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Abstract. We study session-based recommendation scenarios where we
recommend items to users during sequential interactions to improve their
long-term utility. Optimizing a long-term metric is challenging because
the learning signal (whether the recommendations achieved their desired
goals) is delayed and confounded by interactions across many sessions.
Optimizing session-specific metrics as a proxy can be suboptimal because
they ignore the effects of the recommendation policy across sessions. We
develop a reinforcement learning (RL) algorithm called Short Horizon
Policy Improvement (SHPI) that approximates policy-induced changes
in user behavior across sessions. SHPI modifies episodic RL algorithms
by additionally giving a termination bonus in each session. To remain
computationally tractable we estimate termination bonuses from logged
observational data, and SHPI finds policy improvements that other RL
methods can miss. Results on four recommendation tasks show that
SHPI can outperform matrix factorization for offline metrics, bandits
for myopic online metrics, and RL for long-term metrics.

1 Introduction

High quality recommendations can provide personalized experiences for users
and drive increased usage, revenue and utility for service providers. These rec-
ommendations do not occur as isolated interactions, but rather as repeated se-
quential interactions with users. For instance, mobile health interventions nudge
users over time to achieve their long-term goals [13] and e-commerce sites per-
sonalize product suggestions within user sessions to maximize their likelihood of
purchases [16].

1 Work done while the author was at Microsoft.
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Traditionally, recommender systems use immediately measurable user feed-
back (e.g., implicit feedback like clicks or explicit feedback like item ratings)
to identify good recommendations. For sequential recommendations, these my-
opic feedbacks are imperfect proxies for Long-Term Rewards (LTR). Consider an
e-commerce site optimizing for total monthly conversions by its user population:

Conv Conv Recs Sessions

Month ~ Rec Session Month

Recommenders that optimize immediate user feedback are too myopic because
they greedily optimize the first term even if that lowers the other two terms.

Consequently, reinforcement learning (RL) techniques have been applied to
optimize for LTR [2]. These techniques require many user interactions, with the
sample complexity of RL growing with the horizon of the problem [27]. Fortu-
nately, user interactions in many recommendation applications typically occur
in short bursts called sessions. Episodic RL algorithms are well-suited for opti-
mizing session-specific metrics where each session is treated as an independent
episode. Real-world recommenders that optimize session-specific metrics perform
better than click-optimizing policies [2], yet often encounter an offline-online gap
where policies that perform well on offline data fail during online deployment [6].
As we will show, this is because episodic RL for session-based recommendations
can still be too myopic.

Fig. 1 illustrates an example where each session length is 2 and there are a
maximum of 5 sessions in a month. When users visit the site, they have a limited
amount of patience to interact and find an appropriate product. Within a user
session, we may recommend attractive products which advertises our item inven-
tory for a user’s future shopping needs or we may recommend more functional
products that address their immediate need. Consider first a deployed system p
that recommends items uniformly at random. All items have some non-zero user
exposure and so users initiate sessions for all their intents. However, uniform
random is not a good recommendation policy so u sees very few conversions.

Next consider a recommender that has been tuned to optimize for conversions
myopically using data collected from p. It infers that there is a small subset of
items that have good conversion rates and only recommends these most popular
items. However, users exposed to only a small subset of items may never initiate
sessions for other intents, leading to fewer sessions and eventually sub-optimal
total conversions.

Suppose instead we optimized session-based recommendations using episodic
RL, where each episode corresponds to a user session. Such a policy would rec-
ommend functional items which increase the chance of a conversion within each
session. This is an optimal policy if the distribution of sessions matches what
is seen in the training data. Unfortunately, the deployed policy can influence
which sessions are initiated by users. Therefore, although the deployed policy
has a 100% session conversion rate, it has fewer sessions overall.

