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Abstract. Vision transformers have recently shown remarkable perfor-
mance in various visual recognition tasks specifically for self-supervised
representation learning. The key advantage of transformers for self su-
pervised learning, compared to their convolutional counterparts, is the
reduced inductive biases that makes transformers amenable to learn-
ing rich representations from massive amounts of unlabelled data. On
the other hand, this flexibility makes self-supervised vision transformers
susceptible to overfitting when fine-tuning them on small labeled tar-
get datasets. Therefore, in this work, we make a simple yet effective
architectural change by introducing new learnable masked tokens to vi-
sion transformers whereby we reduce the effect of overfitting in transfer
learning while retaining the desirable flexibility of vision transformers.
Through several experiments based on two seminal self-supervised vision
transformers, SiT and DINO, and several small target visual recognition
tasks, we show consistent and significant improvements in the accuracy
of the fine-tuned models across all target tasks.

Keywords: Vision Transformer - Transfer Learning - Computer Vision.

1 Introduction

Deep learning on small datasets usually relies on transferring a model that is
pretrained on a large-scale source task [25]. Recent concurrent advancements
in transformers [1] and self-supervised pretraining [10,12,11,9] have made self-
supervised Vision Transformers (ViTs) a viable alternative to supervised pre-
training of Convolutional Networks (ConvNets) [5-7]. Mainly based on self-
attention [1,4] and multi-layer perceptron, ViTs have shown improved perfor-
mance over the state-of-the-art ConvNets on large datasets [2,62,3,64] while
retaining computational efficiency [23, 24]. Considering that collecting large vol-
umes of unlabeled data is becoming increasingly easier, a practical approach
for transfer learning would be to pretrain ViTs with self-supervision and then
fine-tune them on the downstream task with a small amount of labeled data.

* This work is partially supported by KTH Digital Futures and Wallenberg AI, Au-
tonomous Systems and Software Program (WASP).
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The supremacy of ViTs for self-supervised learning over ConvNets can be at-
tributed to the reduced inductive biases of ViTs which facilitates learning from
the abundance of unlabelled data that is commonly available for self-supervised
learning. However, this comes at a cost. That is, such flexibility of ViTs makes a
fully-fledged fine-tuning of them on small target datasets susceptible to overfit-
ting. This is due to the fact that the dense self-attention among image patches
in ViTs is more likely to find spurious patterns in small datasets. This makes the
locality and sparsity inductive biases of ConvNets, in contrast to ViTs, crucial
for fine-tuning on small amount of labelled data.
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Fig.1: An overview of the vision transformer with masked tokens. The part in
the dashed rectangle is the proposed structural augmentation.

Therefore, in this paper, we aim at alleviating overfitting of fine-tuning self-
supervised ViTs on small, domain-specific target sets while preserving their flex-
ibility when learning from large unlabeled data. To this purpose, we propose
masked tokens, a simple and flexible structural augmentation for self-attention
layers. Each masked token aggregates a selected subset of patches to draw out
sparse informative patterns. By varying the subset size from small to large,
masked tokens encode the spatial information at different sparsity levels. We
augment a self-attention layer by adding all the masked tokens to regular ones
such that its output contains not only dependencies between patches, but also
among different sparsity levels. Furthermore, we employ a data-driven method
and two regularization techniques to learn the patch selection function for each
masked token that can select patches with the most informative sparse patterns.
The introduced sparsity makes the fine-tuning less prone to overfitting while the
learnt selectivity retains the benefits of ViTs. Importantly, the proposed masked
tokens are trained to encode details from local regions, reminiscent of the locality
bias in the convolutional layers but with two key differences that the locality (i)
can be learnt and (ii) can happen at various levels.

We summarize our contributions as below.

— We mitigate the overfitting of fine-tuned self-supervised ViTs by integrating
sparsity and locality biases of ConvNets through masked tokens.
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— We propose data-driven mechanisms to dynamically select the local region
individually for each masked token and at different sparsity levels.

— We conduct extensive experiments on two self-supervised ViTs and various
target tasks which show effectiveness of learnable masked tokens for ViTs.

