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Abstract. Online tracking technology is a critical tool for user-centric
platform practitioners to link users across multiple web pages and make
detailed user profiles for the improvement of recommender systems like
targeted advertising. Recently, due to the dynamic address allocation and
security upgrade, mitigations indirectly make prior tracking techniques
unreliable. To overcome the problem, traffic-based tracking techniques
are proposed to link users’ dynamic addresses through similarity learn-
ing of user behaviors in their traffic interaction. However, prior work
either provides poor similarity learning ability or is impractical when
applied to a large scale. In this paper, we propose GALG, a graph-based
artificial intelligence approach to link addresses for user tracking on TLS
encrypted traffic. GALG uses the framework of graph autoencoder and
adversarial training to learn the user embedding with semantics and dis-
tributions. Employing a new theory – link generation, GALG could link
all the addresses of target users based on the knowledge of address-service
links. When evaluated on real-world user datasets, GALG outperforms
existing approaches in both performance and practicality.
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1 Introduction

Websites and third-party services such as search engines, advertising networks,
and network providers collect user interests across multiple web pages to improve
the quality of recommender systems and user experiences in the area including
targeted advertising and content personalization. Under the background, online
tracking has been ubiquitous on the web [3]. The tracking mechanism could link
records of a user’s browsing activity across numerous websites to make infer-
ences about the user’s demographics and interests, or observe the conversion
that whether an advertisement on a website leads to the desired user activity on
another website [17]. Until recently, over four-fifth of websites have enabled track-
ing systems [25]. Big players like Google and Facebook leverage the widespread
? Chang Liu is the corresponding author.
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use of their advertising networks and social plugins to track users across websites
and gain detailed user profiles.

The core objective of online tracking is to link historical users across multiple
contexts. Refer to Figure 1. When a user generates browsing records on a website,
the tracking system could utilize the information in the incoming records to
search all records linking to the user in a tracking database. The database is
a knowledge base owned by a tracker that contains numerous user records on
multiple websites. The linked records of each user are finally used in user profiling
for a better recommendation. In this setting, the traceable information in records
is critical for the tracking system.
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Fig. 1. The illustration of the tracking ecosystem.
The traffic-based tracking method links users’ ad-
dresses across multiple traffic interactions.

Promoted by the huge track-
ing ecosystem, researchers have
tried to leverage types of in-
formation to track real-world
users, including IP addresses,
cookies, and browser finger-
prints. Tracking based on IP
addresses is the primary track-
ing method because all on-
line behaviors must come from
users’ client addresses. How-
ever, the dynamic address allo-
cation causes frequent changes
of users’ addresses, making
address-to-user correlation un-
reliable. Tracking based on
cookies [19] and browser fingerprints [7] could produce and store the identi-
fier and features of user browsers. Nevertheless, as users are increasingly aware
of privacy protection, they start to encrypt communication sessions with Trans-
port Layer Security (TLS) [20], use private browsing modes, and enable privacy-
friendly browser extensions to obfuscate traceable features. Although the major-
ity of users only intend to protect their sensitive information rather than delib-
erately confronting recommender systems, the situation indeed leads to data loss
and model failure in the tracking ecosystem. Microsoft reported that they could
no longer track 32% of users under their services due to these mitigations [24].

To address these problems, recently, traffic-based user tracking techniques
[1, 4, 8, 14] have been proved to have a strong performance by analyzing the
patterns in the traffic. As a worldwide information system, the Internet maintains
users’ daily online activities through traffic transmission. Though the critical
payload consisting of user data is encrypted in the TLS session under HTTPS
communication, the traffic contains considerable meta-information associated
with user behaviors and online interaction. In Figure 1, banding the address
with these traffic characteristics, researchers could link multiple client addresses
to achieve long-term user tracking. However, the extensive knowledge hidden in
the traffic raises the questions that how to effectively leverage the complicated
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information to reach high tracking accuracy, and, separately, how to fast link
the real-world users in such a huge knowledge volume. Previous works either
could only track a specific subset of users on a closed-world dataset due to
the unreliable similarity learning [1, 8, 14], or expense considerable time with an
unsuitable framework [4], remaining the problem that the traffic-based tracking
technique is impractical when applied to a large scale.

