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Abstract. Real-world graphs can be difficult to interpret and visual-
ize beyond a certain size. To address this issue, graph summarization
aims to simplify and shrink a graph, while maintaining its high-level
structure and characteristics. Most summarization methods are designed
for homogeneous, undirected, simple graphs; however, many real-world
graphs are ornate; with characteristics including node labels, directed
edges, edge multiplicities, and self-loops. In this paper we propose TG-
sum, a versatile yet rigorous graph summarization model that (to the
best of our knowledge, for the first time) can handle graphs with all the
aforementioned characteristics (and any combination thereof). Moreover,
our proposed model captures basic sub-structures that are prevalent in
real-world graphs, such as cliques, stars, etc. Experiments demonstrate
that TG-sum facilitates the visualization of real-world complex graphs,
revealing interpretable structures and high-level relationships. Further-
more, TG-sum achieves better trade-off between compression rate and
running time, relative to existing methods (only) on comparable settings.

Keywords: graph summarization · super graph · labeled multi-graph

1 Introduction

Given a directed labeled multi-graph G, how can we construct a small sum-
mary graph g that reflects the high-level structures and relationships in G? How
can we find a succinct g that is yet an accurate representation, which requires
a small amount of corrections to recover the original G? With the advent of
technology, not only the size but also the complexity of real-world graphs have
grown immensely. Today graph data often contains node labels, multi-edges,
etc. Graph summarization aims to find high-level structural patterns and most
salient information in large complex graphs to enable efficient storage, process-
ing, visualization and interpretation.

A large body of existing graph summarization techniques is for plain graphs
with homogeneous unlabeled nodes [14,24,16,15,23,26,20]. However there exist
numerous real-world graphs with multiple node labels; including transaction net-
works containing nodes (i.e. accounts) of various types (cash, revenue, expense,
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etc.) or heterogeneous graphs such as publication records among entities of var-
ious types (paper, author, venue, etc.). We refer to both kinds as node-labeled,
or simply labeled graphs. Moreover, a vast majority of prior work are for summa-
rizing simple [14,24,16,15,20,28,19,25,9] undirected [14,24,16,15,23,26,20,28,25]
graphs, whereas the edges in real-world graphs may repeat (e.g., multiple trans-
actions between two accounts, multiple exchanges between two email addresses,
etc.) which are called multi-graphs. As is the case for transaction and email
graphs, among others, the edges can also be directed.

In this work we propose (to the best of our knowledge; see, Table ??) the
first method called TG-sum, for multi -Type (i.e. node-labeled) multi -Graph
Summarization, with directed edges and possible self-loops. (See Sec. 2, and a
recent comprehensive survey [18].) Besides, TG-sum is versatile in that it can
also handle graphs with any combination of those properties (i.e., (un)directed,
plain/labeled, simple/multi- or weighted graphs).
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Fig. 1: (best in color) Ex. input graph (left), its summary/super-graph (middle),
and the decompressed graph (right) w/ edge corrections in red, where dashed

(solid ) are edges that need to be added (removed) for lossless reconstruc-
tion. See text for description of the scalars, node color, size, and shape.

Our goal is to output a small yet representative summary that facilitates the
visualization, by which, improves the understanding of the overall structure of
an input graph. To this end, we model a summary graph (or super-graph) as
a collection of labeled super-nodes and weighted super-edges. As illustrated in
Fig. 1, we merge structurally similar nodes of the same type/label (depicted by
color) into super-nodes (size reflecting the number of constituent nodes). Super-
nodes capture prevalent structural constructs found in real-world graphs, such
as stars and cliques [15] (depicted by shape). A super-node is also marked with
a scalar (i.e., weight), representative of the edge multiplicities among its nodes.
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A super-edge is placed between two super-nodes whose constituent nodes are
sufficiently well-connected, and is also marked with a scalar (i.e., weight) that
best represents the edge multiplicities inbetween.

