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Abstract. Car manufacturers receive thousands of goodwill requests for
vehicle defects per year. At BMW, these requests for repair-cost contribu-
tions are either assessed automatically by a set of fixed rules or manually
by human experts. To decrease manual effort, which is still around 50%,
we propose a machine learning approach with the goal to discover so far
unknown assessment patterns in human decisions. Since the assessment
contribution data is heavily imbalanced, we structure the learning task
hierarchically: The first layer’s task is to predict the main rank of the re-
quest (no contribution, partial contribution, or full contribution). Then,
in the case where partial contribution is suggested, the second layer pre-
dicts the concrete percentage using a regression model. To optimize our
model and tailor it to certain strategies (e.g., customer friendly or more
cost oriented), we make use of a custom-defined cost matrix. We also
outline how the model can be used in a scenario in which it prescribes
appropriate monetary contributions for requested repair-costs. This can
initially happen in the form of a decision support system (DSS) and,
in the next step, through automated decision making (ADM), where a
certain part of goodwill requests is processed automatically by the pre-
scriptive model.

Keywords: Prescriptive Machine Learning· Decision Support Systems
· Automated Decision Making · Cost-Sensitive Learning· Hierarchical
Learning

1 Introduction

Rule-based expert systems are used widely in many fields, for example in industry
to assess financial credit risks or in medicine to detect diseases such as breast
cancer or diabetes [1, 8]. They arguably constitute the simplest form of artificial
intelligence (AI), storing rules carefully assembled by domain-knowledge in the
form of if-then-else statements. They do not require any data and are naturally
interpretable [2]. This makes them a natural fit for automating decision processes
that need to be auditable, 100% accurate, and which comprise a certain risk,
either financially or for life and limb.

One such financial rule-based expert system is the central Goodwill system of
BMW. In cases of vehicle defects, dealers carry out goodwill repair on behalf of
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customers and in turn get compensated by the original equipment manufacturer
(OEM) for their spare parts and labor efforts. Whether or not customers are
eligible for goodwill compensation is decided automatically on the basis of a
fixed set of expert rules. This automatic rule based assessment is only done
in countries where no legal restrictions against it apply. In case the goodwill
request is rejected in the first place, the final decision is transferred to a so-
called assessor, a human after-sales goodwill expert, who manually looks at the
individual case and determines the monetary contribution of the OEM, if any.
Although a decision matrix to support this manual process is in place in many
sales markets, it is still often a commercial gut decision and not standardized
across markets.

The need for human intervention is due to several problems of a rule-based
approach, notably the difficulty to maintain a coherent set of deterministic rules
capturing all eventualities of a complex commercial use case. Therefore, the data-
driven design of decision models by means of machine learning (ML) appears to
be an appealing alternative to increase the degree of automation. Over the years,
a good amount of historic human decision data has been collected, which can be
leveraged in this regard. The goal hereby is to deduce so far unknown assessment
patterns from observed human decisions that might be too complex to be put
into rules in the first place. Supervised machine learning models can be trained
on the observed decision data and later used in the manual decision process to
prescribe certain monetary contributions. This can either happen in the form
of a decision support system (DSS) or, if trust in the models is high enough,
through automated decision making (ADM), which helps decrease manual human
assessment effort and save costs in the long run.

The goodwill use case qualifies as what has recently been coined prescriptive
machine learning [7]. In contrast to the common setting of predictive machine
learning, the goal is not to predict some underlying ground-truth, but rather to
learn models that stipulate appropriate decisions or actions to be taken in order
to achieve a certain goal (i.e., to answer the question “How to make something
happen?” rather than “What will happen?”). In fact, in the case of goodwill,
there is nothing like a “right” monetary contribution. Instead, a decision is more
or less appropriate, fair for the customer and strategically opportune for the
company. Such decisions are supposed to ensure customer satisfaction while re-
maining economically reasonable from a manufacturer’s perspective. In addition
to increasing the degree of automation, prescriptive models may also contribute
to the standardization, consistency, and objectivity of the decision process.

The main contribution of this paper is a prescriptive ML approach to goodwill
assessment, which is based on real human decision data. In the next section,
we describe the goodwill assessment problem in more detail. Next, we outline
how prescriptive ML could be incorporated into the existing process. Then, we
propose an ML method for goodwill assessments, which is specifically tailored to
the use case and properties of the data. Finally, we conclude with related work,
identify challenges and outline directions of future work.