In this paper, we develop a more sophisticated approach to overcome these
limitations, juggling performance and practicality. In particular, we introduce
GALG, a graph-based artificial intelligence approach to link addresses for
user tracking on TLS encrypted traffic. GALG is short for "Graph Autoencoder
with Link Generation". The framework of our approach consists of three steps
as follows. First, GALG constructs a graph with client address-to-online service
links and the user preference distribution of each client address to model the
traceable information. Second, for better similarity learning, using the theory of
Graph Neural Networks [12, 13, 18, 23] and adversarial training, GALG employs a
stack attention-based encoder and a discriminator to learn the latent embedding
of jointing semantics and distributions. Third, innovating from the task of link
prediction [16] in social networks, we propose link generation, which could
learn from address-service links to generate address-address links. Benefiting
from the new theory, GALG could achieve effective few-shot learning, finally
taking large-scale user tracking to reality.

In summary, our contributions can be summarized as follows:

– Application.We implement reliable user tracking in the tracking ecosystem
to link addresses through address embedding learning with a traffic-based
tracking system.

– Theory. We propose link generation to generate a new type of links from
the original type of links in heterogeneous graphs, which is more effective in
user tracking tasks than link prediction.

– Models. We introduce two novel tracking models GALG and VGALG,
which could jointly learn semantics and distributions through an adversarial
architecture with a graph autoencoder.

– Experiments. We conduct experiments on real-world datasets. Results in-
dicate that GALG outperforms the state-of-the-art tracking techniques and
link prediction-based methods in both performance and practicality.

2 Related Work

We overview the related work of our paper from the objective and technical
perspectives, including the prior work of user tracking and link prediction.

2.1 User Tracking

User tracking on the Internet could come in various forms. Over the past years,
through HTTP cookies [19] and browser fingerprinting [7]. However, recently,
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traffic-based tracking techniques have been proved to have stronger performance
and longer tracking time, which can be extensively applied in various scenarios.
Kumpost et al. [14] used the target IP addresses of each user to build user
profiles for tracking them in the future. Banse et al. [10] trained a Bayesian
classifier with DNS requests to track users on a university network. Following
the deployment of HTTPS, the interaction between users and websites tends
to be protected under the wide-used TLS traffic. Anderson et al. [1] extracted
field values in TLS ClientHello messages to build traceable fingerprints, which
could be easily enhanced with machine learning. Nonetheless, due to the strong
variation of different users in the open-world scenarios, these approaches usually
perform a poor generalization on unseen users. To address the problem, Cui et al.
[4] proposed a knowledge graph-based approach SiamHAN to track users on TLS
encrypted traffic. Since the approach requires calculating the similarity between
every two addresses, the time cost is impractical at scale. Different from prior
work, GALG aims to provide a better learning framework of user embeddings,
which could work on unseen users with less time cost.

2.2 Link Prediction

Link prediction [16] is a critical task for graph-structured data. By predicting the
relationship of two nodes in a graph, the task has many applications such as rec-
ommendation and graph reconstruction. The prior approaches for link prediction
mainly include heuristic methods, latent feature methods, and explicit feature
methods. Heuristic methods [16] are a class of simple yet effective approaches
to calculating node similarity scores with heuristic assumption. Latent feature
methods such as spectral clustering [21] and node2vec [9], have been proposed
to use the knowledge of graph structure for graph embedding learning. Using
the powerful performance of GNNs [12, 13, 18, 23] , explicit feature methods [12,
18] could aggregate node attributes built from side information to obtain more
meaningful knowledge from the graph. While the techniques for link prediction
have many variants, the theory of the task is never changed – using the known
links to predict the same type of unknown links. The framework limits that link
prediction requires learning considerable annotation links to supplement the lost
links in one specific graph. In the tracking database, there is a large ratio of test
user nodes and we cannot always keep enough labels in a graph. In this paper,
we employ link generation to overcome the limitation in the tracking ecosystem.