We aim to construct a small summary graph, which accurately reflects the
input graph. Here, succinctness and accuracy are in trade-off; the coarser the
summary graph, the more information about the original graph is lost. We design
a novel two-part lossless encoding scheme, describing (i) the summary graph and
(ii) the corrections required to reconstruct the input graph losslessly. Treating
the total number of encoding bits as a cost function, we design algorithms to
find a summary with a small total cost. In summary, our main contributions are:

– The first method for Summarizing LMDS-Graphs.
– A Novel Super-graph Model, in Section 3.1
– A Novel Two-part Lossless Encoding Scheme, in Section 3.2.
– Efficient Search Algorithms, in Section 4.
– Extensive experiments on real-world graphs, in Section 5

Reproducibility: Source code for TG-sum and all public-domain datasets are
shared at https://bit.ly/3d4vogt.

2 Related Work

Graph summarization and graph compression techniques, while related, exhibit
a key distinction. The former typically aims to simplify an input graph into a
coarser one, while reflecting its prominent structure. On the other hand, the lat-
ter aims at reducing the storage requirements of a graph, often enabling speedy
querying, while maintaining a certain level of query accuracy [2,6,7,13,17]. (See
[5] for a recent survey.) In this work we focus on graph summarization, with a goal
to extract a simplified overview of key structural patterns within an input graph.
Most graph summarization techniques are designed for unlabeled, undirected,
and simple graphs without edge multiplicities, weights, or self-loops [24,14,16,15].
Closely-related are graph-pooling methods used within graph neural networks
to gradually reduce the dimension of the layers; see. e.g. [27]. Riondato et al.[23]
and Toivonen et al.[26] are some of the few summarization methods that can
accommodate weighted edges, but not labeled nodes or directed edges. Among
the methods that can handle graphs with multiple node labels, CoSum [28], Liu
et al.[19], and SNAP [25] build a coarser graph by only merging the nodes of
the same label into super-nodes. Differently, Subdue [9] replaces frequent sub-
graphs that potentially contain different labels with a super-node, which makes
the interpretation of the summary graph harder. Closest to our work is the ap-
proach by Navlakha et al.[20], which iteratively merges nodes into super-nodes
as long as the description length of the input graph decreases. Thanks to its
simple model and algorithm, it can be modified to handle labeled graphs, specif-
ically by restricting the node merges to same-label nodes. However, its model is
unable, nor is it trivial to modify, to accommodate edge weights/multiplicities.
All in all, there is no existing work that can summarize labeled multi-graphs

https://bit.ly/3d4vogt


4 Berberidis, Liang, Akoglu

– with labeled nodes, directed and multi-edges and self-loops. (See [18] for an
extended survey and Table 1 therein.) While our TG-sum is the first of its kind,
it is versatile in that it can also accommodate graphs with any combination of
those properties. Besides input graph properties, prior work can also be classified
w.r.t. the properties of the summary. Here, we focus on summaries where the
output is itself a (coarser) graph, called the summary or super graph. VoG [15]
identifies key sub-structures (stars, (near)cliques, etc.) however does not provide
any super-edges, i.e., its summary graph is disconnected. Second, the summary
may be lossy; including only the coarse summary graph [23,26,28,19,25,9], or
lossless; consisting of both the summary and the corrections necessary to fully
reconstruct the input graph [24,14,16,15,20]. Finally, a desired characteristic of
a summary is multi-granularity; where the coarseness or resolution of the sum-
mary graph can be adjusted on demand [16,23,26,19,25,9,20], via appropriately
altering some of the model parameters. Notably, TG-sum exhibits all of these
three properties: super graph output, lossless and multi-resolution summary.

3 Graph Summary Design and Encoding

3.1 Summary and Decompression

Given a directed graph G = {V, E , T } with edge multiplicities m(e) ∈ N,∀e ∈ E ,
node labels/types `(u) ∈ T ,∀u ∈ V, and self-loops, we define the summary and
decompressed graphs as follows.

3.1.1 Summary graph (or super-graph) model Let Gs = {Vs, Es} be the
sets of super-nodes and directed super-edges that define the summary graph
topology. Each super-node v ∈ Vs is annotated by four components: (i) its label
`(v) (depicted by color), (ii) the number |Sv|, Sv ⊂ V, of nodes it contains
(depicted by size), (iii) the glyph µ(v) ∈ M it represents (depicted by shape),
and (iv) the representative multiplicitym(v) of the edges it summarizes (depicted
as a scalar inside the glyph). For each super-edge e ∈ Es, we let m(e) be the
representative multiplicity of the edges it captures, depicted as a scalar on the
super-edge. (We describe how to find the “representative” multiplicity of a set of
edges in Sec. 4.2.)