2 Vision Transformers with Learnable Masked Tokens

2.1 Background: Vision Transformers

Given an input image I € R”*W it is divided into T non-overlapping patches

{p’ € RP*P}r and flattened into a sequence, where T = [ZY]. A trans-
former [1] consists of L identical blocks with residual connections [33, 34]. Each
block processes the input patch sequence {p‘} as

Zy = [has; F(p') +e's-- s F(p") +el], (1)
Z; = MSA(LN(Z—1)) + Zy—1, (2)
Z, = MLP(LN(Z))) + Z;, (3)
y = softmax(MLP(Z?)), (4)

where MSA, MLP, LN and softmax(-) respectively indicate multi-head self-
attentions, MLP with GELU, layer normalization and softmax. F(-) is a convolu-
tional feature extractor and {e’}r are position embeddings. Further, a learnable
class token h.;, € R? is used at the beginning of the sequence to globally repre-
sent entire image by taking an attention-weighted sum of every patch.

We augment ViT blocks by introducing masked tokens, which can alleviate
overfitting by masking out redundant regions of input images. Given the sequence
Z\hys = [z}; - ;2!] of input tokens for layer [ + 1, we construct N masked
tokens {s{ }n via selecting and aggregating a subset of patch tokens for each s{
using a selection function G(-,-). More specifically, the subset S] C Z; of tokens
selected for s{ can be presented as

. i im. . T
Sg:{zll7"',ZlNIJ}an:[j'N]7 (5)

where M defines the sparsity level of s{ indicating the size of the informative
sub regions for encoding. Then s{ can be produced by aggregating S{ using any
permutation-invariant pooling. We use mean pooling in this work. Finally, the
generated masked tokens for this layer are appended at the end of Z;:

Z, = [has;zi; - 2858t 58l (6)

This augmented Z; is then fed to the MSA layer instead of the original Z;. For
two consecutive augmented MSA layers' [ and [ + 1, where masked tokens s

! ' We omit LN and MLP layers in between for convenience
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and self-attention output le+j are both there, we combine these two parts using
a weighted summation as

§ =as] +(1— a)leH, (7)

where « is a hyper-parameter set to 0.2 as default. In such cases, 5{ will replace
s{ in equation (6) as masked tokens.

Fig. 1 illustrates the workflow of an augmented self-attention. We name the
number of masked tokens N as the sparsity granularity since it spans the sparsity
level, from sparse to dense, that masked tokens cover. It is also worth noting that
despite the fact that a single masked token can only encode information for a
region, with multi-head MSA layers, it can be extended to multiple regions.

2.2 Learning the Selection Function

We propose a data-driven approach to learn the patch selection function G, -)
such that it can choose the most informative patches for masked tokens. We
reformulate it as a corresponding ranking problem, where each masked token s{
takes the top M; patch tokens based on ranking scores o] = {0}’ }r. To obtain
o{ , we define a set of new parameters {Wf € R4}y to dot-product with each zl,
i

whose score 0, can be computed as

o’ = (2))Tw]. (8)

We name W{ as Masked Query Embedding (MQE), it can be seen as a learned
query that selects the (masked) tokens. It is worth mentioning that similar to
position embedding, when N is changed, w] can be interpolated to match the
new sparsity granularity. Now the selection function G(-, ) can be further defined
as

G(z}™, My; w]) = argsort(o] )z} | 1.1, ©)

where argsort(-) returns a 7' x T matrix whose rows are one-hot vectors, in-
dicating the location of i-th largest value at the i-th row. ;. M, means it takes
only the top M; rows as the output.

To overcome the discrete nature of argsort(-), we approximate it by a dif-
ferentiable relaxation named SoftSort [14], denoted by SS(-):

) t J 1T—-1 JNT
SS(0]) = softmax <|sor (01) (01) |> , (10)
T
where softmax(-) is applied row-wise. sort(-) returns a sorted input. | - | takes

element-wise absolute value and 7 is a temperature set to 0.1 by default. By
replacing argsort with SS, w] can be learnt jointly with other network weights.
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2.3 Regularizations on Masked Tokens

We additionally introduce two regularizations that directly work on masked to-
kens to stabilize the training. First, to avoid masked tokens collapsing due to
overlapping patches [11, 52|, we add a linear classifier C(-) at the top of the last
layer to identify the sparsity index j associated to each masked token features.
This is trained with the cross-entropy loss Lsparse :