3 Preliminaries

This section introduces the definition of the problem and the link generation
theory to help readers understand this paper.

3.1 Problem Definition

On the Internet, users could use clients to access various online services. The
manifestation in the traffic is that the client address and the server address es-
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tablish connections. However, to facilitate the address acquisition process, net-
work administrators have widely deployed dynamic address allocation policies
like DHCP [5]. Within a period of time, a user might use multiple client addresses
for external communication. The relationship between users and addresses can-
not be detected using payloads due to TLS encryption.

In the tracking ecosystem, a tracker aims to link user across multiple web
pages to make detailed user profiles. To obtain the user traffic, the tracker could
be a network provider with a vantage traffic observation point, an advertising
network provider with wide-used traffic plugins deployed in numerous Apps and
websites, or a content provider like Google owning multiple websites. Using the
meta-information in the traffic, tracking systems could link multiple client ad-
dresses to find out the target user. Given a period of TLS historical traffic as
background knowledge Kt, the set of all client addresses in the traffic is S, the
set of client addresses of a target user is Y = {y0, y1, ..., yn}. A tracking system
F could use one client address y0 to trace the whole address set Y :

F ((S, y0)|Kt; θ) = Y (1)

where θ is the parameters of the tracking model. After obtaining the address
set Y , researchers could master all activities associated with these addresses to
analyze the target user. Holding the long sequences across websites, trackers
could infer global user demographics for service policy updates or use the inter-
action records between addresses and accounts for targeted recommendations.

3.2 Link Generation

The link generation task we proposed is innovated from the link prediction.

Definition 1. Link Prediction. Given a graph G, which contains at least one
type of node and one type of link. The link prediction task requires learning a
type of links and complementing the missing links of this type in graph G. If Ai
is the adjacency matrix of the links with type i, the goal of a model F for link
prediction could be shown as follows:

Ai
F (G;θ)−−−−→ Ãi (2)

where θ is the trained parameters. Ãi is the ground truth of the type-i links.

Definition 2. Link Generation. Given a heterogeneous graph Gh, which con-
tains at least two types of nodes and one type of link. The link generation task
requires learning a type of links and generating a new type of links in graph Gh.
If Ai is the adjacency matrix of the links with type i, the goal of a model F for
link generation could be shown as follows:

Ai
F (Gh;θ)−−−−−→ Aj (3)

where i 6= j. Aj is the ground truth of the type-j links. Unlike link prediction,
link generation tasks can generate types of links that never appear in the graph.
In this paper, we show that link generation is more effective and practical than
link prediction by using address-service links to generate address-address links.
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Fig. 2. The address-service graph and user preference distributions: (a) Users might
use multiple client addresses (c1, c2, and c3 for user u1; c4 and c5 for user u2) to
access online services (s1, s2, and s3) in a period of time; (b) The connection relation-
ship between c and s could build the address-service graph; (c) Each node c/s uses
client/service fingerprints built from TLS traffic as the node attribute; (d) The cumu-
lative visits of a client address to each service could build the preference distribution.

4 Design of GALG

This section proposes the overall framework of GALG, including (1) graph and
distribution construction and (2) GALG’s model architecture.

4.1 Graph and Distribution Construction

To implement traffic-based tracking technology, GALG extracts two kinds of
knowledge from the traffic to help track real-world users – an address-service
graph and user preference distributions.

