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Abstract. Spatiotemporal graph generation has realistic social signifi-
cance since it unscrambles the underlying distribution of spatiotemporal
graphs from another perspective and fuels substantial spatiotemporal
data mining tasks. Generative models for temporal and spatial networks
respectively cannot be easily generalized to spatiotemporal graph gener-
ation due to their incapability of capturing: 1) mutually influenced graph
and spatiotemporal distribution, 2) spatiotemporal-validity constraints,
and 3) characteristics of multi-modal spatiotemporal properties. To this
end, we propose a generic and end-to-end framework for spatiotemporal
graph generation (STGEN) that jointly captures the graph, temporal,
and spatial distributions of spatiotemporal graphs. Particularly, STGEN
learns the multi-modal distribution of spatiotemporal graphs via learning
the distribution of spatiotemporal walks based on a new heterogeneous
probabilistic sequential model. Auxiliary activation layers are proposed
to retain the spatiotemporal validity of the generated graphs. In addition,
a new boosted strategy for the ensemble of discriminators is proposed
to distinguish the generated and real spatiotemporal walks from multi-
dimensions and capture the combinatorial patterns among them. Finally,
extensive experiments are conducted on both synthetic/real-world spa-
tiotemporal graphs and demonstrated the efficacy of the proposed model.

Keywords: Deep Graph Generation - Spatiotemporal Graph - Deep
Generative Model.

1 Introduction

Many complex systems can be modeled as graphs, which characterize the objects
(i.e., nodes) and their interactions (i.e., edges) [31]. In many graph systems, the
nodes and edges need to be embedded in space and evolve over time. The former
is denoted as spatial network [4] while the latter is named temporal graphs [14],
both of which are well-explored domains by network science models such as
spatial small worlds model [29], optimal network [1], and epidemic temporal
network [20]. These conventional methods propose to utilize prescribed struc-
tural assumptions (e.g., temporal exponentiality, network shortest distance) to
characterize spatiotemporal graphs (STGs) through synthesizing them. However,
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(a) Human Mobility Graph (b) Protein Folding Network

Fig. 1: The example of real world STGs. a) the human mobility graph describes
one week’s living trajectory between different locations of an adult with times-
tamps on directed edges. b) The protein folding process [21] with amino acids
in different folding phases, which is a spatial graph evolves with time.

traditional methods are limited in modeling and interpreting STGs since the in-
trinsically complex spatiotemporal patterns are hard to be modeled only by prior
knowledge. Such prior knowledge is not always available especially considering
the limited information of human beings on many real-world complex networks
such as brain network dynamics [23], the folding of protein structure [21], and
catastrophic failures in power grids [27]. Therefore, it is desired to have a model
with high expressiveness in learning the dynamics directly from data without
detailed handcrafted rules.

Recently, there has been a surge of research efforts on deep generative models
in the task of graph generation. For example, enormous works [7, 32,25, 34, 35]
have achieved promising performance in generating realistic static or temporal
graphs or separately considering the spatial properties. On the other hand, there
is also a fast-growing research body on discriminative learning for STG data
and their applications, such as traffic prediction [33], emotion perception [5],
and object recognition [22]. However, joint generative consideration of spatial,
temporal, and graph aspects is still under-explored.

To fill this gap, we focus on the generic problem of STG generation, which
cannot be easily handled by combining existing works because 1) Difficulties in
jointly learning both graph and spatiotemporal distribution of STGs. As shown
in Fig. 1(a), the human mobility behavior follows the distribution characterized
jointly by the spatial, temporal, and graph patterns. More important, these three
patterns are strongly correlated. For example, the time “9 AM on workday”
may correlate to the edge “going to work” and the location “traffic from home
to downtown”. Existing static and dynamic graph generative models cannot be
combined to model it, which will discard the synergies among all the patterns
simultaneously [10,8]. 2) Difficulties in ensuring spatiotemporal validity in the
generated STGs. STGs need to follow spatial and temporal constraints. The
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former means that the locations of the nodes and edges are confined in a specific
geometric topology, while the latter means that the nodes and edges need to
respect their temporal order. For example, in Fig. 1(a), for a path in the human
mobility graph, the timestamp value of the first edge must be smaller than
that for the second. In Fig. 1(b), a pair of amino acids with direct connections
must be close to each other in space. Spatial and temporal constraints directly
determine the validity of STGs. And because they are hard constraints, they
cannot be intrinsically merged into the distribution of STGs, which are typically
continuous according to the common statistical models. Therefore, establishing a
model that can generate STGs while maintaining their validity is imperative yet
challenging. 38) Difficulties in identifying the dependencies and independencies
of spatial, temporal, and graph patterns. A STG is composed of multi-modal
components: graph information, temporal information, and spatial information.
Some of the information are correlated while some are independent, which forms
combinatorial among them into STG patterns, such as spatial and temporal
graph patterns. Taking Fig. 1(a) and (b) as examples: in human mobility STG,
spatial, temporal, and graph patterns are strongly correlated. In the folding
process of protein (spatial graph of amino acids), the correlation between spatial
and network patterns is even stronger than that between temporal and some
graph properties (e.g., edge connections).

