
Placing (Historical) Facts on a Timeline:
A Classification cum Coref Resolution Approach

Sayantan Adak[0000−0001−5307−8811], Altaf Ahmad[0000−0002−6211−8237], Aditya
Basu[0000−0003−1004−6507], and Animesh Mukherjee[0000−0003−4534−0044]

Indian Institute of Technology Kharagpur
{sayantanadak.skni}@kgpian.iitkgp.ac.in, {altafahmad3037045}@iitkgp.ac.in,

{aditya.basu1}@iitkgp.ac.in, {animeshm}@cse.iitkgp.ac.in

Abstract. A timeline provides one of the most effective ways to visu-
alize the important historical facts that occurred over a period of time,
presenting the insights that may not be so apparent from reading the
equivalent information in textual form. By leveraging generative adver-
sarial learning for important sentence classification and by assimilating
knowledge based tags for improving the performance of event coreference
resolution we introduce a two staged system for event timeline generation
from multiple (historical) text documents. We demonstrate our results
on two manually annotated historical text documents. Our results can
be extremely helpful for historians, in advancing research in history and
in understanding the socio-political landscape of a country as reflected
in the writings of famous personas. The dataset and the code are avail-
able at https://github.com/sayantan11995/Event-Timeline-Generation-
from-Documents.

1 Introduction

Timeline serves as one of the most effective and easiest means to contextualize
and visualize a complex situation ranging from grasping spatio-temporal facts
in historical studies to critical decision making in businesses. With the stupen-
dous increase of textual resources for many historical contents in several online
platforms it has become imperative for the history researchers to understand the
chronological orderings of the incessant historical phenomenon. The fact timeline
can be an extremely useful aid to highlight the temporal and causal relation-
ships among several facts and the interactions of the characters over time, that
results in identifying common themes that arise over the period of interest in a
historical document (see Figure 2 in Appendix A.1).

In this paper we present a full pipeline to build a chronology of facts extracted
from historical text. Our contributions are as follows.

– We curate a first of its kind dataset from two different historical texts – the
Collected Works of Mahatma Gandhi (CWMG) and the Collected Works of
Abraham Lincoln (CWAL) for our experiments. For each of these datasets
we manually annotate sentences that correspond to important facts. Next for



2 S. Adak et al.

each of these annotated sentences we also further annotate the coreferences
to the same fact; we call these fact coreferences. Upon acceptance we shall
release this data for future research.

– We introduce a novel divide-and-conquer based approach to generate fact
timeline from timestamped historical texts. In the first step, we classify sen-
tences as containing facts or not using a generative adversarial learning setup.
In the subsequent step we compute fact coreferences using both unsupervised
and supervised methods. The main novelty here is that inclusion of world
knowledge in the form of tag embeddings results in higher performance gains.

– We present a rigorous evaluation of both the steps as well as the full system
which was absent in previous literature [7]. Further we compare our results
to the closely related fact timeline summarization tasks by suitably adapting
them so that the comparison is fair.

– In order to determine the readability and usefulness of the timeline, we
conduct an online crowd-sourced survey. 93% survey participants found it to
be effective in summarizing historical timeline of facts.

– We also show that our method is generic by evaluating it against a COVID-19
news related dataset which is not a historical text per se.

2 Related work

Important sentence classification & sentence coreference resolution:
Our proposed approach combines important sentence classification, filtering his-
torically important sentences from a bunch of texts, and sentence coreference
resolution, merging factually similar sentences. [39] used CNN to analyse sensi-
tivity for text classification. [27] and [38] introduced virtual adversarial training
methods for robust text classification from a small number of training data
points.
Recent works like [10], [18] have used neural network based architecture to train
their model on benchmark coreference dataset (ECB+ [12]). [21] attempted to
create an end-to-end event coreference resolution system based on the standard
KBP dataset1.

Timeline of historical facts: [5] proposed an unsupervised generative
model to construct the timeline of biographical life-facts leveraging encyclopaedic
resources such as Wikipedia. [3] also uses Wikipedia for timeline construction
of historical facts. [7] attempted to construct a fact timeline from history text-
books considering the sentences having temporal expressions. [29] proposed an
automatic approach to capture and visualize temporal ordering of interactions
between multiple actors. [2] created an AI-enabled web portal based on CWMG
dataset.

Timeline summarization (TLS): The timeline summarization task aims
to summarize time evolving documents. [15] evaluated existing state-of-the-art
methods for news timeline summarization and proposed datewise and clustering

1 https://www.ldc.upenn.edu/collaborations/past-projects/tac-kbp



Placing (Historical) Facts on a Timeline 3

based approaches on the TLS datasets. [8] demonstrated the potential of em-
ploying several IR methods on TLS tasks based on a large news dataset. [20]
proposes a new approach by generating date level summaries, and then selecting
the most relevant dates for the timeline summarization.

The present work: Our paper is closest in spirit to the work done by [7].
In this paper the authors outlined the challenges related to fact coreference for
timeline generation; however, they did not suggest ways to effectively tackle
these challenges and, thereby, solve the problem. We close this gap in our paper
by proposing an efficient approach to resolve fact coreference. Our work has also
close parallels with the fact timeline summarization (TLS) task. Nevertheless,
previous TLS researchers mostly worked on the documents containing multiple
news articles, which are rich in facts. These works have not focused much on prior
fact detection and have not addressed how they can be effectively generalized in
historical text documents such as biographies. Our work for the first time shows
that fact detection could largely benefit TLS tasks in the context of historical
texts.

3 Data preparation

In this section we present the details of the datasets that we prepare for our
experiments. We also outline the overall annotation process of these datasets.

