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Abstract. Recent years have witnessed tremendously improved effi-
ciency of Automated Machine Learning (AutoML), especially Automated
Deep Learning (AutoDL) systems, but recent work focuses on tabular,
image, or NLP tasks. So far, little attention has been paid to general
AutoDL frameworks for time series forecasting, despite the enormous
success in applying different novel architectures to such tasks. In this pa-
per, we propose an efficient approach for the joint optimization of neural
architecture and hyperparameters of the entire data processing pipeline
for time series forecasting. In contrast to common NAS search spaces, we
designed a novel neural architecture search space covering various state-
of-the-art architectures, allowing for an efficient macro-search over dif-
ferent DL approaches. To efficiently search in such a large configuration
space, we use Bayesian optimization with multi-fidelity optimization. We
empirically study several different budget types enabling efficient multi-
fidelity optimization on different forecasting datasets. Furthermore, we
compared our resulting system, dubbed Auto-PyTorch-TS, against sev-
eral established baselines and show that it significantly outperforms all
of them across several datasets.

Keywords: AutoML · Deep Learning · Time Series Forecasting · Neural Archi-
tecture Search

1 Introduction

Time series (TS) forecasting plays a key role in many business and industrial
problems, because an accurate forecasting model is a crucial part of a data-driven
decision-making system. Previous forecasting approaches mainly consider each
individual time series as one task and create a local model [3, 7, 26]. In recent
years, with growing dataset size and the ascent of Deep Learning (DL), research
interests have shifted to global forecasting models that are able to learn infor-
mation across all time series in a dataset collected from similar sources [20, 41].
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Given the strong ability of DL models to learn complex feature representations
from a large amount of data, there is a growing trend of applying new DL models
to forecasting tasks [38, 46, 50, 57].

Automated machine learning (AutoML) addresses the need of choosing the
architecture and its hyperparameters depending on the task at hand to achieve
peak predictive performance. The former is formalized as neural architecture
search (NAS) [14] and the latter as hyperparameter optimization (HPO) [17].
Several techniques from the fields of NAS and HPO have been successfully ap-
plied to tabular and image benchmarks [15, 18, 33, 62]. Recent works have also
shown that jointly optimizing both problems provides superior models that bet-
ter capture the underlying structure of the target task [61, 62].

Although the principle idea of applying AutoML to time series forecasting
models is very natural, there are only few prior approaches addressing this [32, 37,
43, 52]. In fact, combining state-of-the-art AutoML methods, such as Bayesian
Optimization with multi-fidelity optimization [16, 30, 34, 36], with state-of-the-
art time series forecasting models leads to several challenges we address in this
paper. First, recent approaches for NAS mainly cover cell search spaces, allowing
only for a very limited design space, that does not support different macro de-
signs [12, 60]. Our goal is to search over a large variety of different architectures
covering state-of-the-art ideas. Second, evaluating DL models for time series
forecasting is fairly expensive and a machine learning practicioner may not be
able to afford many model evaluations. Multi-fidelity optimization, e.g. [36], was
proposed to alleviate this problem by only allocating a fraction of the resources
to evaluated configurations and promoting the most promising configurations
to give them additional resources. Third, as a consequence of applying multi-
fidelity optimization, we have to choose how different fidelities are defined, i.e.
what kind of budget is used. Examples for such budget types are number of
epochs, dataset size or time series length. Depending on the correlation between
lower and highest fidelity, multi-fidelity optimization can boost the efficiency of
AutoML greatly or even slow it down in the worst case. Since we are the first to
consider multi-fidelity optimization for AutoML on time series forecasting, we
studied the efficiency of different budget types across many datasets. Fourth, all
of these need to be put together; to that effect, we propose a new open-source
package for Automated Deep Learning (AutoDL) for time series forecasting,
dubbed Auto-PyTorch-TS.6 Specifically, our contributions are as follows:

1. We propose the AutoDL framework Auto-PyTorch-TS that is able to jointly
optimize the architecture and the corresponding hyperparameters for a given
dataset for time series forecasting.