To address all the challenges, we propose a novel continuous-time STG gener-
ation framework, called STGEN, which coherently models both graph topology
and spatiotemporal dynamics of observed STGs through a new generative adver-
sarial model. Specifically, we propose to decompose STGs into spatiotemporal
walks by developing a novel spatiotemporal walk generator to jointly capture the
graph and spatiotemporal distribution. Novel STGs can be assembled through
conditionally concatenating generated spatiotemporal walks with the guarantee
of spatiotemporal validity. On top of that, we design a new discriminator which
is an ensemble of multi-modal sub discriminators with different combinations of
spatial, temporal, and graph patterns. We summarize contributions as follows:

— The development of a new generative framework for STG gen-
eration. We formally define the problem of STG generation and propose
STGEN to tackle its unique challenges arising from real applications. It gen-
erates STGs with ensuring graph, temporal, and spatial validity.

— The design of a novel spatiotemporal walk generator. We develop
a novel spatiotemporal walk generator with spatiotemporal information de-
coders to capture the underlying dynamics of observed STGs. Auxiliary ac-
tivation layers are leveraged to ensure the validity of the generated STG.

— The proposal of the ensemble of multi-modal sub discriminators
for stronger STG adversarial training. Multiple sub discriminators are
designed and synergized by adaptively boosting extension in order to co-
herently examine the different combinations of spatial, temporal, and graph
patterns. To extend WGAN by our ensemble discriminator, we propose a
well-modularized learning objective and optimization algorithm.
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— The conduct of extensive experiments to validate the effectiveness
of the proposed model. Extensive experiments and case analysis on both
synthetic and real-world datasets demonstrate the capability of STGEN in
generating the most realistic STGs compared to other baselines in terms of
both temporal and spatial similarities.

2 Related Works

Spatial and Temporal Graphs. The graph is a mathematical subject that
describes the interactions (edges) between a set of objects (nodes). Such a graph
structure can also be employed as the infrastructure of real-world dynamic sys-
tems. However, for many dynamic systems, one might have more information
than just about who interacts. Transportation and mobility networks [3], inter-
net of things [18], and social networks [24], are all examples where time and space
information are significant and where graph topology alone does not contain all
the information. Nowadays, both spatial and temporal graphs have become in-
dispensable extensions of static graphs and achieved success in various dynamic
system modeling tasks [30, 33, 28]. We refer readers to recent surveys [14,4] for
more details of both spatial and temporal graphs.

Deep Graph Generation. A number of deep generative models for static
graphs have emerged in the past few years [12]. Specifically, GraphVAE [25] try
to generate new graphs’ adjacency matrix in a variational auto-encoder way,
while [32] treats graph generation as a node/edge sequence generation process
based on LSTM. NetGAN and its variant [7,19] generates new graphs through
modeling the random walk distribution in observed graphs. Other than the static
graph generation, the other line of works [34, 35, 11] have achieved success in gen-
erating temporal or spatial graphs. Both lines of works leverage temporal walks
and spatial attribute to model the temporal and spatial properties of the ob-
served graphs, respectively. However, none of the above works can be directly
adapted to generate STGs since they neither can effectively decode the joint
distribution of topology and spatiotemporal properties in STGs nor ensure the
spatiotemporal validity (i.e., temporal ordering, semantics of spatial coordinates,
and physical constraints of spatial properties) of the generated graph [14,4]. Re-
cently, STGD-VAE [9] is proposed to model deep generative processes of com-
posing discrete spatiotemporal networks, which is a specific type of general spa-
tiotemporal graphs that reduces time information into ordinal values. Hence it
does not directly generate continuous-time spatiotemporal graphs, spatiotempo-
ral validity constraints, and various spatiotemporal distributions. In this paper,
we propose a generic framework to jointly model the distribution of multi-modal
properties of observed STGs and generate novel ones with the spatiotemporal
validity guarantee. To the best of our knowledge, STGEN is the first-of-its-kind
deep generative model designed for continuous STGs with validity constraints.

Spatiotemporal Deep Learning. With the prevalence of deep learning
techniques, various models [33, 16] have been proposed to model spatiotemporal
data through decoding its underlying distribution in a discriminative way with-
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(a) A Time-inversed Spatiotemporal Walk (b) Segmented Spatiotemporal Walks

Fig.2: Fig. 2(a) illustrates a spatiotemporal walk, and Fig. 2(b) indicates the
decomposition process of a spatiotemporal walk to multiple smaller-sized seg-
mented spatiotemporal walk. For the sake of simplicity, we omit the turning
angle ¢; and velocity &; attached on each edge e; in above figures.

