related work [23,25,29]. The
authors in [16] learn a repair operator to re-construct heuristically destroyed so-
lutions in a Large Neighborhood Search. Finally, da Costa et al.[35] learn a model
to select node pairs for 2-opt moves in the TSP while Wu et al.[51] learn a similar
pair-wise selection scheme for 2-opt, node swap and relocation moves in TSP and
CVRP. The authors in [29] further improve on the method in [51] by introduc-
ing the Dual-aspect collaborative Transformer (DACT) model. Although there
exist advanced inference approaches[15] to further improve the performance of
auto-regressive ML methods on COPs, here we focus on the vanilla inference via
greedy decoding or sampling.

While these methods share some similarities with our approach, they ignore
the importance of being able to reject unpromising moves to escape local optima,
whereas our approach specifically focuses on this important decision point to
effectively control the search. Moreover, our approach is also able to learn when
to apply a particular perturbation if the rejection of a sequence of moves is not
sufficient for exploration. A detailed overview of the current machine learning
approaches to COPs is given in [4,30].

3 Preliminaries

3.1 Problem Formulation

A Combinatorial Optimization Problem Ω is defined on its domain DΩ which
is the set of its instances x ∈ DΩ . A COP instance x is usually given by a pair
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(SΩ , fΩ) of the solution space S consisting of all feasible solutions to Ω and a
corresponding cost function f : S → R. Combinatorial optimization problems
normally are either to be minimized or maximized. In this paper we consider all
COPs to be problems for which the cost of a corresponding objective function
has to be minimized. The main concern is to find a solution s∗ ∈ S representing
a global optimum, i.e. f(s∗) ≤ f(s) ∀s ∈ S.

3.2 Local Search

LS is a heuristic search method which is based on the concept of neighborhoods.
A neighborhood N (s) ⊆ S of solution s ∈ S represents a set of solutions which
are somehow close to s. This “closeness” is defined by the neighborhood function
Nϕ w.r.t. some problem specific operator ϕ ∈ ΦΩ (e.g. all solutions which can
be reached from the current solution by an exchange of nodes). Moreover, we
always consider s to be part of its own neighborhood, i.e. s ∈ N (s). Then the
local optimum ŝ in the neighborhood N satisfies f(ŝ) ≤ f(s) ∀s ∈ N (ŝ). A
general LS procedure (see algorithm 1) iterates through the neighborhood N (s)
of the current solution s until it finds the local optimum ŝ.

Algorithm 1: Local Search
input: cost function f , solution s, neighborhood function N ,

acceptance rule accept, stopping rule stop,
1 while not stop(s) do
2 find s′ ∈ N (s) for which accept(s, s′)
3 s← s′

4 return s

3.3 Meta-Heuristics

Meta-heuristics wrap an LS procedure to enable it to escape from local optima
and to explore the solution space more efficiently. Some of the most common
meta-heuristic strategies were described in section 2.2. Algorithm 2 describes a
general formulation of a trajectory-based meta-heuristic procedure. Each partic-
ular strategy takes different decisions about restarting or perturbing the current
solution, configuring the local search and accepting intermediate candidate so-
lutions s′ (see algorithm 1). Some decisions can be fixed and are treated as
hyper-parameters for some methods. For example, an SA procedure normally
does not select a specific neighborhood but just decides about acceptance dur-
ing the LS. Other approaches like VNS greedily accept all improving moves but
apply a perturbation and select a new operator neighborhood every time a local
optimum has been reached.
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Algorithm 2: Meta-Heuristic (trajectory-based)
input: Solution space S, cost function f , stopping criterion

1 s← construct(S) // Construct initial solution
2 while not stopping criterion do
3 s← perturb(S, s) // Decide if to perturb/restart
4 N ← GetNeighborhood(S, s) // Define search neighborhood
5 s← LocalSearch(f, s,N , accept, stop) // Execute local search
6 return s

4 Proposed Method

4.1 Intervention Points of Meta-Heuristics for Local Search

The application of meta-heuristic strategies to an underlying LS involves several
points of intervention, at which decisions can be made to help the search escape
local optima in order to guide it towards good solutions. In the following, we
define three such intervention points that have a significant impact on the search:

1. Acceptance: The first intervention point is the acceptance of candidate solu-
tions s′ in an LS step (algorithm 1, line 2). A simple hill climbing heuristic
is completely greedy and only accepts improving moves, which often leaves
the search stuck in local optima very quickly. In contrast, other approaches
like SA will also accept non-improving moves with some probability.