3.1 Datasets

Collected works of Mahatma Gandhi : We leverage the Collected Works of Ma-
hatma Gandhi (CWMG) available at [32], an assortment of 100 volumes con-
sisting of the books, letters, telegrams written by Mahatma Gandhi and also the
compiled writings of the speeches, interviews engaging Gandhi. This data covers
many important historical facts within the time period of 1884-1948 in British
colonised India.

Collected works of Abraham Lincoln: The second dataset we have use to
demonstrate our system is based on the life-long writings of the 16th president
of the United States, Abraham Lincoln, formally known as the Collected Works
of Abraham Lincoln (CWAL)2 comprising a total of 8 volumes.

COVID-19 fact dataset : In addition, to establish the generalizability of the
approach, we collect 140 major facts, that happened in India during the COVID-
19 pandemic from different sources such as Wikipedia3, Who.int4 to be placed
on a timeline for elegant visualisation using our system.

2 https://quod.lib.umich.edu/l/lincoln/
3 https://en.wikipedia.org/wiki/COVID-19_pandemic_in_India
4 https://www.who.int/india/emergencies/coronavirus-disease-(covid-19)/india-
situation-report



4 S. Adak et al.

3.2 Pre-processing

From the 100 volumes of text files from CWMG we first extract all the letters
containing the publication dates and recipients name. There were a total of 28531
letters in the entire CWMG. We primarily use the letters for our experiments
as we observe that they contain the best temporal account of the facts. From
the overall set of letters, we select the year range 1930–1935 since this range has
the largest collection of letters. In order to further choose the right data sample,
we categorize the letters into formal and informal types based on the recipients
of the letters. A simple heuristic that we follow is – the letters written to gov-
ernment officials and famous historic personalities can be categorized as formal
while those written to the family members can be classified as informal ones.
We collect the list of Mahatma Gandhi’s family member names from Gandhian
experts for identifying the informal letters. We manually notice that the formal
letters contain much more useful historic information than the informal ones.
We therefore only consider the formal letters for manually annotating the useful
sentences. In addition, we only consider the letters which have more than 1000
words in its content. This results in 41 letters with substantial content.

Table 1. Sample list of sentences from CWMG after the sentence classification. The
explicit temporal expression inside the sentence is highlighted.

Doc creation time
(Initial reference
time)

Important sentences Updated reference
time

May 4, 1930 He was arrested at 12.45 a.m. on
May 5. May 5, 1930

May 4, 1930
In Karachi, Peshawar and Madras
the firing would appear to have
been unprovoked and unnecessary.

May 4, 1930

3.3 Annotation

In this section we outline the data annotation procedure for the two phases. Re-
call that our method has two important steps – fact classification and coreference
resolution. While the fact classification phase is supervised (Level I annotations),
the coreference resolution is done using both unsupervised and supervised tech-
niques. The annotations for the coreference resolution (Level II annotations) are
therefore required to (a) train the supervised approach and (b) test the efficacy
of both the unsupervised and the supervised approaches.

Level I – Important sentences: Finally, out of these filtered letters we
manually annotate all the sentences of 18 letters (i.e., 979 sentences in all).
The remaining sentences (i.e., 1689 in total) from the rest of the letters were
left unlabelled. Both of these labelled and unlabelled sentences were used for



Placing (Historical) Facts on a Timeline 5

training the classifier. The classes in which the sentences were classified were
based on their historical importance. In specific, we identify two such important
classes – (a) the facts or factful sentences, which typically represent that some
important historical phenomena or event [33] happened or took place , e.g., ‘A
vegetable market in Gujarat has been raided because the dealers would not sell
vegetables to officials’5, (b) the demands, which represent the demands Mahatma
Gandhi had made to the British government through his writings, e.g., ‘The
terrific pressure of land revenue, which furnishes a large part of the total, must
undergo considerable modification in an independent India.’ and (c) others (i.e.,
not important). As the examples suggest, each individual sentence is annotated
as important (i.e., containing a fact/demand) or not. In order to further enrich
the dataset we collect gold standard facts related to Mahatma Gandhi from
an additional reliable and well maintained resource6. We obtain 86 additional
sentences thus making a total of 1065 (i.e., 979 + 86) important sentences (see
Table ?? for the classwise distribution.).

Table 2. Sample list of sentences from CWMG after the sentence classification. The
explicit temporal expression inside the sentence is highlighted.

Classes Count
CWMG CWAL

fact 716 242
demand 81 96
other 268 382

x

For the CWAL we simply extract all the sentences from volume 2 and follow
similar approaches to annotate important sentences as in the case of CWMG.
Without considering any filtering criteria we consider all the 111 articles of vol-
ume 2 including his letters and propositions which consist of a total of 1386
sentences. Out of these 720 sentences were manually annotated (see Table ??).
Annotator details and annotation guidelines: For both the datasets three an-
notators annotated the sentences. The annotation process was led by one PhD
student along with two undergraduate students. The PhD student had substan-
tial experience in historical text analysis and will be referred to as the expert
annotator henceforth. The first level of annotation was carried out for each of
the sentences and based on the assumption that a full sentence corresponds to
a fact/demand. All the annotators annotated the sentences independently. For
the training of the two undergraduate annotators, they were provided with the
examples of 25 gold standard facts and demands each. The gold standard facts
were collected from the reliable resource mentioned in the earlier paragraph and
the gold standard demands were collected from the formal letters of Mahatma
Gandhi which were first annotated by the expert annotator and verified by a