2. We present a unified architecture configuration space that contains several
state-of-the-art forecasting architectures, allowing for a flexible and powerful
macro-search.

3. We provide insights into the configuration space of Auto-PyTorch-TS by
studying the most important design decisions and show that different archi-
tectures are reasonable for different datasets.

6 The code is available under https://github.com/automl/Auto-PyTorch.
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4. We show that Auto-PyTorch-TS is able to outperform a set of well-known
traditional statistical models and modern deep learning models with an av-
erage relative error reduction of 19% against the best baseline across many
forecasting datasets.

2 Related Work

We start by discussing the most closely related work in DL for time series fore-
casting, AutoDL, and AutoML for time series forecasting.

2.1 Deep Learning based Forecasting

Early work on forecasting focused on building a local model for each individual
series to predict future values, ignoring the correlation between different series.
In contrast, global forecasting models are able to capture information of multi-
ple time series in a dataset and use this at prediction time [31]. With growing
dataset size and availability of multiple time series from similar sources, this be-
comes increasingly appealing over local models. We will in the following briefly
introduce some popular forecasting DL models.

Simple feed-forward MLPs have been used for time series forecasting and
extended to more complex models. For example, the N-BEATS framework [46] is
composed of multiple stacks, each consisting of several blocks. This architectural
choice aligns with the main principle of modern architecture design: Networks
should be designed in a block-wise manner instead of layer-wise [63].

Additionally, RNNs [9, 23] were proposed to process sequential data and thus
they are directly applicable to time series forecasting [22, 57]. A typical RNN-
based model is the Seq2Seq network [9] that contains an RNN encoder and
decoder. Wen et al. [57] further replaced the Seq2Seq’s RNN decoder with a
multi-head MLP. Flunkert et al. [50] proposed DeepAR that wraps an RNN en-
coder as an auto-regressive model and uses it to iteratively generate new sample
points based on sampled trajectories from the last time step.

In contrast, CNNs can extract local, spatially-invariant relationships. Simi-
larly, time series data may have time-invariant relationships, which makes CNN-
based models suitable for time series tasks, e.g. WaveNet [6, 45] and Temporal
Convolution Networks (TCN) [4]. Similar to RNNs, CNNs could also be wrapped
by an auto-regressive model to recursively forecast future targets [6, 45].

Last but not least, attention mechanisms and transformers have shown su-
perior performance over RNNs on natural language processing tasks [56] and
over CNNs on computer vision tasks [13]. Transformers and RNNs can also be
combined; e.g. Lim et al. [38] proposed temporal fusion transformers (TFT) that
stack a transformer layer on top of an RNN to combine the best of two worlds.

2.2 Automated Deep Learning (AutoDL)

State-of-the-art AutoML approaches include Bayesian Optimization (BO) [18],
Evolutionary Algorithms (EA) [44], reinforcement learning [63] or ensembles [15].
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Most of them consider AutoML system as a black-box optimization problem that
aims at finding the most promising machine learning models and their optimal
corresponding hyperparameters. Neural Architecture Search (NAS), on the other
hand, only contains one search space: its architecture. NAS aims at finding the
optimal architecture for the given task with a fixed set of hyperparameters.
Similar to the traditional approach, the architecture could be optimized with
BO [33, 62], EA [49] or Reinforcement Learning [63] among others, but there
also exist many NAS-specific speedup techniques, such as one-shot models [59]
and zero-cost proxies [1]. In this work we follow the state-of-the-art approach
from Auto-PyTorch [62] and search for both the optimal architecture and its
hyperparameters with BO.

Training a deep neural network requires lots of computational resources.
Multi-fidelity optimization [16, 30, 36] is a common approach to accelerate Au-
toML and AutoDL. It prevents the optimizer from investing too many resources
on the poorly performing configurations and allows for spending more on the
most promising ones. However, the correlation between different fidelities might
be weak [60] for DL models, in which case the result on a lower fidelity will pro-
vide little information for those on higher fidelities. Thus, it is an open question
how to properly select the budget type for a given target task, and researchers
often revert to application-specific decisions.