Esparse =% Z or log T+J)) (11)

where §; is the one-hot vector with one at element j. Conversely, we use con-
trastive loss [13], to have masked tokens of the same image with maximal sim-
ilarities to each other. Specifically, given a batch of images {I)}x, we consider
any pair of the form (zfﬂ1 zfﬂz) as a positive pair?, and the rest as negative

pairs. We compute the contrastive loss Lo, between the positive pairs like
T+j1 T+j2))

Conlal ' 2L) = - UG
1

k1 T+751 _T+j2 N-(K-1) T+]1 T+j

exp (cs(zy, 7,2y, "7%)) + D0 psr,  exp(cs(zy,", 2y ))
(12)
and the total contrastive loss Liotal con a8

K N N
L - Loon(zL T 7] 2 13
total con — K - N Z Z Z og con k )7 ( )
o e ot

here cs(+) is a cosine-similarity function.

3 Experiments

In this section we evaluate the effectiveness of learning masked tokens on var-
ious image benchmarks. This aim of the proposed modifications is to improve
the transferability of self-supervised ViTs. Thus, we mainly focus on fine-tuning
pretrained models on small datasets. We only consider image-level classification
tasks to simplify the architectural choices of the backbone.

3.1 Configurations

Baselines. We apply two state-of-the-art self-supervised ViTs as our pretraining
schemes and baselines: SiT [8] and DINO [9].

— SiT [8] replaces the class token h.s with two tokens, namely a rotation
token h,,; and a contrastive token hcy,¢-, such that it can be trained by
predicting image rotations [15] and maximizing the similarity between pos-
itive pairs [13]. Furthermore, it features another regularization task where
corrupted inputs are reconstructed via inpainting.

2 We remove the layer index 1, and replace it with the image index k for convenience
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Table 1: Top-1 accuracy (%) for linear evaluations on CIFAR datasets. All the
baseline performance are reported from [8].

Method Backbone CIFAR-10 CIFAR-100
DeepCluster [41] ResNet-32  43.31 20.44
RotationNet [15] ResNet-32  62.00 29.02
Deep InfoMax [42] ResNet-32  47.13 24.07
SimCLR [12] ResNet-32  77.02 4213
Rel. Reasoning[43] ResNet-32  74.99 46.17
Rel. Reasoning[43| ResNet-56  77.51 47.90
SiT [8] ViT-B/16  81.20 55.97

MT SiT (ours)  ViT-B/16 81.98 57.18

— DINO [9] takes a self-distillation paradigm by simultaneously updating the
teacher with an exponential moving average and encouraging the student to
have similar outputs as the teacher. Such objective is further optimised using
multi-crops augmentation to ensure consistency between different scales.

Implementations. We implement our proposed augmentations based on their of-
ficially released codes in PyTorch. Our pilot studies show that augmenting many
layers with masked tokens will show diminishing return. Thus, unless specified
otherwise, we use a single ViT variant by replacing the MSA layers in the last
four blocks with the augmented ones, and set the default sparsity granularity to
4. To reduce the computational cost we only do the token selection for the first
of the four augmented blocks. For both baselines, we refer to their augmented
ones with the prefix “MT”. All experiments are done with 8 Nvidia A100 GPUs.

3.2 In-domain Transfer Learning

We first present the results using the SiT-based [8] pretraining on three datasets:
CIFAR-10/100 [17] and STL-10 [19]. For a fair comparison, we follow the same
experimental protocols as [8] including random seeds, hyper-parameters and data
augmentations. In this way, we first train the model on the entire dataset using
SiT losses, then fine-tune the model on a fully labeled subset. Since both source
and target are from the same domain, we refer it as In-domain Transfer Learning

(IATL) in the rest of the paper. ViT-B/16 will be our default backbone.

IdTL for CIFAR-10 and CIFAR-100

Linear evaluation. We first report the linear evaluation results in Tab. 1 to make
sure that masked tokens won’t degrade the pretrained features due to additional
model complexities. As we can see, MT SiT can outperform ConvNet-based
methods by significant margins of 4.47 percentage points on CIFAR-10 and 9.28
on CIFAR-100. However, such gains become smaller when compared with SiT,
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Table 2: Top-1 accuracy (%) of IdTL on CIFAR datasets. Referred to as ’few-
shot’ in [8].

