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Abstract. Hardware-Aware Neural Architecture Search (HA-NAS) is
an attractive approach for discovering network architectures that bal-
ance task accuracy and deployment efficiency. In an iterative search
algorithm, inference time is typically determined at every step by di-
rectly profiling architectures on hardware. This imposes limitations on
the scalability of search processes because access to specialized devices
for profiling is required. As such, the ability to assess inference time
without hardware access is an important aspect to enable deep learning
on resource-constrained embedded devices. Previous work estimates in-
ference time by summing individual contributions of the architecture’s
parts. In this work, we propose using block-level inference time estima-
tors to find the network-level inference time. Individual estimators are
trained on collected datasets of independently sampled and profiled ar-
chitecture block instances. Our experiments on isolated blocks commonly
found in classification architectures show that gradient boosted decision
trees serve as an accurate surrogate for inference time. More specifically,
their Spearman correlation coefficient exceeds 0.98 on all tested plat-
forms. When such blocks are connected in sequence, the sum of all block
estimations correlates with the measured network inference time, having
Spearman correlation coefficients above 0.71 on evaluated CPUs and an
accelerator platform. Furthermore, we demonstrate the applicability of
our Surrogate Model (SM) methodology in its intended HA-NAS con-
text. To this end, we evaluate and compare two HA-NAS processes: one
that relies on profiling via hardware-in-the-loop and one that leverages
block-level surrogate models. We find that both processes yield similar
Pareto-optimal architectures. This shows that our method facilitates a
similar task-performance outcome without relying on hardware access
for profiling during architecture search.

Keywords: AutoML · Inference Time Estimation · Neural Network De-
sign
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1 Introduction

Neural networks consistently achieve competitive results in a wide variety of
machine learning contexts. It is thus not surprising that both academia and
industry address challenging tasks in multiple domains with neural networks.
Furthermore, with cloud services offering specialized neural network training in-
frastructure, a network can be trained and deployed with minimal operational
investment. Since both environment perception and the interpretation of sen-
sor data on-device benefit from the use of deep learning, neural networks are
deployed outside data centers with increasing frequency. This shift to edge de-
vices brings a new challenge: hardware cost of deployed neural networks, such
as inference latency (i.e. execution time), memory usage, bandwidth utilization,
etc. These hardware metrics must be reduced such that neural networks can
effectively be executed on more computationally and power constrained devices
[23].

Designing machine learning models targeting multiple objectives is a tedious
task, which traditionally entails many hours of manual tuning by human experts.
As a consequence, the adoption of hardware-optimal neural network design for
practical innovations is often deferred due to domain knowledge scarcity. As a
response to an increasing demand for task-specific solutions, automated machine
learning (AutoML) has emerged to successfully address this limitation [30]. In
the case of neural networks, the field of Neural Architecture Search (NAS) studies
AutoML that yields optimal architectures. Latest state-of-the-art performance
on a number of challenging computer vision benchmarks has been achieved with
neural networks found via architecture search [31].

One of the toughest challenges for realizing NAS in practice is the amount
of computational resources and power required per search. An important reason
for this, is that many NAS methods estimate the accuracy of candidate networks
by training them for several epochs [12,15]. Recent research has revealed that
this can be alleviated by estimating the task performance directly from the
architecture using a surrogate model. As a consequence, the amount of training
required is drastically reduced [2,4].

As indicated previously, there is increasing demand for models that meet
challenging hardware deployment cost requirements, such as inference time,
memory requirements, or power consumption. This is addressed by hardware-
aware neural architecture search (HA-NAS) which aims to optimize for both
task-performance and hardware costs [3]. In this work, we consider the co-
optimization of both classification accuracy and execution time on hardware.
The hardware-aware search strategy determines architectures that perform op-
timally on both metrics. In the remainder of this paper, we use ‘inference time‘,
‘latency‘, and ‘execution time‘ interchangeably.