Address-service Graph To model the user activities behind the traffic, GALG
uses a heterogeneous graph to capture the meta-information in the traffic. Figure
2(a)-(c) shows the detail of building the address-service graph. In the historical
traffic over a period of time, since users use multiple client addresses to access
online services, the connection relationship between these addresses and services
could be used to build the heterogeneous graph. The graph contains two types of
nodes and one type of link – address node c, service node s, and address-service
link c-s. Whenever a user accesses a web service over HTTPS, their commu-
nication will generate many available data in TLS traffic such as ClientHello,
ServerHello, and Certificate message. GALG extracts client fingerprints and ser-
vice fingerprints from these messages to model the attributes of the address
nodes and the service nodes in the graph. Table 1 shows the notions of these
fingerprints. In each TLS connection, the fingerprints are bound to an address
node and a service node respectively. The client address and the server name
identifier (SNI) are used as the node identifier to distinguish different address
nodes and service nodes. Finally, these node attributes are learned by doc2vec
[15] to obtain the semantic representation of fingerprints under the feature space.
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Table 1. The client fingerprints and the service fingerprints used to build the at-
tributes of address nodes and service nodes. Different address nodes or service nodes
are distinguished by the client address or the server name identifier (SNI).

Type Fingerprint Name Notion Label

Address Client address* The address of the client in the TLS traffic Fc1
node c Record version The TLS version employed by the client Fc2

Client version The version by which the client wishes to connect Fc3
Cipher suites A list of the cryptographic options supported Fc4
Compression A list of the compression methods supported Fc5

Service SNI* The domain name that the client wants to reach Fs1
node s Server address The address of the server in the TLS traffic Fs2

Record version The TLS version employed by the server Fs3
Server version The version finally chosen by the server Fs4
Cipher suite The single cipher suite selected Fs5
Algorithm ID The identifier for the cryptographic algorithm Fs6

Issuer The entity that has signed and issued the certificate Fs7
Subject The entity associated with the public key stored Fs8

User Preference Distributions In addition to knowing which services the
user accessed in the horizontal analysis, a vertical eye to master how much the
user prefers these services could also contribute to identifying the user. GALG
uses the cumulative access volume of a client address to each service to build
its user preference distribution. Figure 2(d) shows the detail of building the
distribution. For each client address, we collect the number of TLS connections
of the address to each service to build a distribution vector. The length of the
vector is the total number of service nodes in the address-service graph. Finally,
to reduce the overlong dimension of the vector, GALG employs PCA [6] to obtain
the representation of the distribution for each address node in the graph.

4.2 Model Architecture

Figure 3 shows the overall architecture of GALG. GALG employs an adversarial
architecture with a graph autoencoder to implement reliable user tracking.

Encoder Learning In the task of user tracking, the heterogeneous graph Gh
built from TLS traffic contains address-service links A and node attributes X.
By learning the meta-information, the goal of the encoder in GALG is to obtain
the latent embedding Z of the address nodes for address-address link generation.

To implement the encoder model, GALG leverages stack attention to inte-
grate complex semantic knowledge into the embeddings of the address nodes. The
stack attention contains two levels – fingerprint-level attention (FA) and service-
level attention (SA). The fingerprint-level attention first learns the weights of
all fingerprints in a node attribute Xu and aggregates them to obtain the first-
level node embedding. The fingerprint importance αu and the first-level node
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Fig. 3. The overall architecture of GALG. The encoder aggregates meta-information
in the knowledge graph to obtain the latent embedding through stack attention. The
discriminator distinguishes between the representation of real preference distributions
and the latent embedding. The decoder finally generates the address-address links.

embedding Z1
u of a node u are shown as follows:

αui =
exp(h>uiWh)∑|Xu|
i=1 exp(h>uiWh)

, here hui = tanh(WwXui +Wb)

Z1
u =

∑|Xu|

i=1
αuiXui (4)

whereWw,Wb, andWh are the parameter matrices. Xui is a client fingerprint of
an address node c or a service fingerprint of a service node s in the heterogeneous
graph Gh. Using these fingerprints, the fingerprint attention aims to learn the
unique client or service representation from the client or service profiles.