Fig. 1 (left) and (middle) respectively depict an example input graph and
its corresponding summary graph. Apart from unmerged simple nodes that are
depicted as plain circles, the set M of possible glyphs that TG-sum supports
contains: 1) Clique (square), 2) In-star (triangle), 3) Out-star (triangle), and
4) Disconnected set (hexagon). Such structures are commonly found in real-
word graphs [15]. For instance, a clique can represent a tightly-knit group of
friends in a social network, while an out-star can capture spam-like activity in
an email or call network. Moreover, using glyphs has been shown to yield easily
interpretable visualizations [10].
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3.1.2 Decompression The summary graph Gs decompresses uniquely and un-
ambiguously into G′ = dec(Gs) = {V, E ′} according to simple and intuitive rules
(e.g., Fig. 1 (right)). First, every super-node expands to the set of nodes it
contains, all of which also inherit the super-node’s label. The nodes are then
connected according to the super-node’s glyph: for out(in)-stars a node defined
as the hub points to (is pointed by) all other nodes, for cliques all possible di-
rected edges are added between the nodes, and for disconnected sets no edges
are added. Moreover, a super-node self-loop expands to self-loops on every node
it contains. On the other hand, super-edges expand to sets of edges that have
the same direction.

Apart from enabling a clear interpretation of a given summary, the decom-
pression rules help quantify how well the summary represents the original graph.
For example, the pink triangle with representative multiplicity 3 in Fig. 1 (mid-
dle) expands to an in-star with all edges having multiplicity 3 as shown in Fig.
1 (right). While the topology is perfectly captured (pink nodes form a perfect
in-star), the expanded multiplicities are not always equal to the original ones.
On the other hand, expanding the green triangle perfectly captures the edge
multiplicities (all are 1), but only approximates the topology, as the original
green subgraph also contains some edges between the spokes of the hub node.

3.2 Model Encoding

Following the two-part Minimum Description Length paradigm [12], we aim to
identify a summary graph Gs that minimizes the total description cost of the full
graph, that is,

G∗s := argmin
Gs

L(Gs) + L(G|G′), s.t. G′ = dec(Gs) (1)

where L(Gs) measures the number of bits required to encode the summary graph,
and L(G|G′) the bits needed to encode the corrections (or extra-information)
for reconstructing the original graph G from the (uniquely and unambiguously)
decompressed G′. These costs can be quantified as follows.

3.2.1 Encoding the summary graph We first encode the size of the sum-
mary graph LN(|Vs|), and the number of labels LN(|T |).3 For each super-node,
log2 |T | bits are used to record its label, log2 |M| for its glyph, LN(|Sv|) for its
size, LN(m(v)) for the within-glyph representative multiplicity, log2(|Vs|) for the
number of super-nodes in Gs that it points to, and log2

( |Vs|
|N (v)|

)
to identify the

specific set of super-nodes it points to, where N (v) denotes the set of direct
(out)neighbors. For each super-edge, LN(m(e)) bits are used for the represen-
tative multiplicity. In total, the number of bits required to encode a summary

3LN(k) = 2 log k+1 bits are required to encode an arbitrarily large natural number
k, using the variable-length prefix-free encoding; see, Ex. 2.4 in [12].
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graph is given as

L(Gs) =LN(|Vs|) + LN(|T |) +
∑
v∈Vs

LSNODE(v) , (2)

where

LSNODE(v) = log2 |T |+ log2 |M|+ LN(|Sv|) + LN(m(v)) + log2(|Vs|)

+ log2

(
|Vs|
|N (v)|

)
+

∑
z∈N (v)

LN(m(v, z)) (3)

3.2.2 Encoding the corrections For the overall cost for corrections, we first
compute the number of bits used to correct the topology of the expanded (i.e.,
decompressed) graph, followed by the number of bits needed to represent the true
multiplicities. Regarding the topology, we first map the expanded nodes back to
the original node-set V. This costs LMAP(v) = log2

( |V|
|Sv|
)
+1{µ(v)=STAR} log2 |Sv|

bits per super-node v (the latter term identifying the hub of a star). Subse-
quently, we have two types of edge corrections: Either adding edges that exist
in the original graph but not in the expanded graph (i.e., positive corrections)
or removing edges from the expanded graph because they do not exist in the
original graph (i.e., negative corrections).