One non-solution is to ignore sessions and instead treat the duration of the
LTR as the RL problem horizon. In the example above this would treat each
month of user activity as an episode. However, the sample complexity of RL

LTR =
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Fig. 1. Stylized example of e-commerce recommendations. A session S; lasts for two
interactions with conversions (green) or not (red). Users’ propensity to initiate sessions
depends on their past interactions. (a) Myopic bandit, Session-based RL and SHPI infer
different training signals in logged data collected from uniform random p. Myopic
bandit infers every user interaction that converts as a positive signal. Session-based
RL infers every session containing a conversion as a positive signal. SHPI additionally
infers a positive signal for sessions that lead to more future user sessions by using a
session-termination bonus. Session-based RL ignores that session initiation is affected
by the policy and infers low reward for So. SHPI correctly identifies that good discovery
recommendations in S increase the number of sessions and thereby total conversions.
(b) During online deployment, Myopic bandit and Session-based RL always recommend
items with high conversion rate, missing out on other session intents. SHPI trades-off
between success within a session (e.g., S2) and initiating more sessions, and thereby
manages to accumulate more conversions in a month.

User

scales with episode length. How can we optimize for better session-based rec-
ommendations without paying the statistical costs for the LTR horizon? Notice
that the key difficulty is that the number of sessions in a month is influenced
by the policy. In this paper, we approximate this dependence by first estimating
long-term user behavior (e.g., %) separately using logged data. Then, by
invoking episodic RL algorithms with an additional bonus on episode termina-

tion to capture policy-induced user shifts, we develop a practical algorithm called
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Short Horizon Policy Iteration (SHPI). SHPI transforms the sparse long-term
outcomes recorded in a dataset of sequential recommendations into a reliable
training signal. This transformation is simple and highly composable with many
other offline RL and user-embedding techniques.

We conduct experiments in four domains: a synthetic task where the reward
is a challenging non-convex function of user context, a recommender system
benchmark with a sub-modular reward [20], a real-world private recommendation
dataset and an HIV treatment domain with delayed rewards [4]. Our experiments
show that SHPI is simple to run with offline data, and outperforms session-based
RL, contextual bandit and classic recommendation baselines.

2 Related Work

Recommendations for LTR. Our work builds on [25] who identified a trade-off
in online bandits between exploring new items, exploiting items for immediate
utility, and exploiting other items to bring back returning users. Our work ex-
tends their reasoning from online bandits to offline episodic RL, and generalizes
their approach using episodic termination bonuses.

Session-based recommendations are widely-studied, see [1] for a recent sur-
vey. State of the art techniques use session summarization for user embeddings
(e.g., via recurrent neural nets), and blend short and long-term metrics (e.g., via
weighted rewards). SHPI is complementary to these techniques, and additionally
reduces the horizon in offline LTR optimization by transforming the reward.

Hierarchical RL has been proposed for optimizing long-term metrics across
sessions [26]. The key idea is to train two separate policies: a meta-controller for
switching across sessions and an intra-session recommender policy [16]. Although
this hierarchy conforms to the LTR session structure, credit assignment between
the meta-controller and intra-session policy are difficult, complicating the meta-
controller training [12]. SHPI avoids training a meta-controller, and instead mod-
ifies the intra-session policy learning using session-termination bonuses.

Offtine/Batch RL techniques. Offline RL techniques like BCQ [5] and CQL [10]
control extrapolation errors outside the logged dataset of user-item interactions.
SHPI is composable with many of these techniques (see Appendix 6.3 for addi-
tional experiments). However SHPT is not a general-purpose offline RL algorithm.
It solves for a much shorter horizon than the original problem which can be dis-
astrous; for instance, SHPI will struggle on offline RL benchmarks which do not
have session structure.

Truncated horizon reasoning in other settings. GAE [22] is a widely used on-
line RL algorithm, but uses a value function estimate V™ to derive a consistent
estimate of policy advantages. SHPI uses V* instead (see equation 4) which
is inconsistent for solving a general RL problem. However we empirically show
that it is sufficient for fixing the myopia of session-based RL. HURL |[3] estab-
lishes sufficient theoretical conditions for truncated horizon reasoning that are
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also needed for SHPI, and additionally increases the problem horizon gradually
during training. All of these works are in the online interactive setting for general
RL distinct from our batch RL session-based setting.