Figure 1 shows a diagram of an iterative HA-NAS process. The latency of
an architecture must be assessed at every step in the search process. Three cat-
egories of assessment methods are commonly found in the literature. Firstly,
hardware-in-the-loop (HIL) methods profile a given architecture ad-hoc on the
targeted hardware whenever a new architecture is emitted [7,24]. Secondly, lookup
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Fig. 1. UML activity diagram of hardware-aware neural architecture search. Neural
networks are selected from the search space using a search strategy. The combined task
and hardware performance scores are used to determine the next trial network. This
work proposes a surrogate-model-based latency assessment.

table (LUT) methods query latencies of parts of a neural networks based on their
building blocks [1,29,32,28,34,6]. The LUT contains an entry for each architec-
ture block configuration in the search space. These part latencies are then com-
bined, usually via summation, to yield the overall architecture latency. Thirdly,
surrogate model (SM) methods define a prediction model to infer the approxi-
mate latency of a network [4,14,33,2].
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Fig. 2. Schematic showing the assessment methodolgy of full-network latency τ using
HIL profiling and our proposed block-level based estimate.

We aim to combine various machine learning methodologies to engineer a
latency estimation framework for block-based convolutional neural networks
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(CNN) in order to overcome the limitations of HIL and lookup table based
latency assessment systems. As such, our approach can be categorized as an SM
method. Figure 2 shows an overview of how our proposed method estimates the
latency τ of a neural network architecture using a set of dedicated block-level
predictors. The true execution time can be determined by HIL-measurements.
In broad terms, we train and evaluate various regression models on a generated
dataset of individually profiled architecture block instances. The architecture
block configurations together with their measured inference time represent the
respective input and ground truth in the training data. A successful prediction
model will learn the influence of the block configuration parameters on the block
latency. This way the model may generalize from trained block-configurations
to configurations that were not part of the training set. This overcomes the
limitations of lookup tables where every possible configuration of an architec-
ture building block would need to be profiled and stored before being used in
HA-NAS. As such, our proposed block-level surrogate model (BLSM) greatly
increases the cardinality of a search space in a HA-NAS algorithm without re-
quiring hardware access at search-time.

Our key contributions can be summarized as:

– We introduce a block-level surrogate-model methodology abbreviated BLSM
that uses trained inference time estimators to overcome the need for hard-
ware access during HA-NAS while preserving the flexibility benefits of HIL-
methodologies.

– We propose a novel definition of blocks using a bijective relation between
instantiation parameters and a computational sub-graph to make the BLSM
pipeline generalize to any block type that may be uniquely described by a
structured collection of constructor variables.

– We assess the feasibility of block-level latency estimates for guiding HA-NAS
in comparison to HIL-guided search.

2 Related work

The use of machine learning models that predict the task performance of neural
network architectures has recently become a relevant aspect for improving the
search time of NAS methods. Baker et al. were among the first to explore the
use of an SM for accuracy prediction based on support vector regression in
combination with an early stopping scheme [2]. Similarly, Moons et al. integrate
an accuracy predictor in their pipeline for rapidly searching neural networks on
various hardware targets [24]. They employ HIL to test whether an architecture
is feasible on a target device. Our SM method aims to be a drop-in replacement
for such a HIL approach. This would allow a fully prediction-based optimization
scheme when optimizing for both accuracy and latency.

Different strategies have been employed to estimate hardware metrics. For
example, Dong et al. define an analytical model to estimate DNN latency on
an FPGA platform [10]. This analytical strategy requires detailed understand-
ing of low-level execution of DNN blocks on the target hardware, which is not
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feasible for a wide variety of deployment scenarios, e.g., if specialized black-
box inference engines are involved. Alternatively, Gupta et al. implement an
SM that uses hardware virtualization. Such cycle-accurate simulations can ac-
curately predict the performance of a hardware target. However, cycle-accurate
simulations are often prohibitive in HA-NAS for assessing execution time due
to their significant computational effort. Additionally, profiling a neural network
via simulation requires cycle-accurate emulation of the platform. Such software
may not be available for the target hardware. Our method overcomes the limi-
tations of simulation and analytical models by predicting the latency through a
machine-learning-based surrogate model trained on a-priori profiled data of the
target hardware platform.