Prescriptive machine learning for assessing goodwill 3

2 The Vehicle Goodwill Assessment Process

Assessing goodwill requests is an important topic for manufacturers. In case of
BMW, dealers yearly submit thousands of goodwill requests for vehicles that
must be assessed. The question whether goodwill is granted or not, and which
amount, is far from trivial. It is an individual commercial decision that must bal-
ance customer satisfaction and financial impact. In this regard, it is important
to distinguish between warranty, which is a legal obligation for manufacturers,
and goodwill, which is a non-obligatory service manufacturers provide to cus-
tomers outside the warranty time window (usually after 3–5 years). The goal of
compensating customers for product failures outside the warranty time window
is primarily to safeguard customer satisfaction and loyalty with the brand.

At the OEM, handling goodwill on system level is currently a hybrid approach
based on automatic and human manual assessment. The UML Use-Case diagram
in Fig. 1 depicts the process and its actors.

Submit Goodwill 
Request

Automatic Rule-based 
Assessment

<<include>>

Manual Assessment

<<extend>>

Dealer

Assessor

Goodwill System

Condition: 
{Goodwill Request is rejected 

in Automatic Rule-based 
Assessment}

Fig. 1: UML Use Case Diagram for the classic goodwill process.

The standard use case is as follows. Customers arrive at a dealership with
a vehicle defect and request a repair from the dealer. Next, the dealer checks
whether the manufacturer would grant goodwill for this particular defect by
submitting a goodwill request on the behalf of the customer. The data the dealer
has to enter ranges from certain vehicle information like vehicle mileage and
age to estimated labor and parts costs for the repair itself. On system side,
the request is first evaluated against a fixed set of rules (automatic rule-based
assessment). If it goes through and goodwill is granted, the process is finished
and the dealer will be compensated for the repair. If not, the goodwill request is
further processed through a manual assessment. In this case, a human goodwill
after-sales expert checks the request and makes the final decision. The manual
assessment step only extends the automatic rule-based assessment in case of an
automatic rejection in the first place but cannot be requested right from the
beginning. In case of a manual assessment, the dealer also has the possibility
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to send attachments (e.g., a video of rattling engine) and a free text comment
along with the request.

In tangible terms, the result of the goodwill process is a percentage of the
labor and parts cost contributions the dealer requests and the manufacturer is
willing to pay. The set of possible contribution percentages ranges from 0 to
100% in steps of 10%: C = {0, 10, 20, . . . , 100}. For instance, if the dealer has
labor and parts costs of e1,149.82 and e903.30, respectively, and requests labor
and parts cost contributions of 100%, the assessor decides which percentage of
contribution is appropriate by taking all the provided information into account.
He or she might first check the mileage and age of the vehicle, then the respective
defect, whether the vehicle was regularly serviced, and so on. Based on these
checks, he or she decides for a contribution, e.g., 50% for labor and 100% for
parts. In our example, this would lead to a monetary compensation of the dealer
of e574.91 for labor and e903.30 for parts.

To get an idea about the dimensions of automatic vs. manual goodwill as-
sessments, Fig. 2 shows the overall proportion of automatic and manual goodwill
assessments of some selected sales markets.

0 10 20 30 40 50 60 70 80 90 100

Manual Assessments

Automatic Assessments

49.27

50.73

Percentage (%) of goodwill assessment types

Fig. 2: Overall portions (%) of manual and automatic assessments.

Note that the period of data selection is veiled to allow no conclusions. The
portion of goodwill requests that need to be assessed manually is almost as high
(49.27%) as the portion of automatically processed goodwill requests (50.73%).
In total numbers, 688,879 goodwill requests have been created so far, 349,488 of
which were processed automatically by rules and 339,391 manually by a human
expert.