5 Such sentences would typically consist of participants and locations.
6 https://www.gandhiheritageportal.org/



6 S. Adak et al.

Gandhian scholar (see Table 9 in Appendix A.2 for example annotations). The
inter-annotator agreements, i.e., Cohen’s κ were 0.66 and 0.58 for the former
and the latter datasets respectively. Table ?? shows the category distribution for
both the datasets. The Level I annotation was not carried out for the COVID-19
dataset because, each sentence collected were presented as facts in the mentioned
portals and thus we considered all the sentences as important facts.
Level II – Coreference resolution : The second round of annotation was car-
ried out for evaluating the fact coreference detection task on the same dataset.
For this case we only annotate the texts which were marked important during
the Level I annotation. In addition, the Level II annotation was also carried out
for the COVID-19 fact dataset.
Annotator details and annotation guidelines: The same annotators annotated for
the Level II phase. The annotators were provided with sentences, the reference
documents (letters) from which the sentences were extracted and the reference
time (document publication date). Based on the perception of the annotators,
the sentences that potentially referred to the same fact were placed in the same
cluster. The coreferences have been placed by the annotators in different clusters
based on different factors like the commonness of the mentioned times, entities
and the fact name/composition. Consider these two sentences - ‘The crowd that
demanded restoration of the flag thus illegally seized is reported to have been
mercilessly beaten back.’ and ‘Bones have been broken, private parts have been
squeezed for the purpose of making volunteers give up, to the Government val-
ueless, to the volunteers precious salt ’. Although there is no explicit mention
of time in either of the sentences, both of them are from the same document
and thus their reference dates would be the same as the publication date of
the document. Also both of them refer to similar types of atrocities. So these
two sentences should be placed in the same cluster. We first carried out a trial
round for the two undergraduate annotators by using 100 randomly chosen im-
portant sentences from the Level I phase and the trial annotations were verified
by the expert annotator. Finally for the complete Level II annotations, the inter-
annotator agreements were 0.74, 0.61, and 0.78 for the CWMG, the CWAL and
the COVID-19 dataset respectively using MUC [37] based F1-score [14] (see Ta-
ble 10 in Appendix A.2 for example annotations and Appendix A.3 for other
agreement metrics.).

4 Methodology

Our method consists of three major components (see Figure 1): (i) important
sentence extraction, (ii) sentence coreference resolution, and (iii) timeline visu-
alization. The arrows represent the direction of data flow. In this section we
describe in detail the methods used for each of these components.



Placing (Historical) Facts on a Timeline 7

Fig. 1. The overall architecture for generating the timeline.

4.1 Important sentence extraction

Baselines: As baselines, we use SVM [16] and Multinomial Naïve Bayes [19] on
simple bag-of-words feature. For SVM we use linear kernel. For the evaluation
of the classifiers we use a 70:30 train-test split of the annotated data.

Fine-tuned BERT : Apart from the above two baselines, we try BERT [13]
neural network based framework for the classification. We train the model using
the PyTorch [30] library, and apply bert-base-uncased pre-trained model for text
encoding. We use a batch size of 32, sequence length of 80 and learning rate of
2e− 5 as the optimal hyper-parameters for training the model.

GAN-BERT text classifier : In search for further enhancement of the
performance based on our limited sets of labelled data, we employ the GAN-
BERT [11] deep learning framework for classifying the important sentences. It
uses generative adversarial learning to generate augmented labelled data for
semi-supervised training of the transformer based BERT model. It improves the
performance of BERT when training data is scarce and is therefore highly suited
for our case. Here we also feed the unlabeled data sample, as discussed in section
3.3, to help the network to generalize the representation of input texts for the
final classification [11].

4.2 Sentence coreference resolution

Once the classification was done we end up with ’factful’ sentences linked to its
corresponding document creation time in the format noted in Table 2.

Time within sentences: For generating the accurate fact timeline we need
to assign a valid date to a particular sentence (i.e fact/demand). For example,
in the first sentence in Table 2, although the document publication time is men-
tioned to be May 4, 1930, the sentence clearly has embedded in it the exact fact
date May 5, 1930 apparent from the snippet ‘arrested on May 5 ’. Therefore, if
the explicit time is present in the sentence we use it directly, else we use the
creation/publication date of the document. We extract the explicit mention of
time in the text using the HeidelTime [36] tool. This tool is capable of identify-
ing embedded mentions of temporal expressions such as ‘yesterday’, ‘next day’
etc.



8 S. Adak et al.

Tag generation from world knowledge : An individual sentence does not
always contain much information about the fact/demand which it is getting
referred to. So we attempt to incorporate world knowledge for each individual
sentence. By using each sentence as a query we gather the top five Google search
results using the googlsearch api7 and also consider the document from which the
sentence was being extracted. Next we analyse the search result using TextRank8,
Rake9 and pointwise mutual information10 to generate top keywords present in
the search result. Although these methods produce reasonably good results, in
many cases we needed to manually filter out certain noisy tags. For each sentence
we therefore land up with one or more tags. We retain the top ten tags for
every sentence which means that the number of tags for a sentence could vary
between one and ten. The details of the tag generation procedure mentioned
in Appendix A.4. We do not use encyclopaedic resources such as Wikipedia to
get the search results because the datasets we are using, are only available in a
few very specific websites. We fed the list of keyword(s) or tag(s) obtained for a
sentence to the pre-trained sentence-bert model for obtaining a 768 dimensional
embedding representation of the keywords.

Unsupervised sentence clustering : We employ several unsupervised ap-
proaches for sentence coreference resolution. As baselines, we choose two com-
monly used approaches for coreference resolution – (a) Lemma: It attempts to
put the sentence pairs in same coreference chain which share the same head
lemma, (b) Lemma-δ: In addition to same head lemma as a feature, it also com-
putes the cosine similarity (δ) between the sentence pair based on tf-idf features,
and only places the sentence pairs in the same coreference chain if δ exceeds some
threshold. Then the sentence clusters were created using agglomerative clustering
method. To extract the head lemma of a sentence, we use the SpaCy dependency
parser.