These costs are compactly encoded for every expanded super-edge and every
expanded super-node (glyph), using the binomial encoding L(ECOR) = LN(|ECOR|)+
log2

(|Emax
COR|
|ECOR|

)
, where ECOR denotes the possible set of corrections (positive or neg-

ative), and Emax
COR the largest set that ECOR can possibly be. For example, for

positive edge corrections in a disconnected set, we have Emax
COR = Sv × Sv, and

similarly for negative edge corrections in a clique. For super-edges, corrections
are computed according to the decompression rules (see Sec. 3.1). For the (few)
edges in the original graph between super-nodes v and z that are not represented
by a super-edge, the corrections are always positive, and Emax

COR = Sv × Sz.
The binomial encoding arises from using the uniform code over all the lexi-

cographically ordered subsets of possible corrections. An alternative to this, as
suggested in [16] and [23], would be to encode each correction individually using
an optimal prefix code. Then, interpreting p = |ECOR|/|Emax

COR| as the “probabil-
ity” of each correction, we would need LENTR = H(Ber[p]) · |Emax

COR| bits, where
H(·) is the Shannon entropy, and Ber[p] is a Bernoulli with parameter p. De-
noting |ECOR| = n′ and |Emax

COR| = n, we can show that our binomial encoding is
more efficient.

Theorem 1. It holds that LENTR ≥ log2

(
n
n′

)
, for all n > n′ > 0.

Proof. See Appendix.

Theorem 1 establishes that the binomial encoding always gives a more com-
pact measure of information required for corrections. Having corrected the edge
topology, we compute the cost of correcting the edge multiplicities. Since any
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edge e not included in a glyph or super-edge does not have a representative mul-
tiplicity, its multiplicity correction is encoded by LN(m(e)), encoding its true
value. The reason for using LN(·) to encode multiplicities is the fact that, for
most real graphs, multiplicities follow a power-law distribution. Since the vast
majority has small values, LN(·) will generally be a more “compact” encoding
compared to a uniform code based on the maximum multiplicities. For expanded
super-nodes and super-edges with representative multiplicity m, we obtain the
cost of correcting the multiplicities as

LDIFF(Esup,m) =
∑
e∈Esup

`diff(m(e),m), (4)

where Esup in this context is the set of all edges contained in said super-node or
super-edge, and

`diff(m
′,m) =

{
1 , m = m′

2 log2(|m−m′|) + 3 , m 6= m′
, (5)

bits are needed to encode the difference between a true multiplicity m′ and its
representative m. Note that, since LN(·) only holds for natural numbers (see
footnote3), one extra bit is required to indicate whether the difference is 0, and
one more for the sign of the difference.

4 Graph Summary Search

The discrete optimization problem in (1) has a very large set of feasible solutions,
and needs to be approximated efficiently. Towards this goal, we follow a two-step
process, where we first generate a list of (possibly overlapping) groups of nodes,
which we term candidate node-sets (see Sec. 4.1), and then decide which ones
to merge into super-nodes. These candidates have varying size and quality (i.e.,
structural-similarity). Larger candidates with low quality compress the graph
more (reduced L(Gs)), but also typically require more corrections (increased
L(G|G′)). Clearly, the best candidates have both high quality and large size. For
this reason, we first sort the candidate sets in descending order with respect to
the product of their size and quality. We then process the sorted list from top to
bottom, and merge the candidate sets into super-nodes, updating the summary
graph accordingly (see Sec. 4.2). To ensure the quality of summarization, we
only monitor the overall total cost, and only commit to a given candidate if
∆cost = Cost_After − Cost_Before < 0. This offers two benefits: (1) We avoid
the cumbersome process of merging nodes in pairs (i.e. two at a time) and instead
merge in groups, and (2) We achieve ability to summarize at multiple resolutions.
The overview is given in Algorithm 1.