2. Neighborhood : The second possible decision a meta-heuristic can make is the
selection of a particular operator ϕ that defines the neighborhood function
Nϕ for the LS (algorithm 2, line 4). Possible operators for scheduling or rout-
ing problems could for example be a node exchange. While many standard
approaches like SA and ILS only use one particular neighborhood which they
treat as a hyper-parameter, VNS is an example for a method that selects a
different operator defining a particular neighborhood at each step.

3. Perturbation: Many meta-heuristics like ILS and VNS employ perturbations
ψ ∈ ΨΩ to the current solution to move to different regions of the search space
and escape particularly persistent local optima. Such a perturbation can
simply be a restart from a new stochastically constructed initial solution, a
random permutation of (a part of) the current solution or a random sequence
of operations. The decision when to employ a perturbation (algorithm 2, line
5) is commonly done w.r.t. a specific pre-defined number of steps without
improvement.

4.2 Meta-Heuristics as Markov Decision Process

In this section we formulate meta-heuristics in terms of an MDP[40] to enable
the use of RL approaches to learn a parameterized policy to replace them. In
general an MDP is given by a tuple (S,A,P(st, at),R(st, at)) representing the
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set of states S, the set of actions A, transition probability function P(st, at) and
reward function R(st, at). For our method we define these entities in terms of
meta-heuristic decisions as follows:

States We define the state st of the problem at time step t with slight abuse
of notation as the solution s at time step t, combined with 1) its cost f(s), 2)
the cost f(ŝt) of the best solution found so far, 3) the last acceptance decision,
4) the last operator used, 5) current time step t, 6) number of LS steps without
improvement and 7) the number of perturbations or restarts.

Actions Depending on the policy we want to train, we define the action set
as the combinatorial space of

1. Acceptance decisions: a boolean decision variable of either accepting or re-
jecting the last LS step

AA := {0, 1}, (1)

2. Acceptance-Neighborhood decisions: the joint space of the acceptance of the
last move and the set of possible operators ϕ ∈ Φ which define the search
neighborhood(s) Nϕ for the next step

AAN := {0, 1} × Φ, (2)

3. Acceptance-Neighborhood -Perturbation decisions: the joint space of accep-
tance and the combined sets of operators ϕ ∈ Φ and perturbations ψ ∈ Ψ

AANP := {0, 1} × {Φ ∪ Ψ}. (3)

Transitions The transition probability function P(st, at) models the state
transition from state st to the next state st+1 depending on action at representing
the acceptance decision, the next operator ϕ and a possible perturbation or
restart, which is part of the problem state (or action in case of AANP).

Rewards The reward function R(st, at) gives the reward for a transition
from state st to the next state st+1. Here we define the reward rt as the relative
improvement of the last LS step (defined by action at) w.r.t. the cost of the best
solution found until t and clamped at 0 to avoid negative rewards:

rt := max(f(ŝt)− f(st+1), 0) (4)

Policy We employ Deep Q-Learning[46] and parameterize the learned policy
πθ via a softmax over the corresponding Q-function Qθ(st, at) which is repre-
sented in turn by our GNN-based encoder-decoder model with trainable param-
eters θ:

πθ(at | st) =
exp(Qθ(st, at))∑
A exp(Qθ(st, at))

. (5)

4.3 Model Architecture

In this section we describe our encoder and decoder models to parameterize
Qθ(st, at). Many COPs like routing and scheduling problems have an underlying
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graph structure which can be used when encoding these problems, providing an
effective inductive bias for the corresponding learning methods. In general we
assume a graph G = (V, E) with the set of nodes V, N = |V| and the set of
directed edges E ⊆ {(i, j) ⊆ V}. Moreover, we assume an original node feature
matrix X ∈ RN×din and edge features ei,j ∈ R for each edge (i, j). To leverage
this structural information many authors have used Recurrent Neural Networks
[3,6,49], Transformers[24,25,29,47] or Graph Neural Networks (GNN)[19,35,53].