Apart from these two common baselines, we vectorize the sentences using tf-
idf vectorization technique and then apply different clustering techniques such
as Gaussian-Mixture11 model, agglomerative clustering to cluster the sentences
corresponding to similar facts. We also use the pre-trained sentence-bert [35]
model to encode the sentences and apply similar clustering techniques. Finally,
we concatenate the sentence embedding with the tag embedding generated from
that particular sentence. We again cluster the sentences based on this new rep-
resentation. This, as we shall later see, significantly improves the performance
of the clustering phase. We evaluate the clustering results on the basis of the
annotated data which had been obtained in the second phase of data annota-
tion. We used the elbow method to find the optimal number of clusters in case
of Gaussian-Mixture and used dendogram to select the optimal distance thresh-
old for the suitable number of clusters in case of agglomerative clustering. The

7 https://github.com/MarioVilas/googlesearch
8 https://github.com/DerwenAI/pytextrank
9 https://pypi.org/project/rake-nltk/

10 https://www.nltk.org/howto/collocations.html
11 https://scikit-learn.org/stable/modules/mixture.html



Placing (Historical) Facts on a Timeline 9

distance threshold we selected were 0.25, 0.6 and 0.6 for CWMG, CWAL and
COVID-19 data respectively.

Supervised fact mention-pair model : A fact mention is a sentence or
phrase that defines a fact and one fact may contain multiple fact mentions [9].
We first create a dataset containing all the possible pairs of factful (i.e., fact or
demand) sentences from the ground-truth annotations. We set the coreference
label to 1 if the sentence pair is contained in the same cluster as per the Level II
annotation and 0 otherwise. Here we again use a 70:30 split to generate training
and test instances. The overall architecture is inspired from [6] (see Appendix
A.5). The inputs to the model are the two sentences (i.e. S1 and S2) and their
corresponding actions (i.e., A1 and A2), time (i.e., T1 and T2) and tags (i.e.,
K1 and K2). We extract actions (i.e., Ai) for each of the sentences using SpaCy
dependency parser12.

Mention pair construction: We used Tensorflow [1] tokenizer to vectorize
each feature (i.e., sentences, actions, time and tags) to convert it into sequence
of integers after restricting the tokenizer to use only the top most common
5000 words. For the sentences we limit the sequence length to 64. For the other
features - actions, time and tags - we limit the sequence length to 10. We always
use zero padding for smaller sequences. We next encode the words present in each
of these sequences using a pre-trained GloVe [31] embedding (100 dimensions).
Thus each sentence comes out as a 64 ∗ 100 size vector representation while each
of the other features come out as a 10 ∗ 100 size vector representation. Now each
of these vectors are separately passed through a LSTM [17] layer with default
hyperparameters to transform them into 128 size vectors each. Next each of these
128 size vectors are passed through separate dense layers to obtain 32 size vectors.
Finally, these 32 size vectors are concatenated using a concatenation layer. The
output of the concatenation layer is what we term as a mention representation.
Two mention representations are concatenated to get a pairwise representation
(i.e., an fact mention pair) and passed through a feed forward network to return
a score denoting the likelihood that two mentions are coreferent (see Figure 3 in
Appendix A.5). Based on the predicted pairwise score on the test instances we
used a threshold (0.5 in our case) to generate a similarity matrix of the mentions,
and then applied agglomerative clustering to partition the similar mentions into
the same clusters.

4.3 Timeline visualization

Once the sentence coreference resolution phase was successfully executed, we
generated visualization for the given fact/demand sequence using vis-timeline13,
a dynamic, browser based visualization library.

12 We consider the root verb as action for a sentence
13 https://visjs.github.io/vis-timeline/docs/timeline/



10 S. Adak et al.

Table 3. Results (accuracy and macro F1-score) for the important sentence classifica-
tion using our approaches on the two datasets. MNB: Multinomial Naïve Bayes. Best
results are marked in boldface and highlighted in green cells.

Dataset Model Evaluation Metric
Accuracy F1

C
W

M
G MNB 0.74 0.45

SVM 0.79 0.5
Fine-tuned BERT 0.8 0.57

GAN-BERT 0.9 0.69

C
W

A
L MNB 0.6 0.3

SVM 0.6 0.34
Fine-tuned BERT 0.61 0.56

GAN-BERT 0.7 0.65

5 Experiments

5.1 Evaluation metrics

We have used separate evaluation metrics for the two phases.
Important sentence classification: In this case we use the standard accuracy

and F1-score values.
Sentence coreference resolution: Here we conduct the evaluation based on the

widely used coreference resolution metrics – (a) MUC [37], (b) B3 [4], (c) CEAF
[22], and (d) BLANC [34]. Due to the inconsistency of each of these evaluation
metrics [28] we shall also report the average outcomes of all the metrics.

5.2 Results

We evaluate the two different phases separately. Ground-truth data was used
from each phase for respective evaluations.

Important sentence classification : The key results for the two datasets
(CWMG and CWAL) are summarised in Table 3. Our approach based on GAN-
BERT by far outperforms the standard baselines. For the CWMG dataset, the
macro F1-score shoots from 0.50 (SVM) to 0.69 on the three class classification
task. Likewise for the CWAL dataset, the macro F1-score shoots from 0.34 (Naïve
Bayes) to 0.65.

