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Abstract. A common problem in Graph Neural Networks (GNNs) is
known as over-smoothing. By increasing the number of iterations within
the message-passing of GNNs, the nodes’ representations of the input
graph align and become indiscernible. The latest models employing at-
tention mechanisms with Graph Transformer Layers (GTLs) are still
restricted to the layer-wise computational workflow of a GNN that are
not beyond preventing such effects. In our work, we relax the GNN ar-
chitecture by means of implementing a routing heuristic. Specifically,
the nodes’ representations are routed to dedicated experts. Each expert
calculates the representations according to their respective GNN work-
flow. The definitions of distinguishable GNNs result from k-localized
views starting from the central node. We call this procedure Graph
Shell Attention (SEA), where experts process different subgraphs in a
transformer-motivated fashion. Intuitively, by increasing the number of
experts, the models gain in expressiveness such that a node’s representa-
tion is solely based on nodes that are located within the receptive field of
an expert. We evaluate our architecture on various benchmark datasets
showing competitive results while drastically reducing the number of pa-
rameters compared to state-of-the-art models.

1 Introduction

Graph Neural Networks (GNNs) have been proven to be an important tool in
a variety of real-world applications building on top of graph data [22]. These
range from predictions in social networks over property predictions in molecu-
lar graph structures to content recommendations in online platforms. From a
machine learning perspective, we can categorize them into various theoretical
problems that are known as node classification, graph classification/regression -
encompassing binary decisions or modeling a continuous-valued function -, and
relation prediction. In our work, we propose a novel framework and show its
applicability on graph-level classification and regression, as well as on node-level
classification tasks.

The high-level intuition behind GNNs is that by increasing the number of
iterations l = 1, . . . , L, a node’s representation contains, and therefore relies
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successively more on its k-hop neighborhood. However, a well-known issue with
the vanilla GNN architecture refers to a problem called over-smoothing [23].
In simple words, the information flow in GNNs between two nodes u, v ∈ V,
where V denotes a set of nodes, is proportional to the reachability of node v
on a k-step random walk starting from u. By increasing the layers within the
GNN architecture, the information flow of every node approaches the stationary
distribution of random walks over the graph [7]. As a consequence, the localized
information flow is getting lost, i.e., increasing the number of iterations within
the message-passing of GNN results in representations for all the nodes in the
input graph that align and become indiscernible [15]. One strategy for increas-
ing a GNN’s effectiveness is adding an attention mechanism. An adaption of the
Transformer model [19] on graph data has been introduced as Graph Trans-
former Layer (GTL) [3]. Generally, multi-headed attention shows competitive
results whenever we have prior knowledge to indicate that some neighbors might
be more informative than others. Our framework further improves the represen-
tational capacity by adding an expert heuristic into the GTL architecture. More
specifically, to compute a node’s representation, a routing module first decides
upon an expert that is responsible for a node’s computation. The experts differ
in how their k-hop localized neighborhood is processed and they capture indi-
vidually various depths of GNNs/GTLs. We refer to different substructures that
experts process as Graph Shells. As each expert attends to a specific subgraph
of the input graph, we introduce the concept of Graph Shell Attention (SEA).
Hence, whereas a vanilla GNN might suffer from over-smoothing the nodes’ rep-
resentations, we introduce additional degrees of freedom in our architecture to
simultaneously capture short- and long-term dependencies being processed by
respective experts. In summary, our contributions are as follows:

– Integration of expert-routing into graph neural nets;
– Novel Graph Shell Attention (SEA) models capturing short- and long-term

dependencies, simultaneously;
– Experiments showing a reduction in the number of model parameters com-

pared to SOTA models;

2 Related Work

In recent years, the AI community proposed various forms of (self-)attention
mechanisms in numerous domains. Attention itself refers to a mechanism in
neural networks where a model learns to make predictions by selectively at-
tending to a given set of data. The success of applying attention heuristics was
further boosted by introducing the Transformer model [19]. It relies on scaled
dot-product attention, i.e., given a query matrix Q, a key matrix K, and a
value matrix V , the output is a weighted sum of the value vectors, where the
dot-product of the query with corresponding keys determines the weight that is
assigned to each value.

Transformer architectures have also been successfully applied to graph data.
The work by Dwivedi et al. [3] evaluates transformer-based GNNs. They conclude
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that the attention mechanism in Transformers applied on graph data should only
aggregate the information from local neighborhoods, ensuring graph sparsity. As
in Natural Language Processing (NLP), where a positional encoding is applied,
they propose to use Laplacian eigenvectors as the positional encodings for fur-
ther improvements. In their results, they outperform baseline GNNs on the graph
representation task. A similar work [13] proposes a full Laplacian spectrum to
learn the position of each node within a graph. Yun et al. [25] proposed Graph
Transformer Networks (GTN) that are capable of learning on heterogeneous
graphs. The target is to transform a given heterogeneous input graph into a
meta-path-based graph and apply a convolution operation afterwards. Hence,
the focus of their attention framework is on interpreting generated meta-paths.
Another transformer-based architecture that has been introduced by Hu et al.
[9] is Heterogeneous Graph Transformer (HGT). Notably, their architecture can
capture graph dynamics w.r.t the information flow in heterogeneous graphs.
Specifically, they take the relative temporal positional encoding into account
based on differences of temporal information given for the central node and the
message-passing nodes. By including the temporal information, Zhou et al. [26]
built a transformer-based generative model for generating temporal graphs by di-
rectly learning from the dynamic information in networks. The work of Ngyuen
et al. [14] proposes another idea for positional encoding. The authors of this
work introduced a graph transformer for arbitrary homogeneous graphs with
a coordinate embedding-based positional encoding scheme. In [24], the authors
introduced a transformer motivated architecture where various encodings are ag-
gregated to compute the hidden representations. They propose graph structural
encodings subsuming a spatial encoding, an edge encoding, and a centrality en-
coding. Furthermore, a work exploring the effectiveness of large-scale pre-trained
GNN models is proposed by the GROVER model [16]. The authors include an
additional GNN operating in the attention sublayer to produce vectors for Q,
K, and V . Moreover, they apply single long-range residual connections and two
branches of feedforward networks to produce node and edge representations sepa-
rately. In a self-supervised fashion, they first pre-train their model on 10 million
unlabeled molecules before