The service-level attention then employs a Graph Attention Network (GAT)
[23] based approach to learn the latent embedding of the address nodes. For
an address node ci, Sci includes node ci and the service nodes linked to it.
The service-level attention could calculate the importance of the services to
identifying the user behind the address node ci and aggregates them to obtain
the latent embedding Z2

ci of the address node:

βcisj =
exp(hcisj )∑

sj∈Sci
exp(hcisj )

, here hcisj = LeakyReLU(Ws[Z
1
ci‖Z

1
sj ])

Z2
ci =

Kww
k=1

ELU(
∑

sj∈Sci

βcisjZ
1
sj ) (5)

where Ws is the parameter matrix. ‖ represents the concatenation operation. K
is the number of heads using the multi-head attention mechanism [22]. Using the
first-level embeddings, the service-level attention aims to capture the semantics
of the user behavior through the communication relationships.

Finally, the stack attention of GALG realizes stacking the two-level semantics
into the latent embedding. Through semantic learning, the three-layer meta-
information of fingerprints, services, and client addresses are orderly squeezed in
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the final representation. We collect the latent embedding of all address nodes in
the graph to form the latent embedding Z:

Z =
∏

ci∈Vc

Z2
ci (6)

where Vc is the set of address nodes in the graph Gh. Similar to previous work
[12, 18], GALG could be extended to a variational autoencoder version VGALG
for link generation. The encoder of VGALG is defined as follows:

Z =
∏

ci∈Vc

N (zci |µci , diag(σ2)) (7)

where µ = Z2 and log σ = Z2′ are the matrices of the mean and log variance
vectors output by two stack attention networks. Using the two vectors, the model
is modified to sample the latent embedding Z to improve the robustness.

Decoder Learning Using the latent embedding Z, GALG’s decoder aims to
generate the address-address links Â for tracking. We could predict whether
two client addresses belong to the same user by judging whether there is a link
between the two address nodes. The work is implemented by an inner product
between their latent embeddings:

Âij =
∏

ci∈Vc

∏
cj∈Vc

sigmoid(Z>ciZcj ) (8)

where ci and cj are two address nodes in the graph Gh.

Adversarial Training To model the complex user behaviors behind the client
addresses, in addition to the semantic knowledge, GALG is also required to use
the distribution knowledge to fully grasp the users’ activities. Using a multi-layer
perceptron (MLP) based discriminator, GALG employs adversarial training to
embed the distribution knowledge into the latent embedding Z.

Through the distribution analysis for each address node c, GALG obtain
the user preference distribution Z∗. The goal of discriminator is to distinguish
whether an input is from the prior distribution or from GALG’s encoder.

During the adversarial training, GALG’s discriminator aims to identify the
real distribution and classify the latent embedding into the fake class. Therefore,
we could optimize the discriminator by minimizing the cross-entropy cost JD:

JD = −Ez∼pz logD(Z∗)− Ez∼Fen log(1−D(Z)) (9)

where pz is the real user preference distribution formed by all client addresses
in the historical TLS traffic. D(Z) is the discrimination score. To deceive the
discriminator, in addition to minimizing the error between the ground truth A∗
and the adjacency matrix Â generated from the latent embedding Z, the encoder
is also required to imitate the real preference distributions. Therefore, the cost
of the encoder JE during the adversarial training could be defined as follows:

JE = EÂ∼Fen
log|Â−A∗| − Ez∼Fen logD(Z) (10)
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Table 2. The composition of graphs built from three datasets.

Dataset Nodes c Nodes s Links c-s Users

P-AllService 1,016 5,597 7,022 450
P-Google 723 313 4,134 550
CSTNET 958 5,517 6,840 685

where the ground-truth adjacency matrixA∗ only contains links between training
nodes. The encoder cost J ′E of the variational autoencoder variant VGALG could
also be defined as follows:

J ′E = EÂ∼Fen
log|Â−A∗| − Ez∼Fen logD(Z)−KL[Z‖q(z)] (11)

where KL is the Kullback-Leibler divergence. q(z) =
∏
ci
N (zci |0, I) is a Gaussian

prior that we followed Kingma et al. [11]. Finally, we use the adjacency matrix
Â to track users in the tracking ecosystem.