out applying any hand-crafted rules. These approaches generally achieve promis-
ing results in plenty of predictive tasks through analyzing specific patterns (e.g.,
spatial proximity [16] and temporal correlations [33,5]) of the spatiotemporal
data. However, interpreting spatiotemporal data from the generation perspec-
tive has received less attention since it is a more challenging task and requires one
to comprehensively capture the underlying dynamics among multi-modal spa-
tiotemporal properties and their intricate and entangled dependencies. A few
tries of utilizing deep generative models have been observed in spatiotemporal
data generation. Additionally, [26] converts spatiotemporal data (e.g., trajec-
tory) to images and applies GAN for the generation. Another work SVAE [15]
utilizes VAE modules to learn variables from Gaussian distribution and generate
novel human mobility accordingly. However, existing works still cannot explic-
itly consider the spatiotemporal validity during the generation. STGEN is the
first-of-its-kind generative model that generates spatiotemporal data in the form
of graphs with spatiotemporal validity.

3 Problem Setting

A continuous-time spatiotemporal graph (STG) is a directed graph G = {e, ..., €;, ...},
where each edge e; = (ui7vl-,ti,lg)7l1(f)). u;,v; € V are two end nodes of e;,
t; € [0, tena] is the timestamp on the edge, and [0, tena] is the time span of the
STG with teng € RT. Each node v; in a STG is associated with a spatial at-
tribute 18, The spatial attribute 19 = (I, 1) can be interpreted as a Global
Positioning System (GPS) location with specific latitude and longitude on earth.

Definition 1 (Spatiotemporal Walk) A spatiotemporal walks = {tg,e1,...,er_,tr }
1s defined as a sequence of spatiotemporal edges and a pair of initial time bud-
get to and end time budget tr_., where Ls is the length of the spatiotemporal
walk s and Ve; € G. Specifically, a spatiotemporal edge is defined as: e; =
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(ui,vi,ti,l&l),lg)) € E, where each t; € [0,tenal,t; < ti—1 is called the “time
budget” for e; indicating the total timespan consumed in e;. Intuitively, the ini-
tial time budget tg = tena and end time budget tr, = 0. An example of the
spatiotemporal walk is illustrated in Fig. 2(a).

A continuous-time STG can be denoted as the union of all the spatiotem-
poral walks G = [y p, (s S, where the P, (s) is the distribution of all walks in
graph G. It is straightforward that we can leverage fixed-length sequential mod-
els to learn the distribution of the spatiotemporal walks in order to capture the
overall STG distribution. However, the nature of continuous-time STGs decides
one cannot arbitrarily sample random walks as was done in static graphs [7] but
needs to follow certain spatiotemporal orders. More specifically, the length of a
spatiotemporal walk in STG is regulated by the starting and ending point based
on the spatiotemporal information on edges. The length of the spatiotemporal
walk varies that may easily reach a million-scale (especially when the time gran-
ularity is small), which cannot be learned effectively and efficiently by sequence
learning methods. Therefore, the definition of spatiotemporal walk needs to be
enriched into the following extension.

Definition 2 (Segmented Spatiotemporal Walk) A segmented spatiotempo-
ral walk is defined as a sequence 8 = {(x,y,to), €1, €a,...,er} with its profile in-
formatiom (x,y,to), which is segmented from an originated spatiotemporal walk.
Specifically, the L < Lg is the length of each segmented spatiotemporal walk.
The profile information (x,y,to) includes x € {0,1} and y € {0,1}, which de-
note whether s is the respective starting or ending segmentation (x = 1,y = 0
or x = 0,y = 1) or neither of them (z,y = 0) in its originated spatiotempo-
ral walk. The whole process of decomposing a spatiotemporal walk to segmented
spatiotemporal walks is elucidated in Fig. 2(b).

With all the aforementioned notions, we can formalize the problem of STG
generation as follows:

Problem 1 (Spatiotemporal Graph Generation). The problem of the STG
generation is to learn an overall distribution P.(G) from the observed STGs,
where each G is denoted as the union of all the spatiotemporal walks. Novel
STGs G can be sampled from the distribution such that G ~ Py.(-).

There are several challenges in solving the novel STG generation problem:
1) Tt is difficult to capture the joint distribution of the multi-modal properties
in 5 since its properties are characterized with both categorical distributions
(e.g., z, y, and (u;,v;)) and continuous-value distribution (e.g., t; and (u;,v;)).
2) Correctly decoding all the information from the learned distribution poses
another challenge. The validity of each graph component ((u;,v;), t;, and the
calculated spatial locations (lq(f)7 lf,i) )) requires extra attention since the generated
STGs need to have realistic semantic meaning (i.e., ty_ < ¢; <ty and (l,(j), lq(f))
is valid in a prescribed spatial region). 8) It is also difficult to characterize the
dependency among multi-modal properties in different STGs due to the interplay
among spatial, temporal, and graph information.
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Fig. 3: Overview of spatiotemporal walk generator

4 Generative Model for Spatiotemporal Graph

In this section, we first introduce the backbone of our framework - STGEN
for generating continuous-time STG. Then, we elaborate on each component of
the generative framework, namely the spatiotemporal walk generator G and the
boosted spatiotemporal walk discriminator D.