2.3 AutoML for Time Series Forecasting

While automatic forecasting has been of interest in the research community in
the past [28], dedicated AutoML approaches for time series forecasting problems
have only been explored recently [21, 32, 35, 42, 51]. Optimization methods such
as random search [55], genetic algorithms [10], monte carlo tree search and al-
gorithms akin to multi-fidelity optimization [51] have been used among others.
Paldino et al. [47] showed that AutoML frameworks not intended for time se-
ries forecasting originally - in combination with feature engineering - were not
able to significantly outperform simple forecasting strategies; a similar approach
is presented in [10]. As part of a review of AutoML for forecasting pipelines,
Meisenbacher et al. [42] concluded that there is a need for optimizing the en-
tire pipeline as existing works tend to only focus on certain parts. We took all
of these into account by proposing Auto-PyTorch-TS as a framework that is
specifically designed to optimize over a flexible and powerful configuration space
of forecasting pipelines.

3 AutoPyTorch Forecasting

For designing an AutoML system, we need to consider the following components:
optimization targets, configuration space and optimization algorithm. The high-
level workflow of our Auto-PyTorch-TS framework is shown in Figure 1; in many
ways it functions similar to existing state-of-the-art AutoML frameworks [17, 62].
To better be able to explain unique design choice for time series forecasting, we
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Fig. 1: An overview of Auto-PyTorch-TS. Given a dataset, Auto-PyTorch-TS
automatically prepares the data to fit the requirement of a forecasting pipeline.
The AutoML optimizer will then use the selected budget type to search for de-
sirable neural architectures and hyperparameters from the pipeline configuration
space. Finally, we create an ensemble out of the most promising pipelines to do
the final forecasting on the test sets.

first present a formal statement of the forecasting problem and discuss challenges
in evaluating forecasting pipelines before describing the components in detail.

3.1 Problem Definition

A multi-series forecasting task is defined as follows: given a dataset that con-
tains N series: D = {Di}Ni=1 and Di represents one series in the dataset: Di =

{yi,1:Ti
,x

(p)
i,1:Ti

,x
(f)
i,Ti+1:Ti+H}7, where T is the number of time steps until fore-

casting starts; H is the forecasting horizon that the model is required to predict;
y1:T , x

(p)
1:T and x

(f)
Ti+1:Ti+H are the sets of observed past targets, past features and

known future features values, respectively. The task of time series forecasting is
to predict the possible future values with a model trained on D:

ŷT+1:T+H = f(y1:T ,x1:T+H ;θ) (1)

where x1:T+H := [x
(p)
1:T ,x

(f)
T+1:T+H ], θ are the model parameters that are opti-

mized with training losses Ltrain, and ŷT+1:T+H are the predicted future target
values. Depending on the model type, ŷT+1:T+H can be distributions [50] or
scalar values [46]. Finally, the forecasting quality is measured by the discrepancy
between the predicted targets ŷT+1:T+H and the ground truth future targets
yT+1:T+H according to a defined loss function L. The most commonly applied
metrics include mean absolute scaled error (MASE), mean absolute percentage
error (MAPE), symmetric mean absolute percentage error (sMAPE) and mean
absolute error (MAE) [19, 29, 46].

3.2 Evaluating Forecasting Pipelines

We split each sequence into three parts to obtain: a training set Dtrain =
{y1:T−H ,x1:T+H}, a validation set Dval = {yT−H+1:T ,xT−H+1:T } and a test
7 For the sake of brevity, we omit the sequence index i in the following part of this
paper unless stated otherwise.
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Fig. 2: Overview of the architectures that can be built by our framework. (a)
shows the main components of our architecture space. (b)-(d) are specific in-
stances of (a) and its data flow given different architecture properties.

set Dtest = {yT+1:T+H ,xT+1:T+H}, i.e., the tails of each sequences are reserved
as Dval. At each iteration, our AutoML optimizer suggests a new hyperparameter
and architecture configuration λλλ, trains it on Dtrain and evaluates it on Dval.