4.1 Candidate Set Generation

4.1.1 Measuring candidate quality To quantify a candidate set’s quality,
we first need to define a proper metric of structural node similarity. For undi-
rected graphs, the Jaccard similarity between two nodes v and v′ is given as
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Algorithm 1: TG-sum: Summarizing Labeled Multi-Graphs
Input: directed labeled multi-graph G

1 Construct candidate node-sets (Sec. 4.1);
2 Sort candidates w.r.t. (size× quality);
3 for every candidate set in list do
4 Merge unmarked nodes in set and decide glyph (Sec. 4.2.1);
5 Decide super-edges (Sec. 4.2.2) ;
6 Compute representative multiplicities (Sec. 4.2.3);
7 Mark candidate node-set as merged;
8 if ∆cost < 0 then
9 Commit to merged super-node and its super-edges;

10 Return summary graph Gs ;

JU (v, v′) = |NU (v)∩NU (v′)|
|NU (v)∪NU (v′)| , and simply measures the proportion of common

neighbors that they share. Naïvely using JU (·, ·) on directed graphs is straight-
forward by ignoring the directions of the edges, however, it may yield misleading
results by often over-estimating the true node similarity. To mitigate such incon-
sistencies, we introduce the following extension of Jaccard that may also accom-
modate directed graphs, by taking into account the similarity of both Incoming
and Outgoing edges.

Definition 1. The directed Jaccard similarity between any two pair of nodes
v, v′ of a directed graph is given as

JD(v, v′) =
|N I(v) ∩N I(v′)|+ |NO(v) ∩NO(v′)|
|N I(v) ∪N I(v′)|+ |NO(v) ∪NO(v′)|

(6)

First, it can easily be observed that for undirected graphs, JD(v, v′) = JU (v, v′),
since N I(v) = NO(v) = NU (v). Note however, that in our example, JD(v, v′)
becomes 0 for all cross-pairs between {B,C,D} and {E,F}, effectively creat-
ing two separate groups. In general for directed graphs, JD(v, v′) will be more
“informed” than JU (v, v′), typically yielding lower similarity scores. We then
define

Definition 2. Any set C ⊆ V, is t−bounded if JD(v, v′) ≥ t ∀(v, v′) ∈
C × C .

We use the t−bounded-ness of a candidate to serve as a pessimistic valuation of
its quality. In addition, given that we are interested in a collection of candidate
sets, we would like the sets to be non-redundant defined as follows.

Definition 3. Let CS be a collection of candidate sets, each one accompanied by
a bound t. We call CS non-redundant, if for any C ∈ CS that is t−bounded, there
exists no t′−bounded C′ ∈ CS, such that t′ ≥ t and C ⊂ C′.

Simply put, non-redundancy ensures that none of the candidate sets is a strict
subset of another set of higher or equal quality.
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4.1.2 Incremental LSH To group nodes according to their similarity, we first
utilize Locality Sensitive Hashing (LSH) [4]. Specifically for every node v, we
generate a set of r minhash signatures

hj(v) := min
z∈ND(v)

fj(z) ∀j = 1, . . . , r (7)

where fj ’s are independent and uniform hash functions (see, e.g., [4] for im-
plementation details), and ND(v) := N I(v)‖NO(v) is the concatenated adja-
cency list of node v that includes all incoming and outgoing neighbors sepa-
rately. It can then be shown that Pr

{
hj(v) = hj(v

′)
}

= JD(v, v′); that is,
two nodes share a minhash signature with probability proportional to their di-
rected Jaccard similarity. Since the r hash functions are independent, it follows
that Pr

{
h(v) = h(v′)

}
=
(
JD(v, v′)

)r, where h(v) := [h1(v), . . . , hr(v)]
T is the

r−length minhash signature vector of node v. If the nodes are hashed into buck-
ets according to their r minhash signatures, the equality gives the probability
that two nodes hash into the same bucket. By collecting b hash-tables corre-
sponding to b bands of r minhash signatures, the probability that v and v′ hash
to the same bucket at least once is

Pr
{
hi(v) = hi(v

′) ∃i = 1, . . . , b
}
= 1−

(
1−

(
JD(v, v′)

)r)b
(8)

Interestingly, for sufficiently large r and b, the RHS expression in Eq. (8) when
viewed as a function of

(
JD(v, v′)

)
approximates a step function around the

threshold t =
(

1
b

) 1
r ∈ (0, 1], meaning that with high probability v and v′ will

belong in a t−bounded set. To avoid repeating the entire process for different
values of b, we incrementally generate and add more bands of minhash node
signatures, that in turn hash nodes into new buckets. The new buckets are then
merged with any overlapping existing buckets, gradually coalescing into larger
clusters that are approximately t−bounded, with t =

(
1
b

) 1
r decreasing as b in-

creases. This is exactly how we obtain larger candidate sets, albeit of lower
quality, incrementally by the addition of new bands.