4.1 Overall architecture

STGEN learns the distribution of STG through a generative adversarial archi-
tecture, which consists of two parts: a recurrent-structure-based spatiotemporal
walk generator G (as shown in Fig. 3), and a boosted spatiotemporal walk dis-
criminator D (as shown in Fig. 6). The training of both generator G and dis-
criminator D are conducted under the framework of Wasserstein GAN (WGAN)
[2] to maximize the discrepancy W (P,, Py) between the real STG distribution
P, and the generated STG distribution Py such that:

W (P, Py) = max |Es, < p,[D(s;)] — Es;~p, [D(s0)]
st.sg =G(z) ~ Py, T(sp) € T,K(sg) € K (1)

where s, and sy are real and fake spatiotemporal walks sampled from P, and Py,
respectively. z is a latent noise sampled from the standard normal distribution.
Specifically, the spatiotemporal walk generator G trains a fixed-length LSTM
whose output sy = G(z) is a segmented spatiotemporal walk. The time budgets
as well as the spatial attributes of these generated spatiotemporal walks sy are
regulated by a temporal activation layer 7 and a spatial activation layer IC, such
that T (sg) and K(sg) are valid in respect of both temporal constraint T and
spatial constraint K. We introduce both the spatiotemporal walk generator and
the corresponding STG assembler in Sec. 4.2. Moreover, due to the multi-modal
nature of the spatiotemporal walk (i.e., node sequence, time budget on the edge,
and the spatial attribute), a boosted discriminator is proposed for each com-
bination of the spatiotemporal walk components to characterize dependencies
among all components. We give further details of the boosted discriminator and
theoretical analysis in Sec. 4.3.
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Model Complexity. Existing static and dynamic graph generative models
usually generate graphs through generating adjacency matrices or snapshots,
and they require at least O(N? - M,) time complexity, where N is the number
of nodes, and Mj is the number of snapshots. For large-scale or dynamic graphs
with a large timespan but small granularity, these models [32, 25, 9] would suffer
from the scalability and information loss. However, since a continuous-time STG
is composed of spatiotemporal walks and does not involve with an adjacency
matrix, it makes the overall complexity of STGEN to be O(Ls-M.) since STGEN
only needs to generate segmented spatiotemporal walks and assemble them as a
whole, where Lg is the maximal length of all the spatiotemporal walks and M,
is the number of spatiotemporal walks needed to compose an STG.

4.2 Spatiotemporal Walk Generator with Validity Constraints.

Segmented spatiotemporal walk is a heterogeneous sequence where some ele-
ments are categorical signals (starting point z and ending point y), continuous-
value scalars (¢;, 19, l&”), and edges (u;,v;). To effectively characterize all the
modalities in segmented spatiotemporal walks, we propose a novel heteroge-
neous recurrent-structured generator with various encoding/decoding functions
for various modalities. In addition, we propose new activation functions to en-
force spatiotemporal validity constraints on the generated spatiotemporal walk
patterns. Finally, an STG assembler is proposed to compose final STGs by con-
ditionally generating spatiotemporal walks given other spatiotemporal walks.
Segmented Spatiotemporal Walk Generation. The generator G defines
an implicit probabilistic model for generating segmented spatiotemporal walks
S that are similar to the real spatiotemporal walks s sampled from P,, and
its overall architecture is summarized in Fig. 3. Specifically, the generator is
modeled by a fixed-length LSTM model. Each LSTM unit keeps a hidden state
h; and cell state ¢; as memory state, takes a; as input, and returns o; as output.
The generator outputs the generated time budget ¢;, node pair (u;,v;), and the
spatial attributes (ZS), ll(f)) through decoding o; in different decoding functions
in a sequential order. The decoding functions can be divided into two categories:
discrete-value and continuous-value decoding functions. Discrete-value decoding
functions include a node decoding function: f,(0,,) that outputs the node wv;,
a starting point decoding function f,(0,) that outputs the starting point z,
and a ending point decoding function f,(o,) that outputs the ending point y.
Continuous-value decoding functions include a time decoding function fi(o;)
that outputs a residual time budget ¢; on the generated edge, and the time budget
t; is regulated by the temporal activation layer 7 in order to meet the temporal
constraint T. In addition, STGEN also contains a location decoding function
f1(op) that outputs spatial attributes l(ui) and lf)i) for both end nodes u; and v; on
the generated edge. Likewise, the generated spatial attributes are also regulated
by a spatial activation layer I to meet the spatial constraint K. Other than
the decoding functions, the generator G also uses different encoding functions
to encode each generated components back to the next LSTM unit input a;41.



STGEN: Deep Continuous-time Spatiotemporal Graph Generation 9

(" Periodic Gaussian

v

éz ~  |MLP + Dropout| |
o /

o] —> o

Fig. 4: Example of the sampling procedure of location decoder f(+).