Bouzidi et al. compare a variety of modeling algorithms to predict the latency
of CNN-architectures on edge GPU platforms [4]. Whereas the method proposed
in their work aims to make a single prediction on the network level, our approach
uses block-level latency predictions to infer the network latency.

HELP and BRP-NAS are similar approaches for introducing predictor-based
latency estimators in NAS [21,11]. Especially the focus of HELP lies on gener-
alizing the latency estimations towards multiple HW-targets. However, the indi-
vidual neural networks for latency estimation stem from one search space only.
Our work focuses on block-level latency estimation and therefore enables latency
estimation in arbitrary search spaces derived form a composition of blocks.

We evaluate our method as a drop-in module for the AutoKeras framework
proposed in [19], which renders the NAS process into a hyperparameter optimiza-
tion context. In their system, the authors programatically define a parameterized
template network called the ‘hypermodel‘, which we can represent as a mapping
from a set of network instantiation parameters to a network architecture. By
means of hyperparameter optimization, trials can be performed until an opti-
mal configuration is found [19]. By contrast, the canonical term ‘search space‘
is used for the remainder of this paper to refer to the set of all possible network
instances that are in the range of a specific hypermodel. To clarify, the range of
a hypermodel entails all architectures that can be defined on the cross product
of the domain of each instantiation parameter.

HW-NAS-Bench is a recent dataset that includes latency measurements of
networks for benchmarking hardware-aware NAS approaches [22]. Our work is
based on block-level latency estimates. Unfortunately, HW-NAS-Bench only pro-
vides the latency of entire networks and not of their composing blocks. Therefore,
our approach cannot be assessed on the HW-NAS-Bench dataset.

3 Method

3.1 Block instances and parameters

Before proceeding to formalize our models, let us first introduce the concept
of block-based neural networks. This work has a focus on image classification
networks that consist of sequentially connected block instances.
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Table 1. Evaluated block types

Block name Reference implementation Parameters cardinality (i)

MBConv MobileNet convolutional block [18] 3 + 5
Res V1 ResNet original implementation [16] 3 + 4
Res V2 ResNet with identity mappings [17] 3 + 4

i Cardinality includes three input dimensions plus the number of search-
able block configuration hyperparameters.

Definition 1. A block instance is a sub-graph of a neural network that is the
specific realization from the space of all block variants.

The networks investigated in this paper can be represented as a list of pa-
rameters that unambiguously define a series of block instances. Inversely, these
parameters can be uniquely inferred from the network graph by inspecting the
block instances it contains.

Definition 2. Block parameters are a collection of mixed-domain values that
uniquely map to a block instance.

The bijective properties of the mapping from parameters to instances enables
constructing a dataset of block parameters together with the measured inference
latency of the respective instance for training a block-level latency predictor. Ad-
ditionally, the block parameters of each block in a candidate neural network can
be determined during search-time by parsing the computational graph of the
full network. By design, this effectively isolates the training of latency predic-
tors from the search process. The blocks defined in this work are parameterized
versions of blocks commonly found in literature. Table 1 summarizes the block
types evaluated in this paper.

As is common practice in HA-NAS methods [3,27,26,6] and also experimen-
tally confirmed [27], we assume that network latency can be sufficiently approx-
imated by the sum of stacked block-instance latencies. As such, blocks can be
profiled individually and mixed-and-matched to yield new networks that retain
the summed-latency property. Thus, summing latency predictions for each block
of a neural network yields an estimate of the entire architecture inference time.
We hypothesize that there exist regression models that can predict the block-
level latency from the block serialization. This requires a predictor model for each
pair of block families and hardware targets, which can be trained on profiling
data of single blocks.