Table 1 breaks down the goodwill numbers per selected National Sales Com-
pany (NSC). The NSC names have been anonymized here by letters (A to E), to
prevent conclusions about goodwill strategies per country. The size of the sales
market naturally influences the number of goodwill cases. From an assessment
perspective it makes sense to look at the goodwill cases on a per sales market
basis, since sales markets have their own goodwill strategies. Therefore, goodwill
compensations is very market specific.
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Table 1: Goodwill assessment numbers by National Sales Company (NSC).
NSC Goodwill Requests Automatic Manual Degree of automation

A 35,624 20,998 14,626 58.94 %
B 76,461 48,666 27,795 63.65 %
C 84,030 47,278 36,752 56.26 %
D 437,656 200,831 236,825 45.89 %
E 55,108 31,715 23,393 57.55 %∑

688,879 349,488 339,391 � 50.73 %

3 Prescriptive Machine Learning for Goodwill
Assessment

In this section, we propose to extend the standard goodwill assessment process
as outlined in the previous section, with prescriptive ML models. First, we de-
scribe how ML models could be integrated into the existing goodwill use case.
Subsequently, we evaluate how well a complex human decision process such as
goodwill assessment can be covered by supervised ML.

3.1 Enhancing the Goodwill Assessment Process

Fig. 3 shows a goodwill use case extended by ML in comparison with the classic
use case outlined in Fig. 1. The prescriptive model assessment can either be
included in the manual assessment process or extend the automatic rule-based
assessment.

Submit Goodwill 
Request

Automatic Rule-based 
Assessment

<<include>>

Manual Assessment
<<extend>>

Dealer

Assessor

Goodwill System

Condition: 
{Goodwill Request is rejected in 

Automatic Rule-based 
Assessment}

Prescriptive Models 
Assessment

<<extend>> <<include>>

Condition: 
{Goodwill Request is rejected in 

Automatic Rule-based 
Assessment}

Fig. 3: UML Use Case Diagram for the ML-enhanced goodwill process.
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In the inclusion scenario, the prescriptive model supports the manual as-
sessment through goodwill contribution suggestions that guide the assessor in
his or her decision process. The prescriptive model serves as a decision support
system (DSS) and only informs the assessor about the presumably most ap-
propriate decision. Accepting the decision is not compulsory for the assessor,
who still possesses the sovereignty over the goodwill decision. Nevertheless, the
model suggestions could help to harmonize and standardize decisions from a
business perspective. Including the prescriptive model assessment in the manual
assessment might be a good starting point for making use of ML in the goodwill
process, as the risk of wrong assessments is low and the final decision is still in
the hands of an expert.

In the extension scenario, the model extends the automatic rule-based assess-
ment and takes over cases not decidable by rules. The model assesses goodwill
decisions automatically and supports the process through automated decision
making (ADM). From a business perspective, this is the ultimate goal to aim
for, as it will directly reduce process costs. However, this approach also comes
with the greatest risk, as there is no human expert involved anymore who su-
pervises the final decisions. Customer satisfaction and financial impact for the
manufacturer are left to the machine. Leaving the final goodwill decision to a
prescriptive model requires trust that can only be built through an evaluation
by business experts over a long term period.

A combination of inclusion and extension is also conceivable. While ADM
might be feasible in less complex cases, it might be advisable to just integrate
the model as a DSS in more complex scenarios, leaving the final decision to
a human expert. What exactly distinguishes less and more complex goodwill
scenarios is still an open research question.

3.2 Prescriptive Machine Learning

The setting of prescriptive ML deviates from the standard setting of predictive
ML in various ways [7]. This also includes the process of supervision. As already
mentioned, in prescriptive ML, there is not necessarily something like a “ground-
truth” or correct decision, and even if decisions might be compared in terms of
quality or desirability of their implications, there is no guarantee that decisions
made by human experts in the past were optimal. Therefore, taking them directly
as targets for a supervised learning method might not be advisable [11]. In the
case of goodwill, for example, a decision of 50% contribution appears to be
somewhat overrepresented (cf. Fig. 4), letting one suspect that this is often taken
as a default choice for a partial cost coverage, even if it might not necessarily be
the most appropriate percentage. In the following, we will nevertheless assume
that mimicking the expert is a reasonable strategy, at least as a first step toward
a data-driven goodwill assessment, leaving more elaborate approaches for future
work.