4.1.3 Filtered LSH While the incremental LSH described in the previous
section efficiently guides the process of forming candidate sets, merged buckets
are not guaranteed to be t−bounded due to the false alarm probability. For this
purpose, we maintain an undirected similarity graph Gsim, where an edge (v, v′)
is guaranteed to appear if and only if JD(v, v′) ≥ t. Intuitively, Gsim serves as
a data structure where large t−bounded candidates appear as maximal cliques.
As new LSH buckets appear and clusters are updated, we compute JD(v, v′) for
newly coalesced pairs of nodes (v, v′), and add the latter as an edge to Gsim if
JD(v, v′) ≥ t. If the threshold is not satisfied, the computed value JD(v, v′) is
not discarded, but cached into a max-heap since it may satisfy a lower t in one
of the subsequent iterations as b is increased.

As mentioned earlier, candidate sets are collected as maximal cliques in Gsim.
To ensure that the set of candidates is non-redundant (cf. Def.n 3), we maintain
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for every node the size of the maximum clique that it has been found to belong
in. Every time a new clique is discovered, we update the maximum-sizes for all
the nodes it contains using the clique’s size. As new edges are added to Gsim, we
examine every node for newly emerged cliques, and we rely on the heuristic in
[22] to prune the search by avoiding the evaluation of cliques that cannot exceed
the size of the previously-found maximum clique.

4.2 Merging Candidates: Glyphs, Super-edges, Multiplicities

Every time a candidate set C is tested, we deploy subroutines that efficiently
update the summary graph, by making decisions regarding (1) the glyph that
will be assigned to the merged set of nodes, (2) super-edges that emerge (or
disappear) due to the merging, as well as (3) representative multiplicities for the
set of edges summarized by the glyph and its super-edges.

4.2.1 Glyph decision rules To preserve super-node label homogeneity, a can-
didate set that contains nodes of different labels is first split into same-label
subsets. Each subset is merged into a separate super-node using the proce-
dure described below. Hereafter, the term candidate set refers to such a label-
homogeneous subset. For the glyph decision, we first identify the number of
directed edges EC that are included in the subgraph induced on nodes that cor-
responds to C in the candidate set. Consequently, if EC ≥ |C|(|C| − 1)/2, i.e.,
at least half of all possible directed edges are present, then we decide Clique
since it most likely is the best glyph in terms of number of edge corrections. For
sparsely-edged candidate sets that do not pass the clique threshold, we proceed
to test for the presence of stars. If there is a suitable out-/in-star present in C,
then its hub will be the highest out/in-degree node in C. We use the followin
proxy correction cost for encoding an in-star

CostIN = (|C| − 1− dImax) + (EC − dImax) , (9)

and similarly CostOUT for out-star using dOmax. Intuitively, the first term of Eq.
(9) is the number of edges that will have to be removed from the full decom-
pressed star, while the second part is the number of edges that cannot be “ex-
plained” by the star and will have to be added. We then compare CostIN and
CostOUT with EC , i.e., the number of edges that will have to be added if we
decide that C is a disconnected set. If only CostIN (or only CostOUT) is smaller
than EC , then we decide In-star (or Out-star). If both CostIN and CostOUT

are smaller than EC , then we choose the smallest of the two. Finally, if neither
CostIN nor CostOUT are smaller than EC , we decide C is a Disconnected set.

4.2.2 Super-edge decision rule Having decided the glyph of C, we merge any
outgoing and incoming edges and/or super-edges into “bundles” of edges and
their corresponding multiplicities. We then obtain the topology-based correction
costs of merging or not merging each bundle into a super-edge (recall Sec. 3.2).
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If the total cost (topology and multiplicities) of representing each bundle of
edges with a super-edge is lower than the cost of not representing it, then the
corresponding super-edge (and its representative multiplicity) is added to the
summary.

4.2.3 Finding representative multiplicities For every newly-formed super-
node as well as each potential super-edge, we find the representative multiplicity
m∗ as m∗ := argminm LDIFF(Esup,m) where LDIFF(Esup,m) is defined in Eq.
(4), and Esup is the set of all edges contained in a given super-node or bundled by
a super-edge. Although this 1D-optimization problem is not convex, we find that
the dichotomous search algorithm [8] finds the optimal solution in most cases,
and runs in O(|Esup| log2R) time, where R = maxe∈Esup m(e)−mine∈Esup m(e),
i.e., the dynamic range of multiplicities.