3 Background

Notation. Lowercase letters x represent either random variables or their re-
alizations (depending on context), uppercase bold letters A represent matrices,
lowercase bold letters v represent vectors, calligraphic letters 7 represent tensors
and/or spaces. Index notation is the equivalence wq., = {wa, Wat1, .., Wp—1, Wp }
For a space X, A(X) represents the set of distributions with support X. \/
denotes the max operator to save space when necessary.

3.1 Recommendation as Episodic MDP

The notation used throughout this paper follows a single user u, where depen-
dence is specified by subscript X,,; generalization to a user population is accom-
plished using user-specific features X, in the user context. The user’s preferences
are assumed to be stationary across time. There is also a notion of a task hori-
zon, e.g., one month. We seek a recommendation policy that maps user contexts
to valid recommendations so as to maximize total utility over the horizon. We
formulate this problem as an episodic Markov Decision Process (MDP) with
a long horizon. The results in this paper directly translate to infinite horizon
discounted objectives.

An episodic MDP is defined by the tuple (X, A,r, T, po,~,T) where X is the
state space, A the action space, r : X x A — R the reward function, v € [0, 1] the
discount factor and 7' the maximum length of an episode. 7 : X x A — A(X)
is a Markov transition function and py € A(X) is the initial state distribution.

Unlike a general MDP, recommendation scenarios have additional structure,
which can be represented using a factorization of the context or state space
x = [xs,%q,%,] where z; encodes within-session context, z, encodes action-
dependent features, for example the valid recommendations in that context,
and x, encodes across-session user profiles. If we observe only session-based
rewards (e.g., conversions on an e-commerce site) they can be encoded using
r(z,a) =r(xy).

At each t = 0,1,2,..,T, the system agent observes z; € X and picks an
action a; € A based on some behavior policy u : X — A(A). The goal of a
learning agent is to maximize the expected cumulative rewards after T" timesteps.
Finally we assume access to a historical dataset D of (context, action, reward)
trajectories collected from an existing system u (for instance, one that is tuned
using bandit algorithms for optimizing clicks). We must use D to find a new
policy 7 that gets reliably better cumulative rewards than u.
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3.2 RL Solution Concepts

Let P/, denote “rolling-in” with u: xg ~ po,ag ~ p(xo), ... x¢ ~ T(|Ti—1,a1-1)
and P} denote “rolling out” with y: P} = E, [T (:|zs—1, a¢—1)].
The state value function under any policy 7 is

T—t
Vi (w) = EP?[Z Y (Ttpms Gtpm)| ],
m=0
the state-action value function is
T—t
Qf (zr,a) = Epr[ ) "1 (Tegm, Gem )| 2, at),
m=0

and the advantage function is AT (x¢,at) = QF(x4,a:) — V7 (2¢). Note that
we have time-indexed value and advantage functions; however, we drop the
index because when T is very large these functions are time-invariant under
the assumption that user preferences are stationary. The expected return is
0T = Epy Vi (20)] = Beg, [0 28 virs + Vi (ae)] = Eeg, [S00vr, + QF (1, 0)
for1<t<T.

The online/interactive/on-policy RL problem is to find a 7 by interacting
with users such that n™ is near-optimal. The offline /batch RL problem attempts
to find such a 7 using only the logged dataset D. In practical recommendation
settings, we have a large D and also a small budget for online user interactions.
In Sec. 4 we provide practical online and offline RL algorithms for both settings.

Policy Gradient A typical interactive RL strategy attempts to maximize n™ =
arg max Ep~[A™(z, a)] by collecting samples from 7 interacting with the environ-
ment to estimate the expectation P™ and the advantages A™. If online learning
is impossible due to the absence of a simulator or is too costly (e.g., in medical
treatment domains), an improved policy 7 can still be found for a given dataset
gathered by behavior policy p. One approach uses ideas inspired by the policy
gradient of Vn#, and essentially maximizes Epu[A*(x,a)]. However the policy
improvement step when following this strategy tends to be very small (see [9] for
a discussion). Moreover, when we need to make a sequence of good recommen-
dations within a session for user conversion, then one-step deviations from y as
estimated via Q”(xt, a*) ~ 0 (even for a good recommendation a*). So policy
gradient techniques may completely miss avenues for improvement over .