Evaluation of coreference resolution : For the evaluation of coreference
resolution we use several coreference resolution metrics to analyse the model
performance. It is apparent from Table 4 that the approach based on cluster-
ing with sentence-bert embeddings by far outperforms the baselines lemma and
lemma-δ. For the CWMG dataset, sentence-bert + agglomerative clustering is
the best overall; for the other two datasets no single method is a clear win-
ner. However, the primary point that we wish to emphasize in the table is the
result after incorporating tag embedding. It can be clearly observed that this
intuitive, albeit hitherto unreported, technique almost always produces better



Placing (Historical) Facts on a Timeline 11

Table 4. Sentence coreference results before and after tag embedding. GM: Gaussian
Mixture based clustering; AC: Agglomerative Clustering; s-bert: sentence-bert; m-pair:
supervised mention-pair model. Best results including the tag embedding are marked
in boldface and highlighted in green cells. Best results excluding the tag embedding
are marked by underline and highlighted in blue cells.

Dataset System MUC B3 CEAF_E BLANC Avg (overall) Time takenF1 F1 F1 F1 Recall Precision F1

C
W

M
G

Lemma 0.45 0.38 0.20 0.49 0.39 0.38 0.38 45 sec
Lemma-δ 0.53 0.41 0.19 0.48 0.48 0.40 0.41 7 min 22 sec

tf-idf + GM 0.53 0.53 0.36 0.60 0.49 0.52 0.50 26 min 14 sec
tf-idf + AC 0.55 0.50 0.42 0.57 0.50 0.53 0.51 5 min 13 sec
s-bert + GM 0.61 0.54 0.41 0.60 0.54 0.54 0.54 29 min 34 sec
s-bert + AC 0.63 0.57 0.40 0.61 0.55 0.56 0.55 7 min 42 sec

+ tag embedding
tf-idf + GM 0.64 0.57 0.45 0.64 0.57 0.60 0.58 28 min 19 sec
tf-idf + AC 0.62 0.61 0.51 0.66 0.58 0.63 0.60 6 min 57 sec
s-bert + GM 0.65 0.62 0.48 0.66 0.60 0.60 0.60 30 min 28 sec
s-bert + AC 0.75 0.70 0.52 0.73 0.65 0.71 0.68 8 min 36 sec
m-pair model 0.91 0.59 0.83 0.53 0.83 0.69 0.72 2 hr 10 min 32 sec

C
W

A
L

Lemma 0.28 0.11 0.17 0.49 0.26 0.27 0.27 58 sec
Lemma-δ 0.31 0.15 0.14 0.48 0.28 0.27 0.18 9 min 41 sec

tf-idf + GM 0.53 0.37 0.35 0.49 0.42 0.45 0.43 41 min 25 sec
tf-idf + AC 0.57 0.42 0.38 0.49 0.45 0.49 0.46 8 min 5 sec
s-bert + GM 0.43 0.39 0.40 0.54 0.43 0.46 0.44 46 min 18 sec
s-bert + AC 0.51 0.42 0.40 0.54 0.46 0.48 0.47 11 min 15 sec

+ tag embedding
tf-idf + GM 0.74 0.52 0.40 0.63 0.56 0.59 0.57 43 min 23 sec
tf-idf + AC 0.72 0.51 0.48 0.64 0.57 0.61 0.59 9 min 27 sec
S-bert + GM 0.74 0.41 0.34 0.67 0.51 0.57 0.54 47 min 12 sec
s-bert + AC 0.82 0.53 0.44 0.72 0.60 0.66 0.63 11 min 42 sec
m-pair model 0.96 0.42 0.78 0.35 0.82 0.65 0.64 2 hr 11 min 40 sec

C
O

V
ID

-1
9

Lemma 0.55 0.39 0.28 0.55 0.51 0.42 0.44 9 sec
Lemma-δ 0.34 0.29 0.25 0.51 0.35 0.34 0.35 1 min 8 sec

tf-idf + GM 0.56 0.41 0.36 0.60 0.47 0.50 0.48 6 min 37 sec
tf-idf + AC 0.59 0.45 0.36 0.62 0.49 0.54 0.51 1 min 44 sec
s-bert + GM 0.63 0.45 0.32 0.57 0.47 0.51 0.49 8 min 41 sec
s-bert + AC 0.61 0.44 0.35 0.57 0.48 0.50 0.49 2 min 25 sec

+ tag embedding
tf-idf + GM 0.44 0.33 0.28 0.54 0.39 0.40 0.39 7 min 31 sec
tf-idf + AC 0.44 0.34 0.32 0.44 0.4 0.42 0.41 2 min 38 sec
s-bert + GM 0.57 0.41 0.35 0.59 0.47 0.49 0.48 9 min 35 sec
s-bert + AC 0.63 0.46 0.39 0.59 0.51 0.52 0.52 3 min 19 sec
m-pair model 0.86 0.80 0.97 0.65 0.80 0.84 0.82 29 min 18 sec

results (see Appendix A.4 and the Table 12 therein describing the tag generation
process in more details). In fact, the assimilation of the tag embeddings with the
sentence-bert embeddings boosted the overall F1-score by 13%, and 16% for the