5 Experiment Setup

Datasets In this work, our evaluation datasets consist of a public dataset CST-
NET and two participant datasets P-AllService and P-Google generated from
1k participants in two months in our experiments. Table 2 provides the graph
composition built from the three datasets.

(1) CSTNET. CSTNET is a public dataset collected from March to July
2018 on China Science and Technology Network. Cui et al. [4] monitored the
traffic on a vantage point to achieve tracking on IPv6 networks. In the network,
80% of IPv6 users change their client addresses at least once a month. We use
the dataset to track real-world users from the perspective of a network provider.

(2) P-AllService and P-Google. To conduct extensive experiments, we
invited 1k participants to join the traffic collection work under mobile networks.
We installed the traffic plugin in participants’ devices to record their daily online
behaviors with consent. The participants are divided into two groups. For one
group, we recorded all the TLS interaction traffic generated by participants to
imitate a third party who tracked users with traffic plugins deployed on numerous
Apps and build the P-AllService dataset. For the other group, the participants
are required to access Google services following their online habits. These ac-
tivities cannot be fully tracked by Google accounts since many services or web
pages are not required to log in for browsing, such as Google Scholar and blogs.
We recorded the traffic to form the P-Google dataset to track users from the
perspective of a content provider like Google.

Baselines The baselines in our experiments for comparison mainly include rep-
resentative link prediction approaches and tracking techniques.

(1) Link Prediction Approaches. We compare types of link prediction
approaches in this paper. Common Neighbors (CN) [16], Jaccard [16], and
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Preferential Attachment (PA) [2] are three heuristic methods to determine a
link between two nodes. Spectral Clustering (SC) [21] and node2vec [9] are
two latent feature methods to learn graph embeddings. GAE [12], VGAE [12],
ARGA [18], and ARVGA [18] are four explicit feature methods to aggregate
node features through graph autoencoder or its variational version.

(2) Tracking Techniques. We implement four representative tracking tech-
niques, which use multiple characteristics in the TLS traffic. User IP Profiling
[14] and User SNI Profiling [8] are methods to build user profiles through the
destination IPs of the client addresses or the SNIs and track users through a
Bayesian classifier. Client Fingerprinting [1] is a method to extract fields in
ClientHello messages as client fingerprints and learn the fingerprints through
Random Forest. SiamHAN [4] is a method to build graphs for each client ad-
dress and learn the similarity of each two graphs through siamese networks.

Implementation During the data preprocessing, we limit the maximum fin-
gerprint length to 50. To train the doc2vec model, we set the vector size as 50
and the window size as 5 to obtain the representations of the fingerprints. The
output dimension of PCA is 32 for the representations of the distributions. When
training GALG, we randomly initialize parameters and optimize the model with
the Adam algorithm. The learning rate is set as 0.005. The number of e-steps is
5 and the number of d-steps is 1. The number of attention head K is 4. We use
four metrics including TPR, FPR, AUC, and AP to evaluate the models.

6 Evaluation

This section presents all experimental results to implement online user tracking.

6.1 Distribution Analysis
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Fig. 4. The preference distributions of
client addresses coming from 15 users.

We provide the result of distribution
analysis to indicate the effectiveness
to leverage the distribution knowledge.
Figure 4 shows the representation of
distributions in P-AllService dataset.
Results indicate that the preference
distributions of the client addresses
belonging to the same user are simi-
lar, demonstrating that exploiting this
knowledge could help distinguish the
client addresses of different users to a
certain degree. For instance, Address0
and Address1 keep similar distribu-
tion representations because they both
belong to User0. While the represen-
tation of Address2 belonging to User1 is obviously different from the former
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Fig. 5. A case study of stack attention to help track users through semantic knowledge.

addresses in visual. With deeper analysis, we find that Address0 and Address1
have accessed many common domains with similar visit volumes, including
google, cloudflare, eroimg, and share-videos. While Address2 has never
accessed these domains. GALG could embed the distribution knowledge into
the embedding to help link the client addresses.