We employ Multi-layer Perceptron (MLP) structures for all encoding functions.
For discrete-value decoding functions, a Gumbel-softmax trick [17] is applied to
make the sampling procedure differentiable. We describe the continuous-value
decoding functions in more details in the following part. Due to space limit, we
summarize the overall generative process in the supplementary material.

With Spatiotemporal Validity Constrained Multi-modal Decoding
Functions. The time budget t; as well as the spatial attributes (ll(f), ll(,i)) (e.g.,
GPS coordinates) of a spatiotemporal walk in many real world situations are
typically irregular but following different underlying distributions, which makes
both components cannot be trivially decoded by deterministic functions. There-
fore, t; and (l,(f), lq(,i)) are assumed to be sampled from a latent distribution. The
sampling procedure is handled by both time decoder f;(-) and location decoder
f1(). Particularly, fi(-) is an end-to-end sampling function that convert the la-
tent representation o; to parameters of an prescribed distribution (e.g., 4 and &
in Gaussian distribution). Then, t; ~ fi(0o:) could be sampled directly. In order
to fulfill the temporal constraint, we apply a activation layer 7 to ensure the
temporal validity of the generated segmented spatiotemporal walks. Specifically,
we propose to impose a Min-max Bounding in the activation layer 7:

t; =t;, otherwise

where min({¢;}) and max({t¢;}) are the min and max time budget in the gener-
ated mini-batch {t;}, respectively. € is a threshold with small value (i.e., le—3) to
prevent zero value for ¢;. On the other side, spatial locations in many real-world
situations have higher variance and could not to be typically described by known
distributions. Instead of directly sampling exact locations, in this work, we sam-
ple the relative turning angle ¢; and the speed £ in the spatiotemporal edge e;
for computing the node location ll(,i) and ll(f). Specifically, we leverage MLP and
dropout to mimic the sampling operation to obtain a continuous-valued speed &;
on spatiotemporal edge e; from the LSTM unit’s latent input o;. Moreover, we
model the distribution of turning angle ¢; to fit the Periodic Gaussian distribu-
tion [6]. Based on the sampled time budget ¢;, speed &;, and turning angle ¢;, the
relative distance can be directly computed. By assigning the initial location for
the first node in the generated spatiotemporal walk, the locations for the sub-
sequent node can also be determined. We visualize the whole procedure in Fig.
4. To further regulate the generated node locations to have semantic meanings,
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Fig.5: Example of the spatiotemporal walk assembly. For step 1 (first line), the
generator initially generates a segmented spatiotemporal walk with x = 1 and
() o . e
y =0,t;’ = tena containing two spatiotemporal edges (orange ovals) indicating
it is the start of a spatiotemporal walk. At Step 2 and 3, the generator generates
one additional edge es (purple oval) and ey (blue oval) conditioned on the inputs
of last edge, respectively. The final time budget tf’) = 0 indicating the end of

the spatiotemporal walk ( = 0 and y = 1) has reached.

we propose a spatial activation layer IC with Geographical Bounding:

() = {Z“’—lgﬁ if 7(17) ¢ ULy 7(45)

189 =19 otherwise

where {1} is a set of prescribed geographical areas with size H. Particularly, for
each generated geo-location ll(,i) generated in the set {lff)}, we project both lf)i)
and {¢;} to the same space with a geographical projection function 7(-) (e.g.,
Universal Transverse Mercator projection). If the projected T(lff)) belongs to any
7(1);), this generated geo-location is valid and has realistic semantic meaning.
Otherwise, this geo-location will be replaced by the closest point I, on the
prescribed area 1; that has the minimal distance to the original l,(f).
Spatiotemporal Walk Assembler. The next step is to compose spatiotem-
poral walks from these segmented spatiotemporal walks generated from G. In
order to force the consistency of the underlying spatiotemporal diffusion pat-
tern when we concatenate two segmented spatiotemporal walk, we may not
chronologically concatenate walks purely based on their residual time budget
t;. Inst(ea;d7 We( ?tart by generating an initial segmented spatiotemporal walk
eV, el

s = (e with z = 1,y = 0, and ¢y = tenq that contains L spatiotempo-

ral edges. The last spatiotemporal edge e(Ll) of 81 is taken as the input to generate

the next segmented spatiotemporal walk §o = (e(Ll), egz), . ef)) starting from

(2) . In this case, s; can be appended to s; with the guarantee of following the
underlymg dlffusmn pattern. We incrementally appending additional segmented
spatiotemporal walks until we run out of the time budget (i.e., t; = 0) to form
one final spatiotemporal walk (with the ending flag z = 0,y = 1). The overall
process of assembling a spatiotemporal walk is illustrated in Fig. 5.
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Fig.6: The overview of the boosted discriminator. Each D; is a weak classifier
that takes a certain combination of spatiotemporal walk components.