Conservative Policy Improvement Another strategy uses a performance differ-
ence lemma [9] to relate ™ — n* = Epu[—A"(z,a)] = Ep=[A*(z,a)]. Batch
RL techniques that attempt to maximize policy improvement by optimizing
Epu[A™(x,a)] face the challenge of extrapolation errors, since A™ estimated from
samples from p may not be reliable in important regions of the state-action
space visited by 7. Techniques that optimize Ep~[A*(z,a)] like SPIBB [11] and
MBS [15] suffer from distribution shift since samples collected from g may not
estimate expectations w.r.t P™.
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Truncated horizon We can solve an artificially shorter horizon RL problem, by
either treating H < T as effective task horizon or by decreasing the discount
factor to 7/ < ~. User sessions are a natural and popular choice for defining
truncated episodes of length up to H. This essentially assumes that the state
Tp41 ~ po whereas in reality g1 ~ T (-|xg,am). We saw in Sec. 1 that when
policy actions within a user session influence the user population who initiate
future sessions, P™[zg4+1] # po-

We now identify an alternative solution strategy for truncated horizon rea-
soning that leverages the session structure of user interactions without assuming
that IED‘IT[.,I:H+1] ~ Po-

4 Algorithm

Can we estimate how the distribution over sessions depends on any partic-
ular recommendation policy? In some very simple cases, the answer is yes.
For instance, suppose a user u had a known, intrinsic session initiation rate
c(zy). Then estimating P™[x,] and computing Ep~(,, ) [c(2)] gives us the cor-
rect policy-dependent session distribution. Our key insight is that we can learn
a suitable bonus function like c¢(z,) that, when invoked on the distribution
of terminal states produced by an episodic RL agent, gives the correct long-
term signal for learning. For example, suppose we are given the state value
function for an optimal policy n* for our problem, V*(z). Bellman optimality
equations state that the m that maximizes the instantaneous re-shaped reward,
7(x) = argmax, e o {7 (2, a) +YEqy 7 (. |2,a) [V (2')]} is an optimal policy. In other
words, if we use V* as a bonus function then even a myopic bandit algorithm
that optimizes a re-shaped reward will recover the optimal policy.

Since we do not know V*, we begin by first estimating V* with classic policy
evaluation techniques to use as a bonus instead (Sec. 4.1). Then we incorporate
these estimates in an online on-policy iteration scheme (Sec. 4.2) and later extend
it to the offline off-policy setting (Section 4.3).

4.1 Estimating Termination Bonus V#

Given adataset D = {(z; ~ P*[z], a; ~ p(-|z:), 2’ ~ T (|as, a;),ri ~r(x,a)) 1,
we estimate V#(x) using Bellman residual minimization:

VH = arg min Z (r+V(') - V(z))?. (1)
v (z,a,r,x’)ED

In practice we use SGD on D to optimize Eq. 1. When users have an intrin-
sic session initiation rate c¢(z,) and the within-session rewards are indepen-
dent of session-initiations, V*(z,) can approximate the long-term value of user
Ty, VH(xy) = c(x,). With this approximation to c(z,) in hand, we can de-
rive Epr (. [c(zy)] (by using V# as a termination bonus) which gives a useful
summary of long-term behavior under 7 during training. However using V* to
summarize the long-term signal instead of V* or even V™ can introduce approx-
imation error in more general user behavior models.
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4.2 Online Short-Horizon Policy Iteration

We next combine Monte Carlo samples collected from online interactions along
with the evaluated V# model to estimate k-step advantages:

k—1
A?k),t(xt,at) = EPLM[ Z Y (Xt Qtm,) @
m=0

YV @ en) e, ar] — V().