Encoder
Since edge weights are very important in COP graphs, we employ a simple
version of the GNN operator proposed in [32] with GELU[14] activations which
can directly work with edge weights and outperformed GAT[48] and ReLU in
preliminary experiments. The resulting GNN layer is defined as:

h
(l)
i = GNN(l)(h

(l−1)
i )

= GELU
(
MLP

(l)
1 (h

(l−1)
i ) +MLP

(l)
2 (

∑
j∈H(i)

ej,i · h(l−1)j )
)
, (6)

where h(l−1)i ∈ R1×demb is the latent feature embedding of node i at the pre-
vious layer l − 1, H(i) is the 1-hop graph neighborhood of node i, MLP

(l)
1 and

MLP
(l)
2 are Multi-Layer Perceptrons MLP : Rdemb → Rdemb . Furthermore, we

add residual connections and layer normalization[2] to each layer.
In the first layer the latent feature vector h(0)i is created by feeding the original

node features xi into an MLP : Rdin → Rdemb :

h
(0)
i = MLP(0)(xi). (7)

and another MLP(L) : Rdemb → Rdemb is placed at the end of the GNN stack.
In order to further leverage structural information, we introduce 3 stages to

compute the latent embeddings. The first stage uses the edge set Estat of the
static problem graph. For the CVRP we use the graph induced by the K nearest
neighbors of each node, for scheduling problems the Directed Acyclic Graph
(DAG) representing the predefined order of operations for each job. This edge
set is fixed and does not change throughout the search. In contrast, the second
stage utilizes the edge set Edyna representing the dynamic problem graph which
usually changes in every LS step, e.g. the edges constituting the different tours
in routing problems or the machine graph which represents the sequence of jobs
on each machine for scheduling. Our proposed network architecture consists of
Lstat GNN layers for the static graph, followed by Ldyna layers which propagate
over the dynamic graph. Finally, we add another layer, again using the static
edges, to consolidate the dynamic information over the static graph, leading to
a total of L = Lstat + Ldyna + 1 GNN layers.

The final stage serves to refine the embedding via aggregation based on the
dynamic information of group membership which is present in the solution. Each
node normally belongs to one of K (not necessarily disjoint) groupsMk of the
solution, e.g. to a particular tour or machine. Following this idea we pool the
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Fig. 1. Visualization of the NeuroLS model architecture.

final embeddings ωnode
i from the GNN stack w.r.t. their membership and feed

them through another MLP:

ωgrp
k = MLPgrp ([MAX(ωnode

i | i ∈Mk);MEAN(ωnode
i | i ∈Mk)]

)
, (8)

with max and mean pooling RN×demb → RK×demb ,K << N over the node
dimension N , Mk as membership to the k-th group (k-th tour, k-th machine,
etc.) and [ ; ] representing concatenation in the embedding dimension demb.

Finally, the additional features of the state representation (current cost, best
cost, last acceptance, etc.) described in the last section, are concatenated and
projected by a simple linear layer to create an additional latent feature vector
ωfeat ∈ Rdemb . We provide a runtime and memory analysis in Appendix B.

Decoder
Our decoder takes the different embeddings created in the encoder, aggregates
the node embeddings ωnode ∈ RN×demb and group embeddings ωgrp ∈ RK×demb

via a simple mean over the node and group dimension and concatenates them
with the feature embedding ωfeat ∈ Rdemb . This representation is the input to
a final 2-layer MLP regression head R3∗demb → R|A| which outputs the value
predictions of the Q-function. The full architecture is shown in figure 1.