3.2 Predictor model

Having defined the relation between blocks and the full-network latency, the
estimator model can now be formalized. Let τc ∈ R+ be the measured latency
of a block B with parameters c ∈ CB, where CB represents the set of all possible
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block configurations. The objective of our block-level estimators is to learn the
transformation

τ̂ : CB → R+, (1)

such that τ̂(c) predicts the measured latency. This is identified as a regression
problem with error function

ζ = τ̂(c)− τc. (2)

We propose to use a separate estimator τ̂(·) for each block type and hardware
platform. This enables to two degrees of freedom for designing inference time
surrogate models. First, each block predictor can leverage the machine learn-
ing algorithm best suited for the domain of instantiation parameters that it
defines. Second, it is not required to train predictors that generalize across all
hardware-platforms. Instead, predictors may be fine-tuned to fit specific hard-
ware characteristics.

This paper evaluates four estimator models, namely Linear, Random Forest,
Boosted Trees, and Dense NAS. These different estimator models should address
the mixed-domain characteristics of block parameters and are further explained
in the following.

Linear regression This model is best suited for configuration spaces that con-
sist of continuous independent variables. We make use of an exponentially acti-
vated linear regression model

τ̂(c) = exp(Wc+ b) (3)

with weighting matrix W and bias b. We iteratively approximate the weighting
matrix using gradient descent. Hyperparameters are the learning rate (0.01) and
batch size (64), which were determined using 20 trials of grid search.

Decision forest regression These models are expected to achieve high perfor-
mance when the block configuration consists of mostly categorical parameters
or when the input values are from mixed domains. In a decision forest model,
the (regression) output is given by taking the mean output of a decision tree en-
semble. We explore two flavors of decision-forest construction algorithms. First,
the Random Forest predictor uses the method described in [5], which adds un-
correlated trees to the forest that minimize the prediction error. Second, the
Boosted Treespredictor uses the gradient boosting algorithm [13], which itera-
tively reduces the error of the forest by adding trees that minimize the error of
prediction as a product of the learning rate. For both models, hyperparameters
were configured as suggested in the reference implementation [8].

Deep neural network regression The fourth estimator method under con-
sideration is a deep neural network. We exploit a NAS algorithm to find an
optimal fully connected deep neural network, tailored towards each block and
hardware platform. Models of this class are best suited to inputs where each



8 K.H.W. Stolle et al.

element is from the same domain. Additionally, inputs that have a high degree
of interdependent relations are likely to benefit from deep neural networks. The
network is trained using gradient descent, with the learning rate tuned by the
NAS algorithm.

3.3 Experimental set-up

The methodology proposed in this paper is evaluated on four platforms. These
platforms cover a wide range of hardware architectures to illustrate the extent
to which our methodology is applicable. More specifically, we employ a high-
performance CPU for high-end compute (CPU Cloud), a low-power CPU that
is typically used in energy-constrained edge platforms (CPU Edge), a general-
purpose GPU designed for parallel processing (GPU), and a specialized parallel
compute platform (ASIC) 3. For each platform, latency is measured in a profil-
ing experiment consisting of 10 000 invocations on isolated block instances with
random data and batch size 1. Note that in edge devices, achieving low latency
is often more important than realizing high throughput. We therefore choose a
batch size of 1. A number of external factors may affect the measured latency,
such as processes executed in parallel on the targeted hardware and general pro-
filing inaccuracies. To mitigate these effects in our approach, we rely only on
the minimal measured latency of the block profiling dataset. This represents a
feasible best-case execution time and is more robust than, e.g., a mean value,
since we observed that inference measurements typically follow an exponential
distribution.
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Block
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Fig. 3. UML activity diagram showing the end-to-end process of sampling configura-
tions of a block, profiling these samples, and fitting a predictor model on this data.
This yields a latency predictor that is specifically designed for a single block type and
the hardware platform it was profiled on.

3 Note that the experiments are meant to demonstrate our methodology. The experi-
ments are not intended to benchmark specific hardware and deployment toolchains,
hence those details are left out.



Block-Level Surrogate Models for Inference Time Estimation in HA-NAS 9

Figure 3 shows the process of sampling configurations of a particular block,
profiling these block instances on hardware and fitting a regression model. This
yields a block latency predictor as can be used in Figure 2.