These advantages estimate the effect of starting in state x; at time t, taking
action a, then rolling-in for (k — 1)-steps with 7 before reverting to p till the
end of the episode (remember that episode length is T'). Furthermore the base-
line that is subtracted from this @Q-function is the estimated value of following
p from state 2;. Note that AT}, , = Al andif k >T —t: Alyy.c = Af. So using
k = 1 recovers the advantages used by policy gradient schemes, while £k = T
recovers advantages in conservative policy iteration schemes. Using V™ in place
of V#* in Equation 2 will reduce SHPI to the classical n-step temporal differ-
ence estimator. However, as shown in Fig. 2b, this substitution leads to noisier
advantage estimates. Further, we recover session-based episodic RL algorithms
if V# always returns 0, and if additionally k¥ = 1 we recover contextual bandit
algorithms. In practice we set k& to be large enough to span user sessions, e.g.,
we set £ = 3 in the example of Sec. 1 and we use equation 1 to get V#.

We can use any episodic RL algorithm with these k-step advantages or ter-
mination bonuses. In Appendix 6.5 we instantiate a classic approximate policy
iteration algorithm in Alg. 2. However practical deployments of RL for recom-
mendation have limited budget for interaction and must use the logged data D
more effectively. We now sketch our main algorithm for offline LTR optimization.

4.3 Offline Short-Horizon Policy Iteration

In the offline problem setting we must recover a policy 7w that improves over p
using only the dataset D. This can be impossible in general if 4 is not sufficiently
exploratory and the collected dataset D is not sufficiently large. We make the
following standard off-policy learning assumptions: (1) the logging policy u has
non-negligible probability of sampling all actions (we will additionally clip impor-
tance weights in Eqn 3 to limit variance from sampled low-probability actions)
(2) D is large enough for non-degenerate importance sampling estimates.

Since the training dataset was collected by p and not 7, we use PDIS [18] to
rewrite the expectation in terms of u:

t+m
Alyy o(wr;00) = Py ik E w YT (Zem, Gem) 3
m=0 ( )
t+k

Fwi Y VI (@) [, ar = VY (),
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Algorithm 1: Offline SHPI
Input : Batch D, horizon k, model class F, iterations J, clipping
coefficients ¢1, g2
VH ¢+ Eq.(1);
/* Randomly initialize 7(®) # */
70 ~ A(A) ;
for j=1,..,J do
for 7 = {(24,a¢,7¢)}_1 ~ D do
~ . t+k T )(am\wm)
‘ W clip({[,n2s 11 W}t 1,41, 92)
end
Ar, — Eq.(4);

e argminy, o ep{f(x.a) — A, (z,0)}? ;
feF

W(j)(a:) — arg max,e 4 f(x,a);
end

where wif = HZ:tl % when t; < t3, 1 otherwise. To mitigate potentially

large values of wzf we use weight clipping [8]. While ¢, g2 can be tuned inde-
pendently for each domain, we set ¢ = 0.5 and ¢ = 2 in all experiments. The
finite sample version of our estimator from n Monte Carlo trajectories is

(k) t = Z Z wﬁfﬁ P(Ti t4m» Gt 4m)
i=1 m=0 (4)

DT YV (@i gn)] = V(@) -

As in the online version of SHPI (Sec 4.2), we set k to be large enough to span
user sessions, e.g., we set kK = 3 in the example of Sec. 1 and we use equation 1
to get V#. The approximate policy iteration algorithm called Offline SHPI is
sketched in Alg. 1. We first estimate V#, and initialize our policy away from p.
Then we interleave advantage estimation using Eq. 4 with policy improvement
steps. Note how the policy improvement step is rewarded implicitly with the
termination bonus of V#(xy1) inside its advantages.

We answer two questions about SHPI: (i) Using perfect estimates of w, 7, Ve,
does SHPI guarantee a policy improvement (is the algorithm consistent?) and
(ii) if some state-action pairs are poorly covered by pu, is it possible to find an
improved policy (is the algorithm efficient)? In Sec. 4.4 we show that SHPT is
both consistent and efficient.