4.4 Reinforcement Learning Algorithm

To train our policy model we employ Double Deep Q-Learning[46] with n-step
returns[40] and Implicit Quantile Networks (IQN)[8]. IQNs enable a distribu-
tional formulation of Q-Learning where the Deep Q-Network is trained w.r.t. an
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underlying value distribution represented by a learned quantile function instead
of single point estimates. In order to represent this learned quantile function an
IQN is introduced as a small additional neural network which is jointly trained
to transform samples from a base distribution (e.g. uniform) to the respective
quantile values of the target distribution, i.e. the distribution over the returns.

5 Experiments

5.1 Applications

Job Shop Scheduling Problem (JSSP) The JSSP is concerned with schedul-
ing a number of jobs J on a set of K machines denoted by M . Each job consists
of a sequence of operations Oij with fixed processing times pij which need to
be processed in a predefined order. In the simplest problem variant every job
has exactly one operation on each machine. A solution to the problem consists
of the exact order of the operations on all machines. In this paper we choose to
minimize the makespan, which is the longest time span from start of the first
operation until the end of the last one to finish, corresponding to the longest
path in the respective DAG representation of the problem. We denote the size
of a JSSP instances as |J |× |M | and follow [53] in creating instances for training
and validation by sampling processing times from a uniform distribution.

Capacitated Vehicle Routing Problem (CVRP) The CVRP consists
of a set of N customer nodes and a depot node. It is concerned with serving
the demands qi of the customer nodes in tours starting and ending at the depot
node by employing K homogeneous vehicles with a fixed capacity Q > 0. The
tour of vehicle k ∈ K is a sequence of indices w.r.t. a subset of all customers
nodes representing the order in which vehicle k visits the respective nodes. A set
of feasible tours serving all customer nodes represents a solution to the problem,
whereas the objective is to minimize the total length of all tours. We follow
[24] in creating the training and validation sets by generating instances with
coordinates uniformly sampled in the unit square.

5.2 Setup

For the JSSP we implement a custom LS solver in python. It implements four
different node moves and a perturbation operator based on a sequence of such
moves. As construction heuristic and for restarts we implement several stochastic
variants of common PDRs (see appendix D for more details). The LS for the
CVRP uses the C++ based open source solver VRPH[13] for which we implement
a custom wrapper and interface to expose and support the necessary intervention
points. VRPH includes several different LS moves and perturbation operators
including 2-opt, 3-opt and different exchange and point moves.

Preliminary experiments showed that the CET and 2-opt moves performed
best for the JSSP and CVRP respectively, when used for meta-heuristics which
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do not select the operator. Thus, we employ these operators in our main exper-
iments. We train all our models for 80 epochs with 19200 transitions each and
pick the model checkpoint with the best validation performance.

Hyperparameters for NeuroLS and all meta-heuristics are tuned on a vali-
dation set consisting of 512 generated random instances. This is in contrast to
most classical approaches which fine tune their hyper-parameters directly on the
benchmark dataset. We argue that our approach facilitates a better and more ob-
jective comparison between these methods. Further details on hyper-parameters
can be found in Appendix C and we provide our code on github1.

We train 3 different types of policies for NeuroLS, one for each of the action
spaces described in section 4.2. In the experiments we denote these policies as
NLSA, NLSAN and NLSANP. As analyzed in [51], random solutions do not pro-
vide a good starting point for improvement approaches. For that reason we ini-
tialize the solutions of NeuroLS and the meta-heuristics with the FDD/MWKR
PDR[39] for scheduling and the savings construction heuristic[7] for the CVRP.

5.3 Results

Table 1. Results of state-of-the-art machine learning based construction methods and
local search approaches (100 iterations) on the Taillard benchmark[41]. For instances
of size 50x15, 50x20 and 100x20 we use the NeuroLS model trained on instances of
size 30x15 and 30x20 respectively. Percentages are the average gap to the best known
upper bound. Best gap is marked in bold.