Under this premise, the problem is essentially reduced to a supervised learn-
ing task, with the observed human goodwill decisions

D =
{
(x1, y1), . . . , (xn, yn)

}
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as training data. Instances are goodwill requests entered by the dealer and repre-
sented as a feature vector x ∈ X ⊆ Rm. These instances are labeled by assessed
contribution percentages, which serve as the target variable y ∈ Y ⊆ R. The
goal of the ML task is to learn a decision model h∗ ∈ H, where H is the class
of candidate models (referred to as hypothesis space in the common setting of
supervised learning). This model is a mapping X → Y supposed to approxi-
mate the training data and, more importantly, generalize well to new decision
problems. Like in supervised learning, we model the performance of a model h
in terms of a loss (error) function l : Y × Y → R+, so that l(y, ŷ) denotes the
penalty incurred by the learner for prescribing ŷ when the expert decides y. The
choice of a presumably optimal model h∗ is commonly guided by the empirical
risk

R(h) :=
1

n

n∑
i=1

l(yi, h(xi)) (1)

as an estimate of a model’s performance. This measure is normally not minimized
directly by the learner, however, because the empirical risk minimizer h∗ =
argminh∈HR(h) is knowingly prone to overfitting the training data, and hence
to suboptimal generalization.

3.3 Human Goodwill Decision Data

Table 2 shows the features used for the ML task. In the first step, we will only
look at the hard facts, such as vehicle mileage, vehicle age, the defect code, the
costs, and the requested labor and part contributions. The raw data entered
by the dealer will be enriched with further vehicle data that can be derived
from the vehicle identification number (VIN), including the vehicle model type,
the series, the motor series, the order country of the vehicle, the sales country
of the vehicle, and whether the vehicle is a car or motorbike. The free-text
dealer comment and attachments will be ignored for now, because they can be
considered as “soft” facts. Besides, they are not immediately usable and require
sophisticated post-processing techniques such as NLP. The rest of the data is a
mixture of categorical and numerical data and qualifies as tabular data.

The features are pre-processed as follows: Numeric data is scaled using min-
max-scaling (e.g., Parts, Labor and Total Costs), low cardinality categorical
features are encoded using one-hot-encoding (e.g., Customer Type or Requested
Labor and Parts Contributions ), and high cardinality features are hashed (e.g.,
Defect Code or Vehicle Series).

Turning our attention to the target variable, Fig. 4 shows how the overall con-
tributions are distributed over the possible percentages Y = {0, 10, 20, . . . , 100}.
Obviously, the data is heavily imbalanced, and contributions other than 0% and
100% are rarely used. Among the rare contributions, the 50% decision sticks
out and appears a bit more frequently, whereas 90% is the least frequent con-
tribution. As already said, this may reflect a common human pattern: If not
being exactly sure what to grant, people tend to opt for a compromise in the
middle. Another pattern one can observe is a kind of “generous rounding” to
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Table 2: Features used for model training.
Attribute Data Type Description

Vehicle Mileage Numeric (continuous) 12,500
Vehicle Age Numeric (continuous) 48

Enquiry Indicator Categorical (ordinal) Request after or before the repair
Warranty Stage Categorical (nominal) Standard or Extended Goodwill
Product Type Categorical (nominal) Car or Motorbike
Regular Service Categorical (nominal) Yes or No
Sales Country Categorical (nominal) NL
Order Country Categorical (nominal) BE

External Guarantee Categorical (nominal) Yes or No
Vehicle registered to customer Categorical (nominal) Yes or No

Vehicle Model Type Categorical (nominal) FG81
Vehicle Series Categorical (nominal) G21
Motor Series Categorical (nominal) N57T

Mobility provided Categorical (nominal) Yes or No
Defect Code Categorical (nominal) 1178031500

Defect Code (Main and sub group only) Categorical (nominal) 1178
Shared last expenses Categorical (nominal) Yes or No

Customer Type Categorical (nominal) Regular, Transit or International
Requested Labor Contribution (per cent) Categorical (nominal) 60%
Requested Parts Contribution (per cent) Categorical (nominal) 60%
Dealer Labor Contribution (per cent) Categorical (nominal) 40%
Dealer Parts Contribution (per cent) Categorical (nominal) 40%

Parts Costs Numeric (continuous) e903.30
Labor Costs Numeric (continuous) e1,149.82

Requested Open Time Units Numeric (discrete) 5
Dealer Open Time Units Numeric (discrete) 2

Additional service costs, e.g., replacement car Numeric (continuous) e460.30
Total Costs Numeric (continuous) e3,682.89

“meaningful” contributions, namely, 0%, 30%, 50%, 70%, 100%. Other contri-
butions, such as 10% and 90%, are even more rare, probably because these are
considered somewhat pedantic. In any case, the rare contributions are likely to
carry important information, as they reflect subtle human instinct, and they are
key to safeguard customer satisfaction. There is also an apparent tendency to
contribute rather than not contribute from manufacturer’s perspective, as the
100% bar is noticeably higher than the 0% bar. This is the case for labor as well
as parts. However, for parts the tendency is stronger than for labor.