4.4 Analysis

Since SHPI is essentially an approximate policy iteration scheme with a modi-
fied advantage function, it inherits the convergence issues of API with function
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approximation. In particular, under the assumptions that the true A?k) lies in F
(realizability) and that the minimizer f* incurs low error over D (completeness),
then Alg. 1 will converge to a fixed point 7. In practice, we use a maximum it-
eration number J and return # = 7(/). Note also that we initialize Alg. 1 away
from p so that A* and A”,: do not coincide.

We now describe sufficient conditions for SHPI to work well, in increasing
order of their generality. These conditions build on a long line of work tracing
back to Blackwell optimality in the known MDP setting [7]. The first condition
suggests that SHPI returns a near-optimal policy in a special class of MDPs,
regardless of the V# we use. The second condition builds on recent work [3]
to show that if V* has favorable properties then SHPI returns a near-optimal
policy. Finally, the third condition suggests that by tuning & we might achieve a
better bias-variance trade-off and SHPI can return a larger policy improvement
over p (but not necessarily optimal) than existing methods.

Condition 1 (most restrictive) If the MDP(T, R, po, T, ) admits a Blackwell-
optimal policy for some unknown k* < T (equivalently for a v* < ), then there
exists a k < T such that SHPI is near-optimal.

This condition holds when user session initiations are independent of the rec-
ommendation policy or if the task/reward horizon T is long but the environment
is reset to pg after H < T'. Since the definition of Blackwell optimality says that
a policy that is optimal for v* remains optimal for v > ~*, any episodic RL
algorithm can find a near-optimal solution if k > 11:7* T'. Both session-based RL
as well as SHPI will thus be consistent for large enough k.

Condition 2 (less restrictive) From Corollary 4.1 of [3] if V* has a small error

||V“ — V*|loo < € then the policy returned by SHPI is near optimal, V* —

V(rsapr) < e((ll_fv’y)); where \ = E?ill))i. SHPI can thus be better than session-

based RL when V* has a smaller o error than a constant function. This is true,
for instance when p is on the value improvement path towards 7* or if V# is an
improvable bonus function (see [3]).

Condition 3 (least restrictive) For all 7, there exists 1 < k < T such that
the mean squared error of estimating A?k) is lower than estimating A* and
AT, Therefore by tuning k, we can have a good bias-variance trade-off so that
SHPI finds the tightest lower bound on policy improvement. Experiments in
Sec. 5.4 confirm that k set to session lengths can give better estimates and better

policy improvements than policy gradient and conservative policy iteration.

5 Experiments

We conducted experiments on three benchmarks and a private dataset: (i) a syn-
thetic recommendation problem with a complex reward function [23], (ii) the
RecoGym environment with a sub-modular reward function [20], and (iii) the
HIV treatment simulator proposed in [4]. We consider only the more practical
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offline problem setting (i.e., an algorithm cannot interact with its environment to
collect additional training data; all algorithms are still evaluated via online de-
ployment in the environment) and report results for Offline SHPI (Algorithm 1)
in all experiments®.

5.1 Experimental setup

On all four domains, we first pre-train a policy (deep SARSA) using a large
number of online interactions. It is then mixed with random uniform actions with
probability e € [0, 1], in order to simulate various levels of performance; we call
this policy p, or logging policy. This agent is then deployed in the environment to
gather a fixed dataset D which are used to train all compared methods. Finally,
all experiments report undiscounted test performance of learned policies on true
environment rewards over 200 rollouts and 5 random seeds.

Test domains The first domain implements a toy recommendation scenario in
which each of the action vectors, with randomly sampled coordinates, affects
the context X; of a user in an additive way. The policy’s input context is a
moving average of previous contexts; the reward function r depends only on
the accumulated X; and is characterized by the Styblinski-Tang function (see
Appendix for more details).

The second domain, RecoGym, is a personalization benchmark to study click-
based recommender systems using RL. We optimize a long-term reward signal
which is a submodular function that depends on all previously clicked items.