We evaluate out proposed block-level surrogate models (BLSM) for latency
in a HA-NAS on a small-scale image classification task. For this, we use the
CIFAR-10 dataset [20]. This dataset covers 60 000 colored images, each having a
width and height of 32 pixels. The objective is to classify each image into one of
ten classes. The classification accuracy is defined as the percentage of correctly
predicted classes over a test set of 10 000 samples.

3.4 Applicability of block-level surrogate models in HA-NAS

To assess the applicability of a block-level surrogate model for inference time,
we compare the distribution of found neural networks of a HIL-based search
with the distribution of architectures generated by a search that relies on our
BLSM. If the found Pareto-optimal neural architectures are sampled in similar
accuracy-latency regimes in both setups, we consider the use of a BLSM in HA-
NAS is feasible for a block type and hardware platform. As a result, we can
compare the optimal networks from a session guided by a predictor with the
optimal networks found when HIL-measurements were used.

For the purpose of evaluating our proposed BLSM, we sample 200 architec-
tures with random block configurations and assess the predicted latency with
true latency measured in a HIL-setup. Note, random sampling of architectures
reflects an unguided search, i.e. each trial is chosen independently of any previ-
ously evaluated accuracy or latency in a search process.

In contrast, a HA-NAS with a Bayesian Optimization search strategy samples
architectures for training and profiling based on previous trials’ accuracy and
latency. In order to render the Bayesian Optimization as a hardware-aware multi-
objective optimization, we use a scalarization paradigm [25]. To this end, we
propose using the balanced sum of the task-related objective (accuracy) and
the hardware performance metric (inference time). Specifically, we investigate
the multi-objective-optimization of classification accuracy α on CIFAR-10 and
inference latency τ on target hardware platforms. Thus, we define the following
multi-objective scalarization to derive a balanced accuracy-latency score

BALS =
α

αref
+

log(τ − τref)
log τref

− 1, (4)

where constants αref and τref can be tuned according to the importance of each
objective. For experiments, we employ an adapted version of the Bayesian Op-
timization search algorithm from the AutoKeras framework [19].

Table 2 summarizes the hyperparameters of the HA-NAS benchmark. We use
20 epochs of training as a proxy for the final validation accuracy in accordance
with NAS-bench-201 [9].
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Table 2. HA-NAS benchmark hyperparameters

Hyperparameter Value

Primary objective CIFAR-10 classification accuracy
Input image dimensions 32× 32× 3
Training epochs to estimate accuracy score 20
Batch size 64
Optimizer Adam
Learning rate 0.01
Reference accuracy αref 1.0
Reference latency τref 100ms

4 Results & Discussion

Our latency predictors are trained on a generated dataset of block parameters
and their corresponding measured latency on a specific target platform. To as-
sess performance and compare results, each block-hardware-dataset is split into
a training, validation, and test set. The training set is used to fit the model,
while the hyperparameters of this model are tuned to maximize accuracy on the
validation split. Finally, the test split is used to quantitatively assess the quality
of predictors with respect to measured values and in relation to other predictors.

4.1 Block-level surrogate model performance

Figure 4 shows the predicted latency versus the measured latency. The amount
of deviation from the x = y line is a proxy for the quality of the predictor. From
this visualization, it is evident that the Boosted Trees estimator appears to yield
the least amount of predictive error compared to the other estimator models.
Overall, the GPU hardware is most difficult to predict. This could be explained
by inaccuracies in profiling at the small-scale range of GPU inference times.
In order for a NAS algorithm to be guided towards optimal solutions using a
predictor, the prediction and measured values ideally have a monotonic relation.
To assess the strength of all trained predictors in this regard, Spearman’s ρ is
calculated, and results are summarized in Table 3. All predictor methods produce
highly correlated results.