12 S. Adak et al.

CWMG and the CWAL datasets respectively. Note that these results hold even
if the manual filtering step in the tag generation is completely omitted (see Ta-
ble 7). An interesting observation is that the benefit of the tag embedding is best
leveraged by the sentence-bert + agglomerative clustering. For the COVID-19
dataset, since search results are generic, the benefit of tag embedding is less.
Furthermore, the supervised model consistently outperforms the unsupervised
results across all three datasets. Note that the tag generation is done only once
and therefore takes a fixed amount of time. It took 3.26 seconds, 3.47 seconds,
and 1.96 seconds per sentence on average to generate knowledge-based tags for
CWMG, CWAL, and COVID-19 datasets respectively. The time that the model
takes to inference in presence of the tag embeddings is negligible as compared
to the model without these embeddings (see the last column of Table 4). For the
supervised models though, the major chunk of time is required for the mention
pair generation.
Full system evaluation : So far, the assessment for the two components was
carried out separately, i.e., the evaluation for the important sentence extraction
was based on Level I annotated data while the evaluation for sentence corefer-
ence resolution was on the basis of Level II annotations independently. We also
conduct the full system evaluation for CWMG and CWAL datasets, i.e., the
complete evaluation was only dependent on Level II annotated data. For this
case we trained the GAN-BERT classifier with 30% of the labeled data along
with the unlabeled data (discussed in section 3.3), and had predictions for the
rest of 70% data. Now, we consider only the true positives (labeled as important,
and also predicted important), before performing the coreference resolution. This
task is evaluated based on the Level II annotated data. The primary reasons for
considering only true positive samples are - (1) we do not have ground-truth
Level II annotated data for the non-important sentences (i.e., the false posi-
tives), (2) for all practical purposes we are only interested in the coreferences
present in the positive predictions (i.e., in the predicted important sentences).
Table 5 shows the comparison between the full system evaluation result and the
standard result (see Appendix A.8 for results w/o tags). The results shown here
are the average value of the four different standard metrics (MUC, B3, CEAF_E
and BLANC) corresponding to the best performing unsupervised model as well
as the mention-pair based supervised model.
Comparison with TLS : Since our method has some parallels with TLS, in this
section we perform a thorough comparison with state-of-the-art TLS systems.
Note that the output of our system is not similar to that of the standard TLS
output. In order to make the comparison possible and fair we added a simple
summarization step at the end of our pipeline. We used the BERT extractive
summarizer [26] to extract the two most important sentences as the summary
for each of the fact clusters generated by our method. We evaluated the sum-
maries using the alignment-based ROUGE (AR) F-Score [24]. Unlike [15], we
did not use any date ranking method to rank the dates of the predicted timeline
and compared the ground-truth with the top-k predicted timeline. We tested all
the approaches using our Level I annotated data as the ground-truth reference.



Placing (Historical) Facts on a Timeline 13

Table 5. Full system evaluation result. Type: Coref-resolution type, MA: Important
sentences obtained through manual annotation, MP: Important sentences obtained
from model prediction, Su: Supervised, Un: Unsupervised. Appendix A.8 shows the
same results without using tag embeddings.

Dataset Type M R P F1

CWMG
Su MA 0.83 0.69 0.72

MP 0.74 0.63 0.64

Un MA 0.65 0.71 0.68
MP 0.62 0.65 0.63

CWAL
Su MA 0.82 0.65 0.64

MP 0.74 0.59 0.60

Un MA 0.60 0.66 0.63
MP 0.55 0.59 0.57

Table 6 shows the detailed comparison of our approach with few of the exist-
ing state-of-the-art TLS approaches on two of our datasets. In order to perform
these experiments we considered pre-selected 41 formal letters from CWMG in
the time period 1930-1935 with more than 1000 words and all the documents
of volume 2 from CWAL (from which the Level I annotations were performed)
and directly passed through the TLS pipeline using the codes provided by the
respective authors. In order to make the comparison further fair, we also per-
formed an experiment by first carrying out important sentence classification
using our method and then feeding the filtered data into the TLS pipeline pro-
vided by the authors. In order to benefit the TLS models the fact detection for
this pre-filtering was performed using the model fine-tuned on our dataset. This
modification results in superior performance of the TLS. In fact, fact detection
prior to summarization always helps – our method as well as one of the baseline
methods [15] where fact detection can be easily incorporated show significantly14

improved performance. In Table 13 of Appendix A.6 we also show that this fact
detection step brings benefits to a standard TLS dataset which has not been built
from historical text. The reason for this inferior performance could be that the
summary in the standard TLS approaches are highly sensitive to the keywords
used for the particular dataset and generating quality keywords for a dataset
consisting of diverse facts like ours requires domain-expertise (see Table 14 in
Appendix A.7).

6 Ablation study

We performed two ablation studies - first, to check the effectiveness of manual
filtering of noisy tags, second, to assess the added value of each component in
the mention-pair model.

Sentence coreference resolution results without manual filtering
of tags: Table 7 shows result obtained from different coreference resolution
14 Statistical significance were performed using Mann–Whitney U test [23]



14 S. Adak et al.

Table 6. Comparison of our method for the with the existing state-of-the-art TLS
methods - (1) MM (submodularity based method): [25] and (2) DT: datewise and (3)
CLUST: clustering based TLS by [15], FD: Fact detection. †, *, • show that our results
are significantly different from MM, FD + DT, FD + CLUST respectively. In turn,
any method with FD (*, •) is significantly better than MM.

System CWMG Dataset CWAL Dataset
AR1-F AR2-F AR1-F AR2-F

MM 0.023 0.001 0.052 0.024
DT 0.008 0.001 0.022 0.002
FD (our)
+ DT 0.015* 0.006* 0.026* 0.002

CLUST 0.028 0.02 0.055 0.040
FD (our)
+ CLUST 0.034• 0.025• 0.086• 0.071•

Our
method 0.062†*• 0.043†*• 0.069†*• 0.042†*•

techniques when we do not include any manual filtering steps to the generated
tags. It can be noticed that there is not much difference in the results even when
we omit this step.

Added value of each element in the mention-pair model: Table 8
shows the added value of each feature in the mention-pair model. For both the
historical texts we observe that inclusion of each feature improves the overall
performance. The best improvement is observed on the inclusion of the external
knowledge in the form of tag embeddings.