Both in AutoML frameworks [18, 62] and in forecasting frameworks [46],
ensembling of models is a common approach. We combine these two worlds
in Auto-PyTorch-TS by using ensemble selection [8] to construct a weighted
ensemble that is composed of the best k forecasting models from the previ-
ously evaluated configurations Dhist. Finally, we retrain all ensemble members
on Dval ∪ Dtrain before evaluating on Dtest.

3.3 Forecasting Pipeline Configuration Space

Existing DL packages for time series forecasting [2, 5] follow the typical struc-
ture of traditional machine learning libraries: models are built individually with
their own hyperparameters. Similar to other established AutoML tools [15, 18,
44], we designed the configuration space of Auto-PyTorch-TS as a combined al-
gorithm selection and hyperparameter (CASH) problem [53], i.e., the optimizer
first selects the most promising algorithms and then optimizes for their optimal
hyperparameter configurations, with a hierarchy of design decisions. Deep neural
networks, however, are built with stacked blocks [63] that can be disentangled
to fit different requirements [58]. For instance, Seq2Seq [9], MQ-RNN [57] and
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Table 1: An overview of the possible combinations and design decisions of the
models that exists in our configuration space. Only the TFT Network contains
the optional components presented in Figure 2a.

Encoder Decoder auto-regressive Architecture Class

Flat Encoder MLP MLP No Feed Forward Network
N-BEATS N-BEATS No N-BEATS [46]

Seq. Encoder
RNN/Transformer

RNN/Transformer Yes Seq2Seq [9]
No TFT [38]

MLP Yes DeepAR [50]
No MQ-RNN [57]

TCN MLP Yes DeepAR [50]/WaveNet [45]
No MQ-CNN [57]

DeepAR [50] all contain an RNN as their encoders. These models naturally share
common aspects and cannot be simply treated as completely different models.
To fully utilize the relationships of different models, we propose a configuration
space that includes all the possible components in a forecasting network.

As shown in Figure 2a, most existing forecasting architectures can be decom-
posed into 3 parts: encoder, decoder and forecasting heads: the encoder receives
the past target values and embeds them into the latent space. The latent em-
bedding, together with the known future features (if applicable), are fed to the
decoder network; the output of the decoder network is finally passed to the fore-
casting head to generate a sequence of scalar values or distributions, depending
on the type of forecasting head. Additionally, the variable selection, temporal
fusion and skip connection layers introduced by TFT [38] can be seamlessly
integrated into our networks and are treated as optional components.

Table 1 lists all possible choices of encoders, decoders, and their correspond-
ing architectures in our configuration space. Specifically, we define two types of
network components: sequential encoder (Seq. Encoder) and flat encoder (Flat
Encoder). The former (e.g., RNN, Transformer and TCN) directly processes se-
quential data and output a new sequence; the latter (e.g., MLP and N-BEATS)
needs to flatten the sequential data into a 2D matrix to fuse the information
from different time steps. Through this configuration space, Auto-PyTorch-TS
is able to encompass the “convex hull” of several state-of-the-art global forecast-
ing models and tune them.

As shown in Figure 2, given the properties of encoders, decoders, and models
themselves, we construct three types of architectures that forecast the future
targets in different ways. Non-Auto-Regressive models (Figure 2b), including
MLP, MQ-RNN, MQ-CNN, N-BEATS and TFT, forecast the multi-horizontal
predictions within one single step. In contrast, Auto-Regressive models do only
one-step forecasting within each forward pass. The generated forecasting values
are then iteratively fed to the network to forecast the value at the next time
step. All the auto-regressive models are trained with teacher forcing [22]. Only
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sequential networks could serve as an encoder in auto-regressive models, however,
we could select both sequential and flat decoders for auto-regressive models.
Sequential decoders are capable of independently receiving the newly generated
predictions. We consider this class of architectures as a Seq2Seq [9] model: we
first feed the past input values to the encoder to generate its output hx and
then pass hx to the decoder, as shown in Figure 2c. Having acquired hx, the
decoder then generates a sequence of predictions with the generated predictions
and known future values by itself. Finally, Auto-Regressive Models with flat
decoders are classified as the family of DeepAR models [50]. As the decoder could
not collect more information as the number of generated samples increases, we
need to feed the generated samples back to the encoder, as shown in Figure 2d.