4.2 Comparing recall of optimal networks under prediction

Previously, we computed the Spearman ρ to quantitatively assess the monotonic
relation between block-level latency estimates and the measured latency of an
isolated block. In this section, we analyze both the monotonic relation strength
between network-level latency estimates using summed block-level SM estima-
tors and mean measured latency. For our analysis, we use a set of 200 networks
randomly sampled from the search space, which consists of sequentially placed
instances of each block type. While a block-level latency estimate may produce
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Fig. 4. Predicted latency versus measured latency for all MobileNet convolutional block
estimators in isolation on different hardware platforms. Every point corresponds to a
configuration of the ResBlock1 in the set of configuration samples not used in the
training process.
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Table 3. Spearman’s correlation of block-level latency estimates to measured latencies

Block Platform Dense NAS Gradient Boosted Linear Random Forest

MBConvBlock ASIC 0.79 0.98 0.74 0.97
Cloud 0.99 1.00 0.96 0.99
Edge 0.97 0.99 0.94 0.97
GPU 0.88 0.89 0.78 0.90

ResBlock1 ASIC n/a n/a n/a n/a
Cloud 0.99 1.00 0.97 0.99
Edge 0.99 1.00 0.96 0.99
GPU 0.91 0.98 0.93 0.97

ResBlock2 ASIC n/a n/a n/a n/a
Cloud 1.00 1.00 0.97 0.99
Edge n/a n/a n/a n/a
GPU 0.95 0.99 0.94 0.98

p < 0.001 for all ρ correlation values.

10 2 100 102

Predicted latency [ms]

10 2

100

102

M
ea

su
re

d 
la

te
nc

y 
[m

s]

x=y
Model

(a) Linear

10 2 10 1 100 101

Predicted latency [ms]

10 2

10 1

100

101

M
ea

su
re

d 
la

te
nc

y 
[m

s]

x=y
Model

(b) Boosted Trees

Fig. 5. Normal probability (center axis) and KDE (marginal axes) plots of measured
versus predicted latency on full neural network architecture scale. Networks (blue dots)
were discovered via random search consisting of stacked MBConvBlock profiled on
the CPU Cloud platform. While distributions estimated on both axes appear similar,
deviation from the dotted line shows the error of prediction accumulates exponentially.
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Table 4. Evaluation metrics of BLSM predictors for MBConvBlock based-networks.

Platform Predictor r ρ

Cloud CPU Linear 0.86 0.83
Random Forest 0.96 0.95
Gradient Boosted Trees 0.97 0.96
Dense NAS 0.96 0.95

Edge CPU Linear 0.83 0.79
Random Forest 0.87 0.85
Gradient Boosted Trees 0.91 0.89
Dense NAS 0.87 0.8

GPU Linear 0.57 0.54
Random Forest 0.45 0.41
Gradient Boosted Trees 0.58 0.57
Dense NAS 0.53 0.48

ASIC Linear 0.80 0.60
Random Forest 0.96 0.71
Gradient Boosted Trees 0.94 0.70
Dense NAS 0.81 0.70

p < 0.001 for all r and ρ correlation values.

network-level latencies with a large degree of error, we expect a guided NAS
algorithm to still find the set of Pareto-optimal networks when errors are pro-
portionally incorrect. Figure 5 visually illustrates the relation between measured
versus BLSM-predicted inference time on the network-level. Table 4 summarizes
the resulting metrics for each predictor on the set of randomly sampled networks
using the ASIC platform. On average, the Boosted Trees predictor produces the
largest correlation coefficients, closely followed by the Random Forest predictor.
This is expected, as the block-level Spearman’s ρ correlation is similarly large
when evaluated on isolated blocks (Table 3).

Table 5. Distance between SM and HIL guided sets of MBConvBlock networks.

Platform Predictor Woverall Woptimal HNQ

Cloud CPU Linear 0.1052 0.3118 2.9
Cloud CPU Boosted Trees 0.1278 0.0198 0.2
ASIC Linear 0.2032 0.1574 0.8
ASIC Boosted Trees 0.0923 0.0142 0.2