6.2 Attention Analysis

Figure 5(a) shows a knowledge graph case, including two address nodes (c2653
and c2654), three service nodes (s569, s45, and s2655), and the address-service
links between them. In this setting, c2653 and c2654 both belong to the user u1.
Figure 5(b) and Figure 5(c) show the fingerprint attention of the address node
c2653 and the service node s569 respectively. The label corresponding to each
fingerprint is shown in Table 1. For the client fingerprints of c2653, Fc4 con-
tributes more to the task obviously since it is the significant browser parameter
that could be used to identify the client used by a user. Due to the change of the
client address, Fc1 surely obtains the lowest attention for tracking users. For the
service fingerprints of s569, Fs1 becomes the critical service fingerprint to indi-
cate the attribute of the service accessed by users. The fingerprint-level attention
finally obtains unique client and service embeddings through learning semantic
information. The service attention of c2653 and c2654 is illustrated in Figure
5(d). The high attention value of s45 indicates that service attention could find
the same service accessed by both two client addresses to help link them to
the same user. Finally, the service-level attention could learn the semantics of
address-service communication and obtain the meaningful embeddings.

6.3 Link Generation

To explore the effectiveness, we first measure the link generation performance
by evaluating the correctness of the links generated between the test nodes.

Few-shot Learning In Figure 6(a), we show GALG’s performance on the P-
AllService dataset with different ratios of training users. With only 20% training
users, GALG could obtain an acceptable performance with 81% AUC. This ad-
vantage comes from the graph structure of address-service links to propagate the
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(a) training ratios in GALG. (b) advantages of link generation.

Fig. 6. The link generation performance of GALG on different training ratios and the
advantage of link generation (LG) compared to link prediction (LP) methods.

knowledge of labeled address nodes to the other non-labeled address nodes. Fi-
nally, GALG could achieve 92% AUC with an 80% training ratio. To demonstrate
the advantage of link generation, we implement two frameworks of a represen-
tative model GAE under link prediction and link generation. Figure 6(b) shows
the performance of the two frameworks on 20% and 80% training ratios com-
pared with GALG. With 20% training users, the link prediction method could
only obtain 55% AUC. However, with the link generation framework, GAE could
achieve 75% AUC under this training ratio. Since link prediction methods re-
quire learning the graph with address-address links, when limiting the number of
the labeled address nodes, the graph will lose considerable links to propagate the
label knowledge. For link generation methods, since the address-service links of
each address node are easy to obtain regardless of whether the nodes are labeled,
the always complete graph structure help link generation more effective.

Overall Performance Finally, we modify link prediction baselines with the link
generation framework and show the performance of all link prediction baselines
under the frameworks of link prediction and link generation in Table 3. Results
indicate that the performance of link generation is better than link prediction for
all baselines on the three user datasets. It demonstrates that learning the online
behaviors behind the address-service links is more effective than inferring the
neighbor relationships through address-address links. Our two models GALG
and VGALG outperform all baselines using the theory of link generation.

6.4 User Tracking

To test the tracking performance, we set one address node of each test user as
the known nodes to evaluate whether we could link all address nodes belonging
to the same users with the known nodes.
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Table 3. The overall performance of all link prediction baselines under the frameworks
of link prediction and link generation.

Method
Link Prediction Link Generation

CSTNET P-AllService P-Google CSTNET P-AllService P-Google
AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