7 Timeline visualization

Generating a timeline would not be that impactful unless it is visualized in an
interpretable and convenient way. We incorporate an elegant visualization for the
generated fact/demand timelines using vis-timeline javascript library (Appendix
A.9 shows an example timeline).

Survey : In order to understand the effectiveness of the interface we ran an
online crowd-sourced survey. Out of 33 participants with different educational
backgrounds, overall 93% agreed that the interface was very useful for summa-
rization of historical timeline of facts. 88% participants found some information
which would have been hard for them to fathom just by reading the CWMG
plaintext (more results in Appendix A.10).

8 Conclusion

In this work we presented a framework to generate fact timeline from any times-
tamped document. The entire pipeline has two parts – important sentence detec-
tion and sentence coreference resolution. We achieve very encouraging results for



Placing (Historical) Facts on a Timeline 15

Table 7. Sentence coreference results without using manual filtering for the tags. D:
dataset, M: model, GM: Gaussian Mixture based clustering; AC: Agglomerative Clus-
tering; s-bert: sentence-bert, m-pair: mention-pair model, B: BLANC, C: CEAF_E.
The results mostly remain unaffected.

D M MUC B3 C B Avg (overall)
F1 F1 F1 F1 R P F1

C
W

M
G

tf-idf+GM 0.61 0.55 0.51 0.58 0.62 0.57 0.56
tf-idf+AC 0.64 0.59 0.51 0.66 0.58 0.64 0.60
s-bert+GM 0.68 0.61 0.44 0.63 0.62 0.60 0.59
s-bert+AC 0.76 0.71 0.50 0.72 0.65 0.72 0.67
m-pair 0.92 0.61 0.85 0.53 0.85 0.70 0.73

C
W

A
L

tf-idf+GM 0.76 0.51 0.44 0.65 0.55 0.59 0.59
tf-idf + AC 0.75 0.50 0.49 0.65 0.56 0.63 0.59
S-bert+GM 0.76 0.40 0.35 0.69 0.51 0.59 0.55
s-bert+AC 0.81 0.59 0.47 0.70 0.63 0.72 0.64
m-pair 0.95 0.43 0.76 0.36 0.81 0.67 0.62

C
O

V
ID

-1
9 tf-idf+GM 0.40 0.33 0.26 0.55 0.39 0.44 0.38

tf-idf+AC 0.42 0.35 0.34 0.43 0.41 0.39 0.38
s-bert+GM 0.56 0.43 0.36 0.57 0.44 0.49 0.48
s-bert+AC 0.65 0.44 0.37 0.59 0.52 0.50 0.51
m-pair 0.84 0.80 0.95 0.66 0.79 0.82 0.81

both these tasks. While it is true that our evaluations are based on two histori-
cal texts, our methods are generic and can be easily extended to other datasets.
The system that we developed is not limited to any actor specific fact (human
or location) which, in fact, made the coreference resolution task even more chal-
lenging. We believe that our work will open up new and exciting opportunities
in history research and education.

References

1. Abadi, M., Agarwal, A., et al.: TensorFlow: Large-scale machine learning on het-
erogeneous systems (2015), https://www.tensorflow.org/, software available from
tensorflow.org

2. Adak, S., Vyas, A., Mukherjee, A., Ambavi, H., Kadasi, P., Singh, M., Patel, S.:
Gandhipedia: A one-stop ai-enabled portal for browsing gandhian literature, life-
events and his social network. In: JCDL. p. 539–540. New York, NY, USA (2020)

3. Aprosio, A., Tonelli, S.: Recognizing biographical sections in wikipedia. pp. 811–
816 (01 2015)

4. Bagga, A., Baldwin, B.: Entity-based cross-document coreferencing using the vec-
tor space model. In: Coling. vol. 1, p. 79 (2000)

5. Bamman, D., Smith, N.A.: Unsupervised discovery of biographical structure from
text. Transactions of the Association for Computational Linguistics 2, 363–376
(2014)

6. Barhom, S., Shwartz, V., Eirew, A., Bugert, M., Reimers, N., Dagan, I.: Revisiting
joint modeling of cross-document entity and event coreference resolution (2019)



16 S. Adak et al.

Table 8. Added value of each component in the mention-pair model for each dataset;
F: features, S: considering sentence embedding as the only feature, D: date, A: action,
T: tag.

D F Avg F1 Inc.

C
W

M
G S 0.613 -

S+D 0.657 0.044
S+D+A 0.688 0.031

S+D+A+T 0.720 0.038

C
W
A
L

S 0.394 -
S+D 0.544 0.15

S+D+A 0.560 0.016
S+D+A+T 0.640 0.008

C
ov
id
-1
9 S 0.791 -

S+D 0.778 -0.013
S+D+A 0.811 0.033

S+D+A+T 0.820 0.009

7. Bedi, H., Patil, S., Hingmire, S., Palshikar, G.: Event timeline generation from
history textbooks. In: Proceedings of the 4th Workshop on Natural Language Pro-
cessing Techniques for Educational Applications (NLPTEA 2017). pp. 69–77. Asian
Federation of Natural Language Processing, Taipei, Taiwan (Dec 2017)

8. Born, L., Bacher, M., Markert, K.: Dataset Reproducibility and IR Methods in
Timeline Summarization. In: LREC 2020 (2020)

9. Chen, Z., Ji, H., Haralick, R.: A pairwise event coreference model, feature impact
and evaluation for event coreference resolution. In: Proceedings of the Workshop
on Events in Emerging Text Types. pp. 17–22. Association for Computational
Linguistics, Borovets, Bulgaria (Sep 2009)

10. Choubey, P.K., Huang, R.: Event coreference resolution by iteratively unfolding
inter-dependencies among events. In: Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing. pp. 2124–2133. Association for
Computational Linguistics, Copenhagen, Denmark (Sep 2017)