The third domain is the HIV treatment simulator which relies on differen-
tial equations to simulate the administration of treatment to a group of pa-
tients. While it has relatively small state and action spaces, the HIV simulator
is considered a proxy for real-world off-policy recommendation in the healthcare
domain [14].

Our fourth and last domain consists of a private dataset X. The dataset
X contains 120,000 unique user interactions collected from a live recommender
system over the span of 3 weeks for 10,000 users. The recommendation setting
is realistic, with |A] = 112 and X C R*". The dataset is accompanied by a
long-term value estimator V* € [—1.5,1], (where 1 is the best possible score).
The LTR corresponds to the likelihood of a user to re-subscribe to a service.

Each domain stresses the basic assumptions in SHPI : the toy scenario exactly
fits our assumptions, RecoGym is reproducible and semi-synthetic with sessions
that still conform to SHPI assumptions, the private dataset tests scalability and
our assumptions may be invalid, while the HIV simulator violates the session-
structure entirely.

Choice of baselines For all domains, we include a standard contextual bandit
agent without exploration. Next, we include BCQ [5] as a batch RL baseline and
CQL [10] as a state-of-the-art batch RL approach. BCQ is general enough to be

8 Code to reproduce results can be found at https://github.com/bmazoure/shpi.
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suitable for all target domains without extensive tuning, while CQL performs
well with near-optimal datasets. Since RecoGym gives access to both short- and
long-term signals, we also compared with three common recommender baselines
that can learn from myopic signals in RecoGym: (1) bandit with matrix factor-
ization (Bandit+MF)°, (2) IPS estimator via neural net regression (NN-IPS)!°
and (3) RepeatNet [19], a strong recurrent neural network approach.

5.2 Performance Trends across Domains
In Table 1 we compare SHPI performance to that of bandit and offline RL

methods on a large-scale version of the toy domain with |S| = 100 and |.A| = 300.
Table 2 shows returns collected by all algorithms in the HIV domain.

Table 1. Evaluation of RL methods on the large toy domain.

€ HLogging ‘Bandit SHPI (Ours) BCQ CQL

0.3[|1186 + 1535|1648 £ 732 7235 £ 325 495 + 831 1231 £ 527
0 [|2191 £ 180 |-509 £ 269 2151 £ 1207 3847 £ 979 3974 £ 341

Note that SHPI achieves better results when learning from suboptimal data,
as opposed to data collected from a near-optimal policy. This highlights an in-
stability when learning from an expert policy; can SHPI be composed with com-
plementary off-policy RL techniques for stable extrapolation? In the Appendix,
we show experimental results for SHPI with trust region proximal regulariza-
tion [21], which indeed leads to stabler learning from optimal data.

Table 2. Evaluation of RL methods on the HIV simulator.

€ HLogging ‘Bandit SHPI (Ours) BCQ CQL
O.3H0.69 + 0.02‘0.34 +0.11 0.85 + 0.17 0.32 4+ 0.15 0.37 &+ 0.14
0

0.73 £ 0.01|0.57 £ 0.10 0.50 = 0.11 0.39 £ 0.13 0.51 £ 0.11

Additionally, we tested SHPI on the private dataset X. We first fitted a model
to state transitions and rewards in the dataset. This model is more realistic than
RecoGym: it incorporates a complex LTR function (with values in [—1.5,1]),
richer user features and realistic state transitions based on real user interactions.
We ran all algorithms on a batch simulated from this environment by an e-greedy
policy and report online evaluation results of the resulting policies (Table 3).

9 see github.com /criteo-research /reco-gym /blob/master /recogym /agents/bandit _mf.py
10 see github.com/criteo-research/reco-gym,/blob/master/recogym/agents/nn_ips.py
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Table 3. Evaluation of RL methods on the private dataset X.