5 Experiments

5.1 Setup

We experimented with real-world graphs of a wide variety of sizes and charac-
teristics, including a senator-to-senator network extracted from the 2009-2010
US Congress dataset [3] and the Political Blogs network [1], both with political
affiliation labels; the Cora and Citeseer citation networks [11] that are labeled by
publication venue; and finally, transaction networks from 3 (anonymous) corpo-
rations that we collaborated with. See Table 1 for a summary of network char-
acteristics. There is no existing method for LMDS-graph summarization, thus

Table 1: Real-world graphs used in experiments. ∗ depicts naturally directed
graphs that are typically treated as undirected. For SH, HW, KD #labels is given
for EB/FS labeling.

Name #nodes #m-edges #labels Lbl. Dir. Mult. S-loop

senate 0.1K 2.4K 2 "

polblogs 1.5K 19K 2 " ∗

cora 2.7K 10.6K 6 " ∗

citeseer 3.3K 9.2K 7 " ∗

SH trans 0.25K 301K 11/27 " " " "

HW trans 0.32K 268K 11/60 " " " "

KD trans 2.3K 648K 10/29 " " " "

we compare only under simplified settings, w.r.t. running time and compression
rate. Moreover, TG-sum is only comparable to lossless methods. We modify the
Randomized algorithm of Navlakha et al. [20] to accommodate node labels and
edge directions, and compare on all graphs, ignoring the edge multiplicities.
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Fig. 2: (left) original US Senate graph, (middle) high resolution (b = 2) summary,
(right) low resolution (b = 5) summary.

5.2 Qualitative Evaluation: TG-sum at Work

The US Senate dataset contains the (positive or negative) votes of 108 sena-
tors for 696 congressional bills. The senators are labeled as Republicans (red),
Democrats (blue), or independent (green). We construct an undirected graph
where two senators are connected by an edge if the cosine similarity of their votes
is larger than 0.3. The graph is plotted in Fig. 2, along with two summaries at
different resolutions, leading to the following observations. Interestingly, while
most democratic senators eventually form a clique, there is a smaller group of
East coast senators, including prominent Democratic figures such as Joe Biden,
Hillary Clinton, and Ted Kennedy that do not merge with the main body and
form their own separate clique. Furthermore, this clique of Democrats is directly
linked to certain Republicans, such as the Florida-based Mel Martinez, who has
most recently opposed Trump openly and explicitly expressed his preference for
Joe Biden4. The second observation is that Republican senators overall exhibit
a more fragmented voting behavior, splitting into multiple cliques of comparable
size. This is corroborated by computing the entropies of the votes for all the bills,
for Democrats and Republicans separately. Intuitively, bills with high entropy
indicate a low degree of agreement on the subject. By plotting the histograms of
the voting entropies (see Fig. 2 (right)) for the two groups, it becomes apparent
that Republican votes exhibit higher entropy (median = 0.21) than Democrats
(median = 0.16).

4https://bit.ly/3qwc9zu

https://bit.ly/3qwc9zu
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5.3 Quantitative Evaluation: Evaluating Financial Accounts
Labeling

In this section, we show how we employed TG-sum to quantitatively address
a domain-specific problem, specifically, evaluating a pre-existing labeling, i.e.,
the set of types pre-assigned to the nodes in an accounting network that con-
nects business accounts via credit/debit transaction relations.A business entity’s
Chart of Accounts (COA) lists, and also pre-assigns a label to, each distinct ac-
count used in its ledgers. Such labeling helps companies prepare their aggregate
financial statements (FS). For example, the FS caption “Cash and Cash Equiv-
alents” is used to describe the total sum of all liquid assets tracked in a number
of accounts; e.g., currencies, checking accounts, etc. In the US, FS captions are
not uniform across corporations. In fact, the data we have from 3 different com-
panies (anonymized as SH, HW, and KD in Table 1) each contains different FS
captions.

How suitable is a given FS labeling? Can a different labeling be shown to be
quantitatively better than another?