Method 1% 10% 25%
CIFAR-10

[43] 76.55 80.14 85.30

SiT [8] 74.78 87.16 92.90

MT SiT (ours) 82.52 92.23 95.60
CIFAR-100

[43] 46.10 49.55 54.44

SIiT [8] 27.50 53.72 67.58

MT SiT (ours) 24.51 61.39 72.69

with only 0.78 for CIFAR-10 and 1.21 percentage point for CIFAR-100. This
supports the assumption that the architectural change of introducing masked
tokens would not make overfitting worse.

Fine-tuning. Following [8], we fine-tune the MT SiT on subsets with different
percentage of available labels. From Tab. 2, we can observe significant improve-
ments over the SiT baseline in most cases. More specifically, we achieve 7.74,
5.07 and 2.70 percentage point improvements on CIFAR-10 with only 1%, 10%
and 25% percent of labels. Moreover, in most cases MT SiT can achieve higher
performance gain over the vanilla SiT when fine-tuning labels become much less,
indicating the positive effects for reducing overfitting brought by masked tokens.
On the other hand, while we can find similar improvements on CIFAR-100 with
10% and 25% labels, MT SiT performs worse than the SiT baseline and has a
nearly 20 percentage point gap with the ConvNet baseline [43]. We argue that
this is due to too few training samples to learn meaningful patterns on the target
set. In such cases, fine-tuning can have a high variance and furthermore atten-
tions between masked tokens may put an overly strong emphasis on localities,
causing the drop in transferability.

IdTL for STL-10 Now we consider the STL-10 [19] dataset, which contains
100, 000 unlabeled and 5, 000 labeled training images. Thus, compared to CIFAR,
it almost doubles the pretraining size while keeping the target set small. We
directly fine-tune our models with all training labels without further dividing
them into various subsets.

Fine-tuning. Tab. 3 summarizes the fine-tuning results for STL-10. Similar to the
CIFAR, MT SiT consistently outperforms the SiT and other ConvNet baselines
with a small 1.84 percentage points margin, showing the relative effectiveness
of involving masked tokens for fine-tuning. Moreover, the experiments on three
popular benchmarks, so far, suggest that ViTs could benefit from masked tokens
for IdTL on small datasets.
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Table 3: IdTL comparisons with SOTAs on STL-10 dataset.

Method Backbone Fine-tuning (%)
Exemplars [37] Conv-3 72.80
Artifacts [38] Custom 80.10
ADC [39] ResNet-34 56.70
Invariant Info Clustering [40] ResNet-34 88.80
DeepCluster [41] ResNet-34 73.37
RotationNet [15] ResNet-34 83.22
Deep InfoMax [42] AlexNet 77.00
Deep InfoMax [42] ResNet-34 76.03
SimCLR [12] ResNet-34 89.31
Relational Reasoning [43] ResNet-34 89.67
SiT [8] ViT-B/16 93.02
MT SiT (ours) ViT-B/16 94.86

Table 4: Ablation studies of pretraining the MT SiT with different components
on the STL-10 dataset.

Fine
Tuning

| 78.58 93.02

71.95 94.22
v 68.77 93.89
v 69.47 94.00

v T7.71 94.44

78.75 94.78
v |78.99 94.86

Method [MT Lsparse Lcon G(-, )| Linear

SiT [8] |

MT SiT
(ours)

AN N N

NS

Ablation study. We further perform ablation studies on STL-10 to understand
how each component affects the performance. The corresponding results are
listed in Tab. 4. Although the fine-tuning accuracy can be boosted by any of the
individual components, randomly selecting patches (as opposed to G), pretrain-
ing with no or partial regularizers has produced worse self-supervised features
than the complete model. Therefore, all proposed components seem to be im-
portant for achieving the best performance.

Visualization. This additional qualitative study investigates how the learnt masked
regions are spatially distributed by visualizing selected patches of each masked
token at the first augmented block. We randomly sample 10 examples from STL-
10 and highlight the positions of selected patches using different colors for each
masked token in Fig. 2. Overall, in most cases, the majority of patches in the
same sparsity level are spatially close to each other, forming local clusters that
cover multiple small regions. This lends evidence that masked tokens can indeed



Title Suppressed Due to Excessive Length 9

Fig. 2: Visualized examples from STL-10 datasets showing selected patch tokens
at the first augmented MSA layer for each sparsity level using the learnt selection.