4.3 Spatiotemporal Walk Discriminator

Discriminator D is employed to distinguish real and generated spatiotemporal
walks, which is difficult due to their multi-modal nature. We aim to impose a
stronger discriminator that can guide the generator characterizing both depen-
dency and independency among the spatial, temporal, and graph modalities in
STGs. Beyond a single discriminator that merely jointly considers spatial, tem-
poral, and graph aspects of the walk, we propose to consider all the combinatorial
of these aspects, such as spatial-temporal discriminator, temporal graph discrim-
inator, spatial graph discriminator, etc. Our method is achieved by leveraging
boosting strategy, which is well-recognized to enable the ensemble of models to
outperform each individual model. Using a unified discriminator would also bring
up the well-known training instability and potential mode collapse since the GAN
may fall into recognizing only one of the generated modalities as the real sam-
ple while neglecting other modalities. Thus, we consider a multi-discriminator
structure to better approximate Eq. (1) and constantly provide a harsher critique
to the generator by considering the combinatorial of all modalities. A detailed
architecture of the boosted discriminator is shown in Fig. 6.

Particularly, we adopt an adaptive boosted structure of the discriminator for
discriminating each combination s(? of the spatiotemporal walk components,
and there are a total of R combinations, such as spatiotemporal component
(t; and (l&i)7l1(,i))) and joint STG element ((u;,v;), (15“,15”), and t;), etc. The
boosted discriminator D takes the voting result over R sub discriminators D; so
that each sub discriminator D; is performed as a weak-classifier. Such a boosted
discriminator structure forces G to generate high fidelity samples that must hold
up under the scrutiny of all R discriminators. The major voting strategy in
our adaptive boosting can be induced into the WGAN objective and lead to a
well-modularized objective function in Theorem 1.
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Table 1: Dataset Description
Syn_100 Syn_500 Syn_2000 Taxi Check-in Citation

Node 100 500 2,000 66 70 628
Temporal Edge 5,606 5,750 5,750 28,532 17,045 914
Temporal Samples 60 110 120 30 30 30

Theorem 1. The aforementioned adaptive boosting strateqy extends the objec-
tive function W (P, Py) in Eq. (1) of STGEN into the following:

W(PT,PQ)—maxZaZ[EU P DO ~E o _p, [P
i=1

R
t., 89 = ~ Py, e{T,K = —
sit., so = G(z) ~ Py, G(z) € {T,K}, E @ =
With the objective of maximizing the above objective function, we can mini-
mize the loss function of the generator L5 = — ZZR=1 - B p, [D; (sé ))], where
6

as well as the discriminator’s overall loss function Lp = Zil o; - Lp,, where
each sub discriminator’s loss function is defined as: Lp, = [E ) P, [Di(séz))} -
0

E.w_p [Di(sg))ﬂ. The proof of Theorem 1 can be found in Appendix. We illus-
trate the overall training framework in the supplementary material.

5 Experiment

In this section, we demonstrate the performance of our proposed STGEN frame-
work across various synthetic and real world STGs. Basic experiment settings are
illustrated here. Additional experiments (e.g., sensitivity analysis) are provided
in the supplementary material. Code and data are made available?.

Data. We performed experiments on three synthetic and three real-world
STGs with different graph sizes and characteristics, where basic statistics are
shown in Table 1. All graphs contain continuous timestamps as temporal in-
formation and geo-coordinates (latitude and longitude) as spatial information.
Due to the space limit, details of all graphs can be found in the supplementary
material.

Comparison Methods. Since there is no existing methods handling the
STG generation problem, STGEN is compared with two categories of methods:
deep graph generation methods: a) GraphRNN [32], b) NetGAN [7], ¢) TagGen
[35], d) TG-GAN [34], and e¢) STGD-VAE [9]; and spatial attribute generation
methods: a) LSTM [13], b) SVAE and its variant SVAE-y [15], and ¢) IGMM-
GAN [26]. Details of all baselines can be found in the supplementary material.

3 github.com/lingchen0331/STGEN
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Table 2: Performance comparison between real and generated graph samples in
maximum mean discrepancy (MMD) (the lower the better), models with the
best performance are marked with black.

Dataset‘ Method AND AGS AGN ACN GD Method MCD VCP
GraphRNN 4.2e¢-3 7.12e¢—-3 0.175 7.2e—-2 7.12e-2 LSTM 1.09e —1 51.37%
NetGAN  3.64e—5 1.89e¢—3 0.0613 2.77e¢—2 5.17e¢—3| SVAE-y 4.17e—1 61.24%

Syn_100 | TagGen 4.14e—4 2.72e¢—3 0.0911 6.18e—3 4.11e—2 SVAE 2.41e—1 50.19%
TG-GAN 3.16e—5 5.31e—3 0.0221 3.06e —3 4.17e¢ —3 |IGMM-GAN 9.12¢ -3 69.13%
STGD-VAE 2.53e—5 3.57¢—3 0.0367 5.15e—3 7.92e¢—3 - - -
STGEN 2.31e¢—51.96e¢—3 0.0315 2.14¢—-33.89¢—-3| STGEN 3.52¢-3 100%
GraphRNN 7.64e—4 3.73e—5 0.0525 3.72e—2 4.13e—2 LSTM  4.56e—1 57.15%
NetGAN 2.19e—4 6.12e—4 0.023 7.71e—3 7.18e—3| SVAE-y 7.12e¢—2 69.21%