CN 0.528 0.515 0.619 0.606 0.600 0.596 0.632 0.617 0.623 0.615 0.728 0.724
Jaccard 0.502 0.495 0.610 0.605 0.582 0.577 0.619 0.611 0.632 0.606 0.759 0.763
PA 0.524 0.524 0.470 0.508 0.595 0.653 0.526 0.557 0.593 0.594 0.603 0.661
SC 0.648 0.680 0.490 0.641 0.396 0.547 0.661 0.687 0.615 0.686 0.589 0.635
node2vec 0.511 0.516 0.514 0.532 0.444 0.476 0.516 0.539 0.633 0.686 0.626 0.641
GAE 0.888 0.887 0.840 0.850 0.933 0.942 0.978 0.985 0.920 0.942 0.941 0.955
VGAE 0.842 0.840 0.850 0.857 0.893 0.901 0.970 0.977 0.929 0.946 0.930 0.951
ARGA 0.918 0.924 0.915 0.937 0.889 0.931 0.938 0.949 0.934 0.945 0.940 0.950
ARVGA 0.867 0.879 0.881 0.909 0.881 0.887 0.886 0.889 0.916 0.936 0.902 0.904
GALG - - - - - - 0.980 0.984 0.957 0.969 0.940 0.959
VGALG - - - - - - 0.988 0.990 0.937 0.954 0.965 0.974

Table 4. The overall tracking performance and the inference time of all tracking tech-
niques to predict 1 million link relationships from 0.5k users

Method CSTNET P-AllService P-Google One Total
AUC AP AUC AP AUC AP Inference Time

User IP Profiling 0.563 0.001 0.611 0.000 0.596 0.000 0.0006s 623.0840s
User SNI Profiling 0.611 0.001 0.645 0.000 0.535 0.000 0.0005s 592.0129s
Client Fingerprinting 0.790 0.005 0.740 0.001 0.755 0.001 0.0091s 9157.4099s
SiamHAN 0.948 0.723 0.967 0.824 0.976 0.727 0.0013s 1323.6057s
GALG - Attention 0.967 0.230 0.968 0.479 0.949 0.201 0.1604s 0.1604s
GALG - Distribution 0.990 0.890 0.975 0.889 0.966 0.826 0.1893s 0.1893s
GALG 0.995 0.925 0.981 0.906 0.982 0.911 0.1923s 0.1923s
VGALG 0.996 0.896 0.982 0.926 0.971 0.844 0.2030s 0.2030s

Overall Tracking Performance The overall tracking performance of all ex-
isting tracking techniques is shown in Table 4. Results indicate that the former
three methods obtain bad performance on the AP metric since they can not be
applied to the open-world dataset to track the users who are not in the training
set. When replacing the stack attention layer in the encoder with a 1-d convo-
lutional layer and a graph convolutional layer (GALG - Attention) or removing
the discriminator in GALG (GALG - Distribution), the performance drasti-
cally degrades. Compared with the state-of-the-art tracking approach SiamHAN,
GALG and VGALG could outperform the method by significant margins. For
a deeper analysis, Figure 7(a) and Figure 7(b) show the ROC curves of GALG,
link generation-based methods, and existing tracking techniques. Using the link
generation framework, explicit feature methods like GAE and ARGA could reach
the similar performance of SiamHAN. For a target FPR = 2×10−2, GALG could
provide a TPR of 0.99. To explore the inference time, we measure the perfor-
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(a) link generation approaches. (b) tracking techniques.

Fig. 7. The tracking performance of the state-of-the-art tracking techniques and the
link prediction baselines with the link generation framework.

mance on a single GeForce GTX 1080 Ti GPU. Since GALG is to output the
whole adjacency matrix, the inference time for one link is equal to the time for
all links. However, prior techniques expense considerable time to infer links be-
tween every two nodes in the graph. Therefore, the advantage of our framework
helps GALG track 0.5k users in 1 second, which is dramatically faster than the
state-of-the-art approach SiamHAN in half an hour.

7 Conclusion

In this work, we explore the implementation to track users on TLS encrypted
traffic. We propose GALG, a graph-based artificial intelligence approach to link
changed client addresses for finding out the target user. Using the adversarial
architecture with a graph autoencoder, GALG could jointly learn the user em-
bedding with semantics and distributions. With a new theory - link generation,
GALG could more effectively infer address-address links than the framework of
link prediction. Extensive experiments indicate that the performance of our mod-
els outperform state-of-the-art methods by significant margins. We published the
source code of GALG at https://github.com/CuiTianyu961030/GALG.
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