Table 5: Accuracy on ImageNet-1K. We list both results that reported from [9]
(top) and trained by ourselves (bottom) to assure comparison is fair. ‘F'T” means
‘fine-tune’.

Method Arch  KNN Linear FT-10% FT-20%
BYOL [11] ViT-S 66.6 714 N/A N/A
MoCov2 [10] ViT-S 644 727 N/A NJ/A
SwAV [16] ViT-S 66.3 735 N/A N/A
DINO [9] ViT-S 733 760 N/A  N/A
DINO .

(300 epochs) ViT-S/16 73.06 75.83 58.48  68.46
MT DINO .

(4 masked tokens) ViT-S/16 73.10 75.93 57.71  68.69
MT DINO

(28 masked tokens) ViT-S/16 73.08 75.90 60.26 70.02

encode local information from the informative sub-regions at various sparsity
levels in the image. On the other hand, it is also surprising to see that low-level
tokens tend to select the patches lying outside of the main interested object in
many cases, which is slightly counter-intuitive. We conjecture about this obser-
vation as the usefulness of the associated contexts for reducing overfitting. While
global attentions are pretrained to focus on the interested object due to large
pretraining samples, the secondary contents also becomes informative and com-
plimentary when the training size decreases during the fine-tuning. Low-level
masked tokens are flexible enough to be tuned to capture such information.

IdTL for ImageNet-1K Here we consider a larger pretraining source i.e.,
ImageNet-1K [18], which serves as a fundamental pretraining source for many
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small datasets. Since SiT [8] doesn’t report ImageNet-pretrained results, we
switch to another state-of-the-art baseline DINO [9] to avoid any setting in-
consistencies. Besides, due to our hardware limitations, we can only afford to
train DINO and MT DINO using ViT-small (ViT-S) [2]. Similar to previous
experiments, we follow the same protocol provided by the official baseline im-
plementation.

KNN and linear classification. Like [9], we do KNN (K = 20) and linear clas-
sification for self-supervised features first, whose results are in the middle two
columns in Tab. 5. Compared with the baseline, MT DINO does not show clear
improvements for either KNN or linear evaluation, implying that masked tokens
may not be necessarily helpful when the pretraining size is large enough, as even
the most informative localities are likely to be modelled by global attentions.

Fine-tuning with increased number of masked tokens. We further inspect the fine-
tuning on two subsets of ImageNet-1K with only 10% and 20% labels, and report
their accuracy in the last two columns of Tab. 5. Surprisingly, we initially find
MT DINO with default number of scale tokens are outperformed by the baseline
on 10% labeled subset with a 0.77 percentage point margin. We then increase the
sparsity granularity up to 28 and find the performances are boosted by 2.55 and
1.33 for each subset. We speculate that as the dataset size grows, there are enough
samples for the global patch tokens to model some sparse and local patterns,
therefore, more masked tokens are needed to become complementary in addition
to the standard tokens. Thus, a proper sparsity granularity is also important.
Moreover, comparing with Sec. 3.2, the performance gain significantly drops,
implying masked tokens may become less effective as dataset size increases. This
also coincides with [2] that ViTs may beat ConvNets as training set size grows.

Costs for introducing masked tokens. Here we briefly discuss the additional
model complexity and time consumption added by masked tokens. It is easy
to see that the only new model weights are MQE for the first augmented block,
bringing around 1%(4/384) more parameters than any projections of a self-
attention layer in our implementation. Thus, the computational overhead of
masked token is quite negligible. Meanwhile, the inference time using 4 and 28
tokens increases 1 and 5 seconds respectively on the entire ImageNet validation
set, showing that the extra computational costs don’t affect the ViT’s efficiency
too much.