Syn 500 | TagGen 3.24e—5 1.23e—2 0.3912 1.71e—2 5.86¢—3 SVAE 6.12e —2 59.19%
TG-GAN 1.44e—4 85e—-3 0.0023 1.24e¢—2 5.12e¢ —2|IGMM-GAN 9.12e —2 49.14%
STGD-VAE 7.98e¢ -5 2.67e—4 0.0024 3.97e¢e—3 8.43e—3 - - -
STGEN 2.29¢-54.71e—3 0.009 2.19¢—3 74le—3| STGEN 9.18¢-3 100%
GraphRNN 2.79¢ -4 7.4e—-2 0.042 2.88e—2 2.15e¢—-2 LSTM  4.22e¢—1 51.33%
NetGAN 3.67e—5 2.69e—2 0.0472 6.92e—3 6.22e—3| SVAE-y 2.33e-—1 48.12%

Syn_2000| TagGen 2.67e—4 1.98e—2 0.031 5.57e—3 5.66e—3 SVAE 7.28¢—2 50.67%
TG-GAN 2.66e—5 4.19e¢—4 0.012 4.95¢—3 2.97¢ —3|IGMM-GAN 5.43¢ -2 33.27%
STGD-VAE 5.48e—4 2.67e—2 0.037 9.42e—3 6.43e—3 - - -
STGEN 2.56e—5 4.34e¢—3 0.009 4.49¢-3 9.76e—3| STGEN 1.07e¢—-2 100%
GraphRNN 4.73e -3 4.63e—-3 0.0226 3.2e—3 2.57e—2 LSTM 1.1852 17.23%
NetGAN 8.29e—1 5.25¢—6 0.0189 5.63e¢—4 7.87e—3| SVAE-y 2.37e¢-2 21.44%

Taxi TagGen 3.92e—2 7.24e—4 0.0221 3.58e—4 3.91e—3 SVAE 3.11e—2 20.46%
TG-GAN 6.69¢—4 8.87e¢—6 0.01321.06¢—5 2.67¢ —3 |[IGMM-GAN 1.67e¢—1 9.54%
STGD-VAE 9.61¢—6 3.61e—4 0.0233 7.26e—4 4.74e—3 - - -
STGEN 9.85e—5 3.09¢—6 0.0165 1.17e—5 2.55e—3| STGEN 3.39e¢—3 100%
GraphRNN 3.5e—3 2.89e—2 0.0312 4.78e —4 5.32e—2 LSTM 0.0963 3.77%
NetGAN  4.37e¢—3 2.54e—4 0.063 4.38¢—4 2.38¢—3| SVAE-y 2.67e¢—-2 23.11%

Check-in| TagGen 1.27e—2 1.77e—2 0.0292 3.58e—4 3.91e—3 SVAE 1.79e -2 19.24%
TG-GAN 7.69e¢—4 3.76e—6 0.0139 1.79e¢ -5 3.99e —3 [IGMM-GAN 2.37¢ —1 15.23%
STGD-VAE 1.33e—4 6.71e—3 0.0283 3.12e —4 9.95e—2 - - -
STGEN 9.17e¢—5 5.74¢—6 0.0126 1.39¢—5 3.57¢—3| STGEN 1.58¢—4 100%
GraphRNN 3.24e—1 3.12e—2 0.0465 1.98e—3 4.21e—2 LSTM 1.6857 45.18%
NetGAN 52e—1 3.77e—3 0.0577 3.13e—3 2.18e—2| SVAE-y 74le—-1 8.33%

Citation | TagGen 3.34e—2 3.24e—3 0.0561 7.71e—5 3.67e—3 SVAE 5.91e—1 10.84%
TG-GAN 1.24e—2 1.78e¢—5 0.0587 1.13e¢—4 1.38¢ —4|IGMM-GAN 1.47e¢—-1 3.21%
STGD-VAE 3.75e—1 3.64e—3 0.0493 5.67e—4 2.15e—2

STGEN 3.04e—-31.23e¢—-50.0398 3.66¢—5 2.77¢—3

STGEN 3.77e¢—-2 100%
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Note that GraphRNN, NetGAN, TagGen, and STGD-VAE are discrete graph
generative models, and they cannot generate continuous-time STGs. We instead
modify them to generate multiple discrete-snapshot graphs and convert them
into a continuous-time temporal graph. In addition, STGD-VAE cannot generate
realistic spatial attributes (i.e., GPS locations) so that we only compare STGD-
VAE in generating graph properties. Evaluation Metrics. A set of metrics,
as elucidated in Table 2, are used to measure the similarity between the gener-
ated and real STGs in terms of both temporal and spatial graph attributes. For
temporal attributes measurement, we adopt AND: Average Node Degree, AGS:
Average Group Size, AGN: Average Group Number, ACN: Average Coordina-
tion Number, and GD: Group Duration. For spatial attributes measurement,
we leverage MCD: Mean Coordinates Distribution and VCP: Valid Coordinates
Percentage.