Model Instance size Avg
15x15 20x15 20x20 30x15 30x20 50x15 50x20 100x20

ML-based
L2D[53] 25.92% 30.03% 31.58% 32.88% 33.64% 22.35% 26.37% 13.64% 27.05%
L2S[37] 20.12% 24.83% 29.25% 24.59% 31.91% 15.89% 21.39% 9.26% 22.16%
SN[36] 15.32% 19.43% 17.23% 18.95% 23.75% 13.83% 13.56% 6.67% 16.09%

Meta-heuristic + Local Search
SA 13.92% 17.01% 17.16% 17.53% 21.59% 12.50% 13.11% 6.61% 14.93%
SArestart 13.77% 17.01% 17.57% 17.62% 21.78% 12.54% 13.22% 6.75% 15.03%
ILS 11.57% 13.57% 13.85% 16.07% 18.72% 12.65% 12.15% 6.72% 13.16%
ILS+SA 13.32% 16.05% 15.38% 16.93% 19.74% 13.07% 13.43% 7.08% 14.37%
VNS 9.96% 13.71% 14.51% 15.77% 18.69% 11.64% 11.92% 6.26% 12.81%

NeuroLS
NLSA 9.76% 13.33% 13.02% 15.29% 17.94% 11.81% 11.96% 6.33% 12.43%
NLSAN 10.32% 13.18% 12.95% 14.91% 17.78% 11.87% 12.02% 6.22% 12.41%
NLSANP 10.49% 16.32% 15.24% 15.35% 17.64% 11.62% 11.76% 6.09% 13.06%

1 https://github.com/jokofa/NeuroLS

https://github.com/jokofa/NeuroLS
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Table 2. Results of state-of-the-art machine learning based methods and local search
approaches (200 iterations) on the Uchoa benchmark[45]. For all instances sizes we use
the NeuroLS model trained on instances of size 100. Percentages are the average gap
to the best known solution. Best gap is marked in bold.

Model Instance Group Avg
n100 n150 n200 n250
cost time cost time cost time cost time

ML-based
POMO[25] 17.24% 0.3 12.81% 0.4 20.52% 0.4 15.14% 0.4 16.43%
POMO[25] (aug) 6.32% 0.1 9.41% 0.1 13.47% 0.1 9.21% 0.1 9.60%
DACT[29] 13.19% 15.1 20.26% 21.2 16.91% 27.2 24.93% 33 18.82%
DACT[29] (aug) 11.52% 16.6 17.75% 23.1 15.34% 29.8 21.86% 37.8 16.62%

Meta-heuristic + Local Search
ORT[38] GLS 6.91% 9.4 10.46% 10.9 7.80% 13.4 12.12% 5.0 9.32%
ORT[38] TS 6.78% 39.0 10.55% 109.5 7.85% 126.6 12.13% 7.0 9.33%
SA 6.92% 0.7 5.79% 1.3 16.63% 2.1 5.92% 3.3 8.81%
SArestart 6.96% 0.7 5.79% 1.3 16.67% 2.0 5.99% 3.0 8.85%
ILS 6.56% 0.8 5.96% 1.5 16.73% 2.4 6.08% 3.7 8.83%
ILS+SA 6.94% 0.6 6.01% 1.2 16.72% 1.9 6.04% 2.8 8.93%
VNS 7.99% 0.4 6.55% 0.7 17.27% 0.9 6.36% 1.4 9.54%

NeuroLS
NLSA 5.43% 1.5 5.23% 2.4 15.97% 3.6 5.22% 5.3 7.96%
NLSAN 5.42% 1.7 4.90% 2.7 15.85% 4.0 5.08% 5.9 7.81%
NLSANP 5.42% 1.7 4.90% 2.7 15.85% 4.0 5.08% 6.1 7.81%

JSSP We evaluate all methods on the well-known benchmark dataset of
Taillard[41]. It consists of 80 instances of size 15x15 up to 100x20. We com-
pare our model against common meta-heuristic baselines including SA, SA with
restarts, ILS, ILS with SA acceptance and VNS. Moreover, we report the re-
sults of three recent state-of-the-art ML-based approaches: Learning to dispatch
(L2D)[53], Learning to schedule (L2S)[37] and ScheduleNet (SN)[36]. We follow
[53] in training different models for problem sizes 15x15 up to 30x20 and apply
the 30x15 and 30x20 model to larger instances of size 50x15, 50x20 and 100x20
to evaluate its generalization capacity. All models are trained for 100 LS itera-
tions but evaluated for 50-200. The aggregated results per group of same size are
shown in table 1 (for per instance results see appendix F). Results are reported
as percentage gaps to the best known solution.