3.3 Cross-domain Transfer Learning

We now conduct experiments of transferring ImageNet-pretrained ViTs to vari-
ous domain-specific datasets, which is closer to the mainstream transfer learning
applications. Compared to Sec. 3.2, the target datasets exhibit a significant do-
main shift from the source, making them more challenging. Thus, we refer to
such tasks as Cross-domain Transfer Learning (CdTL) in contrast to IdTL. We
continue using ViT-S/16 [2] as the backbone and DINO [9] for self-supervised
pretraining on ImageNet-1K.
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Table 6: CdTL performance comparing with SOTA baselines for fine-grained
recognition on CUB200-2011 dataset. The input size is 448. Baselines that out-
perform MT DINO are underlined.

supervised Accuracy

Method Backbone pretraining? (%)

RA-CNN [30] VGG-19 v 85.30
ResNet-50 [6] ResNet-50 v 85.50
M-CNN [31] VGG-16 v 85.70
GP-256 [45] VGG-16 v 85.80
MaxEnt [46] DenseNet161 4 86.60
DFL-CNN [47] ResNet-50 v 87.40
Nts-Net [32] ResNet-50 v 87.50
Cross-X [50] ResNet-50 v 87.70
DCL [49] ResNet-50 v 87.80
CIN [48] ResNet-101 v 88.10
ViT [2] ViT-B/16 v 90.80
TransFG [51] ViT-B/16 4 91.70
DINOJ[9)] ViT-S/16 X 86.47
MT DINO ViT-S/16 X 86.68
MT DINO ViT-S/16 x 87.38

(28 masked tokens)

Comparison with the State-of-The-Art We compare the MT DINO with
DINO and other related baselines on four small datasets from three different
domains, CUB-200-2011 birds [20] for fine-grained recognition, SoybeanLocal
and Cotton80 [21] for ultra fine-grained recognition, and COVID-CT [22] for
medical imagery-based diagnosis.

Fine-Grained classifications (FG). Tab. 6 lists the accuracy for MT DINO and
other state-of-the-art baselines on CUB birds dataset. MT DINO can achieve
~ 1 percentage point improvement over vanilla DINO with 28 masked tokens
and a comparable result with most ConvNet baselines. It is worth emphasis-
ing that computational cost prevents us from getting higher performance by
either pretraining on larger datasets or using larger backbones. Besides, those
outperforming baselines (underlined in the table) are achieved by extra mecha-
nisms such as fully-supervised pretraining on larger datasets using more powerful
backbones [2, 51], or fine-tuned with FG-specific losses [32, 50,49, 48]. We believe
this does not undermine the effectiveness of masked tokens.

Ultra Fine-Grained classifications (UFG). Comparing to the FG, UFG requires
more subtle details to distinguish its categories, effectively rendering the available
data even smaller. Tab. 7 shows the comparison with multiple ViT and ConvNet
baselines on SoybeanLocal and Cotton80 datasets, which only have 600 and 240
fine-tuning samples for each. It is encouraging to see that MT DINO performs
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Table 7: CdTL performances for UFG datasets. Same as [21], the input size is
set to 384.

supervised Soybean

Method backbone .. Cotton80
pretraining? Local
Nts-Net [32] ResNet-50 v 42.67  51.67
ADL [35] ResNet-50 v 34.67 43.75
Cutmix [36] ResNet-50 v 26.33 45.00
MoCov2 [10] ResNet-50 X 32.67 45.00
BYOL [11] ResNet-50 X 33.17 52.92
SimCLR [12] ResNet-50 X 37.33 51.67
ViT|2] ViT-B/16 v 39.33 51.25
BeiT|3] ViT-B/16 v 38.67  53.75
TransFG[51] ViT-B/16 v 38.67 45.84
DINO[9] ViT-S/16 X 41.33 49.58
MT DINO ViT-S/16 X 41.17 51.67
MT DINO ViT-S/16 X 43.33 53.75

(28 masked tokens)

Table 8: CATL performances for COVID-CT dataset.

Method backbone super'\/l'sed Accuracy (%)
pretraining?

DenseNet [44] DenseNet-169 v 84.65

DINO ViT-S/16 X 83.25

MT DINO ViT-S/16 X 82.76

MT DINO ViT-S/16 x 85.22

(28 masked tokens)

2.00 and 4.17 percentage points better than DINO with 28 masked tokens on
the two datasets respectively, and outperforms most baselines. Especially, MT
DINO can improve over ViT baselines [2, 3, 51] that use more powerful backbones
and supervised pretraining, demonstrating the usefulness of masked tokens for
reducing overfitting. Similar to ImageNet results, more scale tokens help improve
the fine-tuning performance.