5.1 Quantitative Performance.

The overall performance comparisons are shown in Table 2. The proposed STGEN
generally outperforms other methods in terms of both temporal and spatial
attributes generation with only a few exceptions. Specifically, in terms of the
similarity in temporal graph properties, STGEN performs better than static
graph generation methods (i.e., GraphRNN and NetGAN) by, on average, two
orders of magnitudes in several temporal graph properties (e.g., AND, AGS,
and ACN). The main reason is that static graph generation methods gener-
ate dynamic graphs via generating a series of snap-shots, which may cause se-
vere information loss [14]. STGEN also consistently achieves competitive results
with dynamic graph generation methods (i.e., TagGen and TG-GAN) among
all datasets since STGEN can effectively capture the underlying multi-modal
distribution of STGs. Compared with the only discrete STG generation method
- STGD-VAE, STGEN still exhibits an overall better performance in generating
continuous STGs. In terms of the spatial graph properties generation, STGEN
exceeds other approaches with an evident margin (two orders of magnitudes on
average) in MCD while achieving a 100% validity rate of the generated spatial
properties among all datasets. With the applied spatiotemporal constraints, the
coordinates generated by STGEN can always be regulated in a valid semantic
region and guarantee a 100% validity rate, while other methods can only achieve
at most 70% validity rate. In other words, a large portion of the coordinates
generated by baseline methods do not have valid semantic meanings.

5.2 Case Study.

Spatiotemporal walks in STGs are typically associated with various purposes,
such as “wandering in attractions” and “picking-up people from the airport”.
In other words, each node in STGs has a semantic meaning that can be pro-
jected to a certain geographic area. We thus conduct a case study to evaluate
the quality of the generated spatial information by projecting each of the gener-
ated GPS coordinates to a real-world map. Taking the Manhattan taxi trip STG
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(a) LSTM (b) IGMM-GAN (c) SVAE (d) STGEN (e) Ground Truth

Fig. 7: The comparison of generated coordinates by each baseline.

Table 3: Average runtime comparison (in minutes).
GraphRNN NetGAN TagGen TG-GAN STGD-VAE STGEN
Syn_100  23.3561 0.8126 1.1682 0.9533 1.9781 0.9783

Syn_500 71.5622  1.9346 2.2653 1.4861 3.9923 1.6458
Syn_2000 337.7614 10.3302 8.5324 6.0182 10.8779  6.9633

as an example, we project a batch of generated coordinates for each method to
the Manhattan map, and the results are shown in Fig. 7. Compared with the
true coordinates (Fig. 7e), our proposed method STGEN (Fig. 7d) generates
coordinates that all lie within the valid region by successfully characterizing the
spatiotemporal properties. However, other deep methods like LSTM generate
a large portion of coordinates scattered all over the New York City area since
LSTM cannot effectively decode the spatial information from the multi-modal
spatiotemporal distribution of STG. As can be seen from Fig. 7a to 7¢, coordi-
nates generated by comparison methods are disorganized (coordinates are not in
the Manhattan area) and lack real semantic meaning (coordinates are projected
on the sea) since they cannot consider any constraints during the model learning.

5.3 Model Scalability.

The runtime of graph generative methods is often composed of model training
and graph assembling. Therefore, we record the average training time per epoch
plus the graph assembling time, and the results are shown in Table 3. All the run-
times are shown with respect to the growth of graph size for all synthetic STGs.
As can be seen from the table, TagGen, TG-GAN, and STGEN have linear
growth regarding the graph size because these dynamic graph generation meth-
ods decode dynamic graphs into dynamic walks instead of utilizing snapshots,
which makes both training and graph assembling processes in these methods are
not sensitive to the overall graph size. Although NetGAN also utilizes random
walk to learn the static graph distribution, but its random walk sampling process
limits its capability in generating large dynamic graphs with many snapshots.
Finally, the runtime growth of GraphRNN is exponential because of its quadratic
complexity in modeling the whole graph as a sequence.
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6 Conclusion

In this paper, we propose a novel generative framework for continuous-time STG
generation, which can effectively model the underlying dynamics of STGs while
maintaining the spatiotemporal validity. Our framework captures both graph and
spatiotemporal distribution through utilizing a novel heterogeneous recurrent-
structured generator to learn the distribution of sampled spatiotemporal walks.
A novel boosted discriminator is proposed to characterize correlations between
all modalities in STGs. Extensive experiments are conducted on generating both
synthetic and real world STGs. Experimental results and analysis demonstrate
the advantages of STGEN over existing deep graph generative models in terms
of generating the most similar and realistic STGs.
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