First of all, the results show that NeuroLS is able to outperform all other
meta-heuristics on all sizes of instances. The different policies differ in how well
they work for different problem sizes. While NLSA works best for the smallest
15x15 instances, it is outperformed by NLSAN on medium sized instances and
NLSANP achieves the best results for large instances. This is to some extent
expected, since the effect of specific LS operators and more precise perturbations
is greater for larger instances while this does not seem to be necessary for rather
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small instances. VNS is the best of the meta-heuristic approaches which is able
to beat NLSANP on the smaller instances and NLSA and NLSAN at least on some
of the larger ones. In general, the iterative methods based on LS achieve much
better results than the ML-based auto-regressive methods, which can be seen by
the large improvements that can be achieved in just 100 iterations, reducing the
gap by an average of 3.7% compared to the best ML-method SN[36].

CVRP For the CVRP we use the recent benchmark dataset of Uchoa et
al.[45] and select all instance up to 300 customer nodes. We define four groups
of instances with 100-149 nodes as n100, 150-199 nodes as n150, 200-249 as
n200 and 250-299 as n250. We compare against the same meta-heuristics
mentioned above and additionally to GLS and TS provided by the OR-Tools
(ORT) library[38]. Furthermore, we compare to the recent state-of-the-art
ML approaches POMO[25] and DACT[29] which outperformed all other ML
methods mentioned in section 2.3 in their experiments and provide open source
code, which is why we consider them to be sufficient for a suitable comparison.

Since most ML-based methods (POMO, DACT, etc.) do not respect the
maximum vehicle constraint for all instances of the Uchoa benchmark, we follow
[29] in removing this constraint and treat the benchmark dataset as a highly
diverse test set w.r.t. the distributions of customers and number of required
vehicles. This is also consistent with the general goal of the ML-based methods,
which is not to achieve the best known results but to find sufficiently good
results in reasonable time. In this case we control the computational resources
spent on the search by specifying a particular number of iterations for the search.
Furthermore, we evaluate all models with a batch size of 1.

The results presented in table 2 show that NeuroLS is able to outperform
the considered meta-heuristic approaches on all instance groups. Moreover, our
approach also outperforms the state-of-the-art ML-based methods on all groups
but n200, where POMO and DACT with additional instance augmentations
(aug) outperform NeuroLS by a small margin. The OR-Tools implementation
of GLS and TS outperforms our method only on the n200 instances, although
they require prohibitively large runtimes (wall-clock time). In terms of runtimes
we also outperform DACT by a magnitude, while the learned auto-regressive
construction method POMO is the fastest overall. Finally, the experiment results
also show that our method is able to generalize to problem sizes as well as
numbers of iterations unseen in training. We show this on the JSSP instances of
size 50x15, 50x20 and 100x20 and for all Uchoa instances for the CVRP, which
are all larger than the 100 node instances used during training.

6 Conclusion

In this paper we identify three important intervention points in meta-heuristics
for local search on COPs and incorporate them in a MDP. We then design a
GNN-based controller which is trained with RL to parameterize three types
of learned meta-heuristics. The resulting methods learn to control the LS by
deciding about acceptance, neighborhood selection and perturbations. In com-
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prehensive experiments on two common COPs in scheduling and vehicle routing,
NeuroLS outperforms several well-known meta-heuristics as well as state-of-the-
art ML-based approaches, confirming the efficacy of our method.

For future work we consider more fine-grained interventions, e.g. to restrict
the search neighborhood and to replace the problem graph with a graph rep-
resentation of the corresponding LS graph, in which every node represents a
feasible solution together with its respective cost.
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