Medical imagery-based diagnosis. We conduct domain-specific transferability ex-
periments on COVID-CT dataset [22], which contains only 425 samples for fine-
tuning. The results are shown in Tab. 8. Similar to the UFG, we achieve a
better performance than baselines with increased masked token number than
the default case, which provides corroborates to our assumption that higher
performance can be achieved with more masked tokens.
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tions versus masked tokens _ ) ) )
numbers (sparsity granu- Fig. 4: Average attention values of classification head

larity) on CdTL tasks. and each masked tokens across different datasets and
token numbers.

The Impact of Sparsity Granularity Inspired by previous observations w.r.t.
the number of masked tokens, we further study the relationship between the
performance and the masked tokens in two more experiments.

Granularity vs. performance. We plot the line chart in Fig. 3 to show the per-
formance gains with different masked token numbers on all four CdTL datasets.
Overall, despite a few exceptions, the performance increases as masked token
number grows for all datasets, confirming that more sparsity levels can yield
better results. However, after a certain point, the performance begins to drop as
number continue growing. This is expected as too many masked tokens can carry
many overlapped patches, leading to a higher chance of overfitting on smaller
sets. Thus, it is not always good to keep a large masked token number.

Attentions for masked tokens. We additionally compute the attention values
between the class token h.;, and each masked tokens, and visualize their means
across multi-heads and samples for UFG and COVID-CT datasets in Fig. 4.
Basically, the patterns of attention are similar when masked token number is
small, where attentions are uniformly distributed across each masked token.
As token number increases, these patterns act differently for each dataset. For
Cotton80, the class token has more dependencies with both the low and high
sparsity levels than the mid level, while such dependencies tend to decrease
from low to high for SoybeanLocal and COVID-CT as their attention values
drop when the sparsity level goes higher. Especially on COVID-CT, tokens with
the lower levels have significantly higher attention than others, indicating the
class token relies more on the lower sparsity level information.

4 Related works

Vision transformers. Inspired by works in NLP [56, 57], transformers are intro-
duced into computer vision by iGPT [55]. Later, ViT [2] introduced the class to-
ken for supervised classification and demonstrated its superiority over traditional
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CovNets on large-scale datasets. Since it may yield suboptimal performance due
to venerability of overfitting, works such as [58-64] are proposed to moderate
the effect by strengthening the inductive bias of locality. Some of which try to
aggregate spatial information in smaller regions [58], where others focus on re-
moving redundant patches to highlight informative ones [62-64]. Other methods
like [59,61,60] introduce localities by reshaping tokens back to 2D grids and
forward them to a convolution kernel just like ConvNets.

Self-supervised learning. Numerous techniques are introduced to train a visual
model in a self-supervised fashion. Some earlier works do this by predicting patch
orders [26], image rotations [15], or colorization [27]. Recently, contrastive-based
methods have become increasingly popular [28,29,10,52,12], which augment
the input image into multiple views and optimise the model by maximizing the
similarity between positive pairs. To prevent from collapsing, [28,10,12] pro-
pose to increase the number of informative negative pairs by constructing large
memory banks or batches, while other works [11,52] build non-gradient-based
targets without explicitly involving negative pairs. Besides, a few methods focus
on clustering-based training [53, 16, 54], or using transformers as backbones [8,
9].

5 Conclusions

We tackle the problem of alleviating overfitting for fine-tuned self-supervised
ViTs on small, domain-specific datasets. We introduce masked tokens, which
mask out redundant regions by aggregating a subset of informative patch tokens.
Defined by their sparsity levels, multiple masked tokens encode different sub re-
gions of input images with sizes from small to large. With the proposed patch
selection and regularizations, masked tokens can be trained to determine most
interesting encoding regions in a data-driven manner. Via integrating masked
tokens with self-attentions, we augment ViTs with sparsity and locality biases
without altering their core structures. We conduct extensive experiments on var-
ious datasets and have found that masked tokens can more effectively capture
local secondary contents, which can be complimentary to the standard global
attention. Thus with a proper number of masked tokens, an augmented ViT is
more amenable to small sets, and retains capabilities of learning rich represen-
tations when training sets grow larger.
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