11. Croce, D., Castellucci, G., Basili, R.: GAN-BERT: Generative adversarial learning
for robust text classification with a bunch of labeled examples. In: Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics. pp.
2114–2119. Association for Computational Linguistics, Online (Jul 2020)

12. Cybulska, A., Vossen, P.: Using a sledgehammer to crack a nut? lexical diversity
and event coreference resolution. In: Proceedings of the Ninth International Confer-
ence on Language Resources and Evaluation (LREC’14). pp. 4545–4552. European
Language Resources Association (ELRA), Reykjavik, Iceland (May 2014)

13. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-
rectional transformers for language understanding (2019)

14. Ghaddar, A., Langlais, P.: Wikicoref: An english coreference-annotated corpus of
wikipedia articles. In: Chair), N.C.C., Choukri, K., Declerck, T., Goggi, S., Grobel-
nik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S.
(eds.) Proceedings of the Tenth International Conference on Language Resources
and Evaluation (LREC 2016). European Language Resources Association (ELRA),
Paris, France (may 2016)



Placing (Historical) Facts on a Timeline 17

15. Gholipour Ghalandari, D., Ifrim, G.: Examining the state-of-the-art in news time-
line summarization. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. pp. 1322–1334. Association for Computational Lin-
guistics, Online (Jul 2020)

16. Hearst, M.A.: Support vector machines. IEEE Intelligent Systems 13(4), 18–28
(Jul 1998)

17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (Nov 1997)

18. Kenyon-Dean, K., Cheung, J.C.K., Precup, D.: Resolving event coreference with
supervised representation learning and clustering-oriented regularization (2018)

19. Kibriya, A.M., Frank, E., Pfahringer, B., Holmes, G.: Multinomial naive bayes for
text categorization revisited. In: Proceedings of the 17th Australian Joint Con-
ference on Advances in Artificial Intelligence. p. 488–499. AI’04, Springer-Verlag,
Berlin, Heidelberg (2004)

20. La Quatra, M., Cagliero, L., Baralis, E., Messina, A., Montagnuolo, M.: Summarize
Dates First: A Paradigm Shift in Timeline Summarization, p. 418–427. Association
for Computing Machinery, New York, NY, USA (2021)

21. Lu, Y., Lin, H., Tang, J., Han, X., Sun, L.: End-to-end neural event coreference
resolution (09 2020)

22. Luo, X.: On coreference resolution performance metrics. (01 2005)
23. Mann, H.B., Whitney, D.R.: On a Test of Whether one of Two Random Variables

is Stochastically Larger than the Other. The Annals of Mathematical Statistics
18(1), 50 – 60 (1947)

24. Martschat, S., Markert, K.: Improving ROUGE for timeline summarization. In:
Proceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Papers. pp. 285–290. Association
for Computational Linguistics, Valencia, Spain (Apr 2017)

25. Martschat, S., Markert, K.: A temporally sensitive submodularity framework for
timeline summarization. In: Proceedings of the 22nd Conference on Computational
Natural Language Learning. pp. 230–240. Association for Computational Linguis-
tics, Brussels, Belgium (Oct 2018)

26. Miller, D.: Leveraging bert for extractive text summarization on lectures (2019)
27. Miyato, T., Dai, A.M., Goodfellow, I.: Adversarial training methods for semi-

supervised text classification (2017)
28. Moosavi, N.S., Strube, M.: Which coreference evaluation metric do you trust? a

proposal for a link-based entity aware metric. In: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
pp. 632–642. Association for Computational Linguistics, Berlin, Germany (Aug
2016)

29. Palshikar, G., Pawar, S., Patil, et al.: Extraction of message sequence charts from
narrative history text. In: Proceedings of the First Workshop on Narrative Un-
derstanding. pp. 28–36. Association for Computational Linguistics, Minneapolis,
Minnesota (Jun 2019)

30. Paszke, A., Gross, S., et al.: Pytorch: An imperative style, high-performance deep
learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F.,
Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32,
pp. 8024–8035. Curran Associates, Inc. (2019)

31. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP). pp.
1532–1543 (2014)



18 S. Adak et al.

32. Preservation, S.A., Trust, M.: The Collected Works of Mahatma Gandhi.
https://www.gandhiheritageportal.org/the-collected-works-of-mahatma-gandhi
(2013), [Online; accessed 22-February-2020]

33. Pustejovsky, J., Castaño, J., Ingria, R., Saurí, R., Gaizauskas, R., Setzer, A., Katz,
G., Radev, D.: Timeml: Robust specification of event and temporal expressions in
text. pp. 28–34 (01 2003)

34. Recasens, M., Hovy, E.: Blanc: Implementing the rand index for coreference eval-
uation. Natural Language Engineering 17, 485 – 510 (10 2011)

35. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks (2019)

36. Strötgen, J., Gertz, M.: HeidelTime: High quality rule-based extraction and nor-
malization of temporal expressions. In: Proceedings of the 5th International Work-
shop on Semantic Evaluation. pp. 321–324. Association for Computational Lin-
guistics, Uppsala, Sweden (Jul 2010)

37. Vilain, M., Burger, J., Aberdeen, J., Connolly, D., Hirschman, L.: A model-
theoretic coreference scoring scheme. pp. 45–52 (01 1995)

38. Zhang, W., Chen, Q., Chen, Y.: Deep learning based robust text classification
method via virtual adversarial training. IEEE Access 8, 61174–61182 (2020)

39. Zhang, Y., Wallace, B.: A sensitivity analysis of (and practitioners’ guide to) con-
volutional neural networks for sentence classification (2016)