Besides its architectures, hyperparemters also play an important role on the
performance of a deep neural network [61], for the details of other hyperparam-
eters in our configuration space, we refer to the Appendix.

3.4 Hyperparameter Optimization

We optimize the loss on the validation set LDval with BO [17]. It is known
for its sample efficiency, making it a good approach for expensive black-box
optimization tasks, such as AutoDL for expensive global forecasting DL models.
Specifically, we optimize the hyperparameters with SMAC [25]8 that constructs
a random forest to model the loss distribution over the configuration space.

Similar to other AutoML tools [18, 62] for supervised classification, we utilize
multi-fidelity optimization to achieve better any-time performance. Multi-fidelity
optimizers start with the lowest budget and gradually assign higher budgets to
well-performing configurations. Thereby, the choice of what budget type to use is
essential for the efficiency of a multi-fidelity optimizer. The most popular choices
of budget type in DL tasks are the number of epochs and dataset size. For time
series forecasting, we propose the following four different types of budget:

– Number of Epochs (#Epochs)
– Series Resolution (Resolution)
– Number of Series (#Series)
– Number of Samples in each Series (#SMPs per Ser.)

A higher Resolution indicates an extended sample interval. The sample in-
terval is computed by the inverse of the fidelity value, e.g., a resolution fidelity
of 0.1 indicates for each series we take every tenth point: we shrink the size of
the sliding window accordingly to ensure that the lower fidelity optimizer does
not receive more information than the higher fidelity optimizer. #Series means
that we only sample a fraction of sequences to train our model. Finally, #SMPs
per Ser. indicates that we decrease the expected value of the number of sam-
ples within each sequence; see Section 3.2 for sample-generation method. Next
to these multi-fidelity variants, we also consider vanilla Bayesian optimization
(Vanilla BO) using the maximum of all these fidelities.
8 We used SMAC3 [39] from https://github.com/automl/SMAC3
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3.5 Proxy-Evaluation on Many Time Series

All trained models must query every series to evaluate Lval. However, the num-
ber of series could be quite large. Additionally, many forecasting models (e.g.,
DeepAR) are cheap to be trained but expensive during inference time. As a
result, rather than training time, inference time is more likely to become a bot-
tleneck to optimize the hyperparameters on a large dataset (for instance, with
10k series or more), where configuration with lower fidelities would no longer
provide the desirable speed-up when using the full validation set. Thereby, we
consider a different evaluation strategy on large datasets (with more than 1k
series) and lower budgets: we ask the model to only evaluate a fraction of the
validation set (we call this fraction “proxy validation set”) while the other series
are predicted by a dummy forecaster (which simply repeats the last target value
in the training series, i.e., yT , H times). The size of the proxy validation set
is proportional to the budget allocated to the configuration: maximal budget
indicates that the model needs to evaluate the entire validation set. We set the
minimal number of series in the proxy set to be 1k to ensure that it contains
enough information from the validation set. The proxy validation set is gener-
ated with a grid to ensure that all the configurations under the same fidelity are
evaluated on the same proxy set.

4 Experiments

We evaluate Auto-PyTorch-TS on the established benchmarks of the Monash
Time Series Forecasting Repository [20]9. This repository contains various datasets
that come from different domains, which allows us to assess the robustness of
our framework against different data distributions. Additionally, it records the
performance of several models, including local models [3, 7, 11, 26, 27], global
traditional machine learning models [48, 54], and global DL models [2, 6, 46,
50, 56] on Dtest, see [20] for details. For evaluating Auto-PyTorch-TS, we will
follow the exact same protocol and dataset splits. We focus our comparison of
Auto-PyTorch-TS against two types of baselines: (i) the overall single best base-
line from [20], assuming a user would have the required expert knowledge and
(ii) the best dataset-specific baseline. We note that the latter is a very strong
baseline and a priori it is not known which baseline would be best for a given
dataset; thus we call it the theoretical oracle baseline. Since the Monash Time
Series Forecasting Repository does not record the standard deviation of each
method, we reran those baselines on our cluster for 5 times. Compared to the
repository, our configuration space includes one more strong class of algorithms,
TFT [38], which we added to our set of baselines to ensure a fair and even harder
comparison.