To this end, our collaborator (an accounting expert) designed a new labeling
(referred as EB for economic bookkeeping), relabeling the accounts based on
their primary economic nature. Specifically, EB organizes them into operating
versus financing and long- versus short-term accounts. Expert knowledge sug-
gests that EB improves over FS captions by categorizing the accounts such that
accounts of the same label should “behave” similarly in the system. This behavior
can be discerned from the real-world usage data, in particular the transactions
graph, where accounts are connected through credit/debit relations. Under a
more suitable labeling, the accounts with the same label should have more struc-
tural similarity and yield better compression. To compare EB vs. FS, we employ

Table 2: Evaluating account labelings in financial networks

Dataset Labeling Shuffled Actual norm. gain (%)

SH EB 0.28 0.32 5.6 %
FS 0.25 0.27 2.7 %

HW EB 0.36 0.47 17.0 %
FS 0.16 0.27 13.0 %

KD EB 0.33 0.42 13.7 %
FS 0.31 0.39 12.0 %

TG-sum on each graph using one or the other labeling separately, and record the
compression rate. Next, we shuffle the labels (within each setting) randomly, and
employ TG-sum again. “Shuffled” and “Actual” compression rates are reported in
Table 2 (the former averaged over 20 random shuffles). EB rates are higher—this
is not surprising as EB has fewer labels as compared to FS (See |T | in Table 1),



14 Berberidis, Liang, Akoglu

and hence TG-sum has higher degree of freedom to merge nodes on EB-labeled
graphs. As such, Actual values are not directly comparable. What is comparable
is the difference from Shuffled, that is, how much the labeling can improve on
top of the random assignment of the same set of labels. Here, the absolute dif-
ference is always equal or larger for EB. However, even the absolute difference of
compression rates is not fair to compare—it is harder to compress a graph that
has been compressed quite a bit even further. For EB, Shuffled rates are already
high. Improving over Shuffled even by the same amount proves EB superior to
FS. Therefore, we report the normalized gain; defined as (Actual−Shuffled) /
(1−Shuffled), which shows that our expert-designed EB labeling is better, for
the aforementioned reasons.

5.4 Quantitative Evaluation: Compression rate, Running time,
Scalability

Quantitatively, we measure summarization performance in terms of both (1)
running time, as well as (2) the size reduction achieved in terms of bits (including
bits required for correction). Specifically, upon obtaining the total number of bits
(as given by the encoding scheme of each method), we measure the compression
ratio as Compress Ratio =

Bits_Before−Bits_After
Bits_Before ∈ [0, 1), that is the fraction of

the encoding cost that has been reduced by summarization. We compare with
the Navlakha algorithm [20], which we modified to handle edge directions and
node labels. We run TG-sum by gradually increasing b, to increase the number
of candidate sets and obtain multi-resolution summaries. A larger number of
candidates is expected to yield higher compression ratio, albeit at the cost of
increased running time—hence enabling the user to choose a suitable trade-off
in practice.
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Fig. 3: Compression ratio vs. runtime on undirected graphs

Results are given in Fig. 3, where TG-sum remarkably outperforms the al-
ternative in terms of compression ratio in almost all cases. In absolute terms,
it achieves roughly 30–60% compression across these various real-world graphs
with up to hundreds of thousands of edges and tens of distinct labels. Finally,
we measure the scalability of TG-sum by first generating an increasing size syn-
thetic directed k-out graph, where nodes are incrementally added and connected
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to k = 10 of the existing nodes, simulating a preferential attachment process.
Results in Fig. 4 (left) show that, unlike the modified Navlakha, the runtime of
TG-sum grows in a near-linear fashion.
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Fig. 4: TG-sum complexityscales linearly with the number of edges.

6 Conclusion

We introduced TG-sum, a versatile graph summarization algorithm that (for
the first time) can handle directed, node-labeled, multi -graphs with possible self-
loops (or any combination). Built on a novel encoding scheme, TG-sum seeks
to minimize the total encoding cost of (i) a summary graph, and (ii) the cor-
rections to reconstruct the input graph losslessly. It efficiently finds structurally-
similar nodes to create super-nodes of larger sizes incrementally, producing multi-
resolution summaries. Extensive experiments show that TG-sum (1) provides
insights into the high-level structure of real-world graphs, (2) achieves better
trade-off between compression and runtime relative to baselines (only) on com-
parable settings, and (3) scales linearly in the number of edges.
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