4.3 Effects of prediction on guided search results

A quantitative comparison between search results becomes more involved when
a strategy selects subsequent trials based on the previous trial’s results, as is the
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Fig. 6. Guided HA-NAS results under different latency assessment sources (HIL or
SM) visualized in an accuracy versus latency scatter plot.
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Fig. 7. KDE plot of HA-scores found via HIL and SM (Boosted Trees) Bayesian Op-
timization search. A stack of MBConvBlock models on the ASIC platform was used.
Visually, the distances between both sets is much smaller, indicating the search strat-
egy yields similar networks.
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case in guided search. Figure 6 shows networks from a search guided respectively
by HIL and SM assessments with the Bayesian Optimization strategy in the
accuracy versus latency plane. To gain insight into the score of networks selected
by each search, an estimate of the HA-score distribution of networks is shown
in Figure 7. We compute the Wasserstein distance W of HA-score distributions
as a measure of similarity between the networks sampled in the HIL-setup and
in the SM-setup. We report both the Wasserstein distance Woverall between all
sampled networks and Woptimal between the found Pareto-optimal networks.
A small value of Wpareto indicates that the BLSM-based HA-NAS process is
feasible, because the SM set of optimal networks is similar to the HIL set of
optimal networks. The range of the Wasserstein distance metric does not give an
inherent qualitative insight, but requires comparison against a baseline distance
to yield an interpretable result. We use the overall distance between SM and
HIL results as a baseline for each qualitative assessment. The search process can
thus be asserted as feasible when the distance between optimal results is less
than the overall distance of networks trialed during search. Therefore, we define
the HA-NAS quality ratio

HNQ =
Woptimal

Woverall
∈ R+, (5)

and the necessary condition for feasibility of the search process,

HNQ < 1. (6)

Table 5 summarizes the resulting metrics for each search experiment. Results
indicate that the Boosted Trees BLSM is the most feasible on the CPU Cloud
and ASIC platform with HNQ = 0.2. Additionally, the linear regression SM does
not meet the necessary condition for feasibility (6) on the Cloud CPU platform
and has a relatively large NHQ ratio on the ASIC platform.

While the measured latencies of networks found via SM-based guided search
are close to that of networks found via HIL-based search, there is an offset be-
tween predicted and measured latencies in BLSM-based search that is likely due
to the accumulation of predictive errors in the search strategy algorithm. An
explanation for the ability of the SM-based search to find optimal networks de-
spite a large degree of error between the predicted and measured latency follows
from the random search experiment. Namely, the monotonic relation between
predictions and measured latencies on network-level causes the search strategy
to propose networks in the correct relative order, albeit with a large absolute
error. These results demonstrate the utility of block-level latency predictors in
guided search.

5 Conclusion

This paper presents a block-level surrogate model for inference latency prediction
and shows its applicability by integrating it in a HA-NAS method. Our BLSM
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overcomes the need for hardware access and latency lookup tables during a
neural architecture search process, thereby greatly improving both flexibility and
scalability of HA-NAS applications. As a key design choice, our BLSM operates
on block-parameters, which by definition are available for any block, current or
new. As a result, our method generalizes over many architectures and hardware
platforms using a simple training procedure.

Predictors are robust to varying block domains by choosing an appropriate
regression model from a diverse set of model types. Experiments on a represen-
tative set of target platforms and block types have validated our methodology,
with three key findings. First, results demonstrate that predictors based on de-
cision trees, Random Forest and Boosted Trees, perform optimally for the eval-
uated block types. Second, when blocks are placed in sequence, the sum of block
predictions correlates with the measured latency of the full network, achieving
Spearman coefficients of 0.96, 0.89, 0.57 and 0.71 on the Cloud CPU, Edge CPU,
GPU, and ASIC platforms respectively. Third, NAS algorithms guided by our
proposed predictor were able to find Pareto-optimal neural networks with similar
HA-score to those found via a HIL-based process.

Combined, the experiments confirm that our BLSM enables HA-NAS to scale
out by removing the burden of hardware access during search. More specifically,
it paves the way to deploy HA-NAS in a distributed fashion, by allowing the
latencies of multiple block-based architectures to be assessed anywhere and in
parallel. Ultimately, this facilitates large-scale automation of designing efficient
and effective neural networks for a wide variety of applications in resource con-
strained edge devices.
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