We set up our task following the method described in Section 3.2: HPO
is only executed on Dtrain/val while H is given by the original repository. As
described in Section 3.2, we create an ensemble with size 20 that collects multiple
9 https://forecastingdata.org/
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models during the course of optimization. When the search finishes, we refit the
ensemble to the union of Dtrain/val and evaluate the refitted model on Dtest. Both
Lval and Ltest are measured with the mean value of MASE [29] across all the
series in the dataset. To leverage available expert knowledge, Auto-PyTorch-TS
runs an initial design with the default configurations of each model in Table 1.
Please note that this initial design will be evaluated on the smallest available
fidelity. All multi-fidelity variants of Auto-PyTorch-TS start with the cheapest
fidelity of 1/9, use then 1/3 and end with the highest fidelity (1.0). The runs of
Auto-PyTorch-TS are repeated 5 times with different random seeds.

We ran all the datasets on a cluster node equipped with 8 Intel Xeon Gold
6254@ 3.10GHz CPU cores and one NVIDIA GTX 2080TI GPU equipped with
PyTorch 1.10 and Cuda 11.6. The hyperparameters were optimized with SMAC3
v1.0.1 for 10 hours, and then we refit the ensemble on Dtrain/val and evaluate it
on the test set. All the jobs were finished within 12 hours.

4.1 Time Series Forecasting

Table 2 shows how different variants of Auto-PyTorch-TS perform against the
two types of baselines across multiple datasets. Even using the theoretical oracle
baseline for comparison, Auto-PyTorch-TS is able to outperform it on 18 out of
24 datasets. On the other 6 datasets, it achieved nearly the same performance
as the baselines. On average, we were able to reduce the MASE by up to 5%
against the oracle and by up to 19% against the single best baseline, establishing
a new robust state-of-the-art overall.

Surprisingly, the forecasting-specific budget types did not perform signifi-
cantly better than the number of epochs (the common budget type in classifi-
cation). Nevertheless, the optimal choice of budget type varies across datasets,
which aligns with our intuition that on a given dataset the correlation between
lower and higher fidelities may be stronger for certain budget types than for
other types. If we were to construct a theoretically optimal budget-type selec-
tor, which utilizes the best-performing budget type for a given dataset, we would
reduce the relative error by 2% over the single best (i.e., # SMPs per Ser.).

4.2 Hyperparameter Importance

Although HPO is often considered as a black-box optimization problem [17], it
is important to shed light on the importance of different hyperparameters to
provide insights into the design choice of DL models and to indicate how to
design the next generation of AutoDL systems.

Here we evaluate the importance of the hyperparameters with a global anal-
ysis based on fANOVA [24], which measures the importance of hyperparameters
by the variance caused by changing one single hyperparameter while marginal-
izing over the effect of all other hyperparameters. Results on individual datasets
can be found in appendix.
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Table 2: We compare variants of Auto-PyTorch-TS against the single best base-
line (TBATS) and a theoretically optimal oracle of choosing the correct baseline
for each dataset wrt mean MASE errors on the test sets. We show the mean and
standard deviation for each dataset. The best results are highlighted in bold-
face. We computed the relative improvement wrt the Oracle Baseline on each
dataset and used the geometric average for aggregation over the datasets.
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Fig. 3: Hyperparameter importance with fANOVA across all datasets of Table 2

For each of the 10 most important hyperparameters in our configuration
space (of more than 200 dimensions), Figure 3 shows a box plot of the impor-
tance across our datasets. The most important hyperparameters are closely asso-
ciated with the training procedure: 3 of them control the optimizer of the neural
network and its learning rate. Additionally, 4 hyperparameters (window_size,
num_batches_per_epoch, batch_size, target_scaler) contribute to the sampler
and data preprocessing, showing the importance of the data fed to the network.
Finally, the fact that two hyperparameters controlling the data distribution are
amongst the most important ones indicates that identifying the correct potential
data distribution might be beneficial to the performance of the model.