Rewards ||Logging  |Bandit SHPI (Ours) BCQ CQL
Raw -0.69 £ 0.3|-1.50 + 0.03-0.29 + 0.21 -1.02 £ 0.29 -0.64 + 0.19
Rescaled||1 0.45 2.37 0.68 1.08

The results above suggest that SHPI scales to real-world datasets, and per-
forms better than bandit and offline RL methods on realistic datasets in many
recommendation scenarios.

5.3 Optimizing LTR vs Myopic Proxy Signals

Throughout the paper, we focused on maximizing long-term metrics like user
conversions which are very sparse signals of success. There is a popular alter-
native approach which uses denser, noisy but correlated signals instead of the
sparse long-term metrics, akin to reward-shaping in RL [24]. In this experiment,
we compare the performance of policies optimizing LTR with that of policies
optimizing correlated immediate rewards (we use clicks) within the RecoGym
simulator. Table 4 shows resultswhere all algorithms are trained on their respec-
tive reward (click or long-term rewards) but evaluated on the LTR metric.

Table 4. Evaluation on the long-term signal in RecoGym after training on short- vs
long-term signals.

||Online RL | Offline RL ‘ Recommendation baselines

SignalHLogging ‘Bandit SHPI (Ours) BCQ CQL ‘BanditJrMF NN IPS RepeatNet

Click [|0.05 + 0.25 |0.11 £ 0.16 0.02 £ 0.23 -0.03 £ 0.05 0.13 £ 0.03|-0.20 £+ 0.21 0.11 + 0.31 -0.02 + 0.08
LTR ||-0.13 £ 0.28]-0.02 £ 0.18 0.33 £ 0.17 0.08 £ 0.14 0.123 £0.1 [0.06 £ 0.19 0.25 £ 0.15 0.221 +0.12

The Bandit+MF and NN-IPS baselines are trained to greedily maximize
the signal made available to them by the simulator, but without any reasoning
beyond the current timestep. Under click rewards, we see that all algorithms are
taking myopic decisions to maximize immediate rewards and do not optimize
the long-term submodular metric. This suggests that the common practice of
optimizing noisy, correlated, myopic rewards can be very sub-optimal and, when
possible, we recommend directly collecting long-term metrics and optimizing
them using SHPIL.

5.4 Influence of k on SHPI

We further conduct ablations on the role that k& plays in the estimation error of
the long-term advantages. To do so, we sample 200 states from P* in the toy task
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and perform 30 online rollouts to estimate ground truth advantages for each s
using Eqn. 4 (A* with k = 1; A™ with k£ = 200; and Ay with k& = 5). We report
the mean squared error between offline and online estimates in Figure 2 (right),
as well as respective returns of the resulting SHPI policy in Figure 2 (left). The
results show that using k = 5 yields lower MSE than A* or A™, although the
benefit is less significant as D is collected from a more deterministic p. The
improved estimation also leads to better-performing policies on the toy task.

(A A)? +
2500 = A +
B (A — An)?
‘+
e [j0.3 0 .
Ar|[8411 £ 32 8346 + 180 gy 1500 '
A"||8097 £ 34 8285 + 269 1000 st
A™||1499 + 8005 4761 + 6186 ¢
500 z ‘ :
! ]

0.0 0.3 1.0

Fig. 2. Mean-squared error (right) and returns (left) obtained by SHPI using estimates
of ATy, A¥, A", averaged across states and for different logging policies.

6 Discussion

A suitable termination bonus estimator can be feasibly estimated from batch
data for session-based recommendation, and when used along with episodic RL
techniques we witness a policy improvement that other RL methods can miss.
SHPI uses these bonuses to provide batch RL policy improvement. Empirical
results show that SHPI is particularly effective in improving long-term rewards.

There are several avenues for further research. Can we tune the horizon & in
a problem-dependent way? This may allow us to discover when session-based or
even myopic bandit-based reasoning is sufficient for an application. The k-step
advantages used by SHPI can also be incorporated in other batch RL algo-
rithms (which predominantly use policy gradient or conservative policy itera-
tion schemes). Finally, deploying SHPI in real-world recommender systems, and
studying its performance when user preferences may be non-stationary, remains
as future work.
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