3.4 Hierarchical cost-sensitive learning

From the description of the task and the data, it becomes clear that goodwill
assessment comes with a number of important challenges from a machine learn-
ing perspective. First, looking at the scale of the target variable (contribution
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Fig. 4: Distribution of goodwill contributions for Labor and Parts at BMW.

in percentage), the problem is somehow in-between ordinal classification and
regression: In principle, the target is numerical, but not all numbers between 0
and 100 are deemed valid prescriptions. Therefore, one may also think of tack-
ling the task as a problem of ordinal classification with 11 class labels sorted in
increasing order from lowest (0%) to highest (100%).

Related to the interpretation of the scale is the question of how a suitable loss
function should look like. Obviously, a standard measure such as misclassifica-
tion rate (0/1 loss) is inappropriate, even if the task is treated as a classification
problem, because the loss function should take the linear structure of the con-
tribution scale into account. Squared or absolute error as commonly used in
regression do not appear to be perfect choices either, as one may argue that
there is not only a quantitative but also a qualitative difference between the 0%
decision, the 100% decision, and the decision of a partial contribution. This sug-
gests a cost-sensitive approach, in which a cost (loss) function Y × Y → R+ is
explicitly defined in “tabular” form. As an additional advantage, this allows for
incentivising the learner in a strategic way, e.g., to constructing more customer-
friendly or more cost-oriented decision models.

Another challenge is the class imbalance. Imbalanced data makes learning
more difficult, and many algorithms have a tendency to compromise the accu-
racy of small classes in favor of bigger classes [12]. This would be especially
problematic in the case of goodwill assessment, enforcing extreme decisions at
the cost of partial contributions. Common approaches to deal with imbalanced
data include up-sampling of the minority classes or down-sampling of the pre-
dominant classes in order to balance the data [13]. Similar effects can be achieved
by adding weights to the training examples, making the underrepresented exam-
ples more important and the overrepresented less.
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To tackle both problems, cost-sensitivity and imbalance, we propose a hi-
erarchical approach with a qualitative (categorical) first layer and a quantita-
tive second layer. In the first layer, we solve an ordinal 3-class classification (or
ranking) problem, distinguishing between classes NO (no contribution, rank 1),
PARTIAL (partial contribution, rank 2), and FULL (full contribution, rank 3).
Obviously, this problem is more balanced, because all contributions between 10%
and 90% are collected in a single class.

In the case where an instance is assigned to PARTIAL in the first layer, it is
forwarded to the second layer, where the concrete percentage of contribution is
determined. Thus, while an instance x is mapped to a rank r(x) ∈ {1, 2, 3} in
the first layer, x is mapped to any of the numbers {10, 20, . . . , 90} in the second
layer. The latter task can be formalized as a (constrained) regression problem.

The first problem, where an example (x, y) consists of an input vector x ∈ X
and an ordinal label y ∈ Y = {1, 2, ...,K} (in our case {NO,PARTIAL,FULL},
i.e., K = 3), provides us with the opportunity to use the cost-sensitive ranking
framework presented in [9]. This framework allows one to specify a cost matrix
in a flexible way, which is especially convenient in our case. In fact, by utilizing
a custom defined K × K cost matrix C, we can configure the mislabeling cost
according to our strategy, e.g., rather customer-friendly or more cost-oriented
from manufacturer’s perspective. The cost of predicting an example (x, y) as
rank k is given by the entry Cy,k in the cost matrix. Table 3 shows two dis-
tinct strategies for goodwill assessments. The cost matrix on the left side shows
a customer-friendly strategy, where the learner is strongly penalized when pre-
scribing NO instead of FULL (C3,1 = 30). On the right side, the cost matrix
implements a more cost-orientated approach, where the learner is penalized the
most for the decision FULL instead of NO (C1,3 = 30). Note that the result of
the regression model for the PARTIAL values (k = 2) will be mapped back to
the interval C2,2 = [0, 5] to also integrate the regression into the overall cost-
sensitive ranking framework. By the width of the interval, we can configure how
much importance we give to the exact prediction of the values of the regression
layer. Fig. 5 visualizes the structure of the proposed hierarchical approach.

Table 3: Different assessment strategies specified by different cost functions:
customer-oriented with higher penalization of contributions that are loo low
(left) vs. manufacturer-oriented with higher penalization of contributions that
are too high (right).

Prescribed
NO PARTIAL FULL

A
ct

ua
l NO 0 5 10

PARTIAL 10 [0,5] 5
FULL 30 10 0

Prescribed
NO PARTIAL FULL

A
ct

ua
l NO 0 10 30

PARTIAL 5 [0,5] 10
FULL 10 5 0



Prescriptive machine learning for assessing goodwill 11

Preprocessing

Binary Classifica�on

Binary Classifica�on

Ranking Regressionx ŷ

1. NO
2. PARTIAL
3. FULL

[[1,0,0],
[0,1,0],
[0,0,1]]

Fig. 5: Overview of the hierarchical cost-sensitive approach.

The approach [9] to ordinal classification is based on a reduction to weighted
binary classification. More specifically, a binary classifier

f : X × {1, . . . ,K − 1} → {0, 1}

is trained that accepts extended instances (x, k) as input. As output, the classifier
is supposed to produce 1 (answer “yes”) if the true rank of x exceeds k and
0 (answer “no”) otherwise. The actual rank of a query instance can then be
determined by applying the following ranking rule:

r(x) = 1 +

K−1∑
k=1

f(x, k) . (2)

To train the classifier, the original data is extended as follows: Each original
example (x, y) is turned into extended examples (xk, yk) with weights wy,k,
where3

xk = (x, k), yk = Jk < yK, wy,k = |Cy,k − Cy,k+1| .

The weights wy,k control the importance of an example during the training
phase of the binary classifier. The higher the cost difference between two adja-
cent ranks, the larger the weights and therefore the importance of a particular
example.

Incorporating domain knowledge, we propose the following small modification
of the ranking rule (2): As the proposed contribution essentially never exceeds
the contribution q requested for x, we set

r(x) = min
{
1 + f(x, 1) + f(x, 2), q

}
. (3)

For the second layer of our model, any regression method can in principle
be used. For the exact inference of the partial contribution values, we round
and constrain the regression model’s output to the set of possible contributions
{10, . . . , 90}. Also, like for the prescription of ranks, we make sure that the
prescription does not exceed the requested contribution q:

ŷ = min

{
bf(x)

10
e · 10, q

}
(4)

3 J·K denotes the indicator function returning 1 if the argument is true and 0 otherwise.
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4 Evaluation and Results

In this section, we evaluate our hierarchical cost-sensitive approach on BMW’s
goodwill data sets. For training the classifier f (and ranker r) in the first layer,
a learning algorithm is needed that is able to handle weighted examples. In our
experimental study, we used extreme gradient boosting (XGBoost) [3], a versatile
method that proved to work very well on tabular data and also outperforms deep
neural networks in this context [10]. Another advantage is that XGBoost can be
used for both classification and regression, hence we could use it for training the
first as well as the second layer of our model.

Tables 4 and 5 show the results of a ten-fold cross validation in terms of the
mean and standard deviation of various performance metrics. The first metric of
interest is the cost of the model’s prescriptions according to the underlying cost
function—here, we present results for the cost matrix (a) in Table 3 (those for
matrix (b) look very similar). The middle part of the matrix, i.e., the cost for
assessments involving a partial contribution, is filled with the absolute error of
the regression model scaled to the specified interval (in this case [0, 5]). As the
cost values are measured on an abstract scale without interpretable dimension,
we also report the mean accuracy (ACC) for the ranking part and the mean
absolute error (MAE) for the regression model (on a scale from 10 to 90), thereby
making the results more tangible. Overall, our model shows a quite satisfactory
performance.

Table 4: Evaluation metric results obtained for Labor.
Ranking Regression Costs

NSC ACC SD MAE SD C SD

A 0.887 0.032 0.942 0.24 1.133 0.303
B 0.904 0.014 5.094 0.524 1.018 0.221
C 0.926 0.028 4.519 0.454 0.725 0.271
D 0.857 0.009 1.306 0.19 1.321 0.09
E 0.881 0.047 7.161 1.755 1.064 0.398

Mean 0.891 0.026 3.8044 0.6326 1.0522 0.2566
Median 0.887 0.028 4.519 0.454 1.064 0.271

As already explained, the cost function can be used to tailor a decision
model to certain strategies, e.g., making it more customer-friendly or more
manufacturer-friendly (cost-oriented). To evaluate this feature, we looked at
the confusion matrices obtained for the cost functions in Table 3. As can be
seen in Table 6, the confusion matrix for the customer-friendly cost matrix is
indeed more geared to the right, showing a tendency toward higher ranks and
consequently higher contributions. In contrast, the matrix for the cost-oriented



Prescriptive machine learning for assessing goodwill 13

Table 5: Evaluation metric results obtained for Parts.
Ranking Regression Costs

NSC ACC SD MAE SD C SD

A 0.889 0.035 1.265 0.249 1.059 0.452
B 0.869 0.016 5.691 0.485 1.215 0.158
C 0.949 0.023 6.522 0.711 0.552 0.183
D 0.872 0.011 4.625 0.313 1.154 0.078
E 0.887 0.055 7.041 1.732 1.001 0.51

Mean 0.8932 0.028 5.0288 0.698 0.9962 0.2762
Median 0.887 0.023 5.691 0.485 1.059 0.183

strategy is more geared towards the left side, with lower ranks and thus less
contributions.

Table 6: Different parts ranking confusion matrix depending on the assessment
strategy (for NSC A): customer-oriented (left) vs. manufacturer-oriented (right).

Prescribed
NO PARTIAL FULL

A
ct

ua
l NO 494 47 45

PARTIAL 0 286 34
FULL 2 13 541

Prescribed
NO PARTIAL FULL

A
ct

ua
l NO 526 40 20

PARTIAL 6 295 19
FULL 11 34 511

5 Conclusion and Future Work

In this paper, we described the existing rule-based and manual goodwill assess-
ment process at BMW and how it can be extended through prescriptive machine
learning models. This can either happen in the form of a decision support sys-
tem, automated decision making, or a combination of both. Furthermore, we
proposed a hierarchical, cost-sensitive approach for learning prescriptive models
from human goodwill decisions, which accounts for the specific structure of the
decision space, counteracts class imbalance, and allows for tailoring strategies
to different value systems and market situations (e.g., customer friendly vs. cost
oriented).

Motivated by our encouraging results, we plan to address the following chal-
lenges in future work.
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– Trust and Explanation: We noticed that business experts do not immediately
trust a prescriptive ML solution. Therefore, involving business experts in the
development and evaluation process is important, not only to improve the
ML solution itself, but also to foster trust in it. Explainability will play a key
role in this regard, making machine learning more transparent and accessi-
ble to all stakeholders involved [5]. In fact, decisions need to be explained,
and different parties may have different needs for explanation. For a dealer,
feedback about the most important attribute that led to the rejection of the
request might be enough, whereas an auditor needs to understand the whole
reasoning process in detail.

– Uncertainty : Although the decision models we trained perform very well,
showing the high potential of automated decision making, not all decisions
appear to be perfect all the time. Therefore, it would be desirable to increase
the uncertainty-awareness of decision models, so that final decisions could
be transferred to the human expert in cases of high uncertainty [6].

– Weak supervision: As already mentioned, human goodwill decisions might be
biased in one way or the other and should not necessarily be taken as a gold
standard. Additionally, the data may contain concept drift due to strategy
changes in the assessment process over time. Therefore, past decisions should
be considered and modeled as weak information about the target rather than
an incontestable ground truth, suggesting the use of methods for weakly
supervised learning [14] in prescriptive modeling.

– Fairness: Another important question concerns the notion of fairness in the
goodwill decision process. There might be different strategies toward fair-
ness, depending on the sales market. For instance, some markets might want
to treat all customers equally, independently of the money they spent for a
vehicle, whereas others might want to prefer customers with higher priced
vehicles in the goodwill process. It needs to be investigated whether or not
models can be tailored to such strategies automatically, or if a manual in-
tervention is required [4].
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