4.3 Ablation Study

Fig. 4: Validation losses over time with differ-
ent multi-fidelity approaches. We compute the
area under the curve (AUC) of our approach
(PE) and naive multi-fidelity optimizer (FE)
and list them in the figures.

In Section 3.5, we propose to
partially evaluate the validation
set on larger datasets to further
accelerate the optimization pro-
cess. To study the efficiency gain
of this approach, we compare
evaluation on the full valida-
tion set vs the proxy-evaluation
on parts of the validation set.
We ran this ablation study on
the largest dataset, namely "Do-
minick" (115 704 series).

Figure 4 shows the results. It
takes much less time for our op-
timizer (blue) to finish the first
configuration evaluations on the
lowest fidelity, improving effi-
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ciency early on and showing the
need of efficient validation and
not only training. We note that
the final performance does not
change substantially between
the different methods. Overall,
Auto-PyTorch-TS achieves the
best any-time performance. We note that Auto-PyTorch-TS has not converged
after 10h and will most likely achieve even better performance if provided with
more compute resources. The results on the other datasets show a similar trend
and can be found in the appendix.

5 Conclusion and Future Work

In this work, we introduced Auto-PyTorch-TS, an AutoDL framework for the
joint optimization of architecture and hyperparameters of DL models for time
series forecasting tasks. To this end, we propose a new flexible configuration space
encompassing several state-of-the-art forecasting DL models by identifying key
concepts in different model classes and combining them into a single framework.

Given the flexibility of our configuration space, new developers can easily
adapt their architectures to our framework under the assumption that they
can be formulated as an encoder-decoder-head architecture. Despite recent ad-
vances and competitive results, DL methods have until now not been consid-
ered the undisputed best approach in time series forecasting tasks: Traditional
machine learning approaches and statistical methods have remained quite com-
petitive [20, 40]. By conducting a large benchmark, we demonstrated, that our
proposed Auto-PyTorch-TS framework is able to outperform current state-of-
the-art methods on a variety of forecasting datasets from different domains and
even improves over a theoretically optimal oracle comprised of the best possible
baseline model for each dataset.

While we were able to show superior performance over existing methods, our
results suggest, that a combination of DL approaches with traditional machine
learning and statistical methods could further improve performance. The optimal
setup for such a framework and how to best utilize these model classes side by
side poses an interesting direction for further research. Our framework makes
use of BO and utilizes multi-fidelity optimization in order to alleviate the costs
incurred by the expensive training of DL models. Our experiments empirically
demonstrate, that the choice of budget type can have an influence on the quality
of the optimization and ultimately performance.

To the best of our knowledge there is currently no research concerning the
choice of fidelity when utilizing multi-fidelity optimization for architecture search
and HPO of DL models; not only for time series forecasting, but other tasks as
well. This provides a great opportunity for future research and could further im-
prove current state-of-the-art methods already utilizing multi-fidelity optimiza-
tion. Additionally, we used our extensive experiments to examine the importance
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of hyperparameters in our configuration space and were able to identify some
of the critical choices for the configuration of DL architectures for time series
forecasting. Finally, in contrast to previous AutoML systems, to the best of
our knowledge, time series forecasting is the first task, where not only efficient
training is important but also efficient validation. Although we showed empir-
ical evidence for the problem and took a first step in the direction of efficient
validation, it remains an open challenge for future work. Auto-PyTorch-TS can
automatically optimize the hyperparameter configuration for a given task and
can be viewed as a benchmark tool that isolates the influence of hyperparameter
configurations of the model. This makes our framework an asset to the research
community as it enables researchers to conveniently compare their methods to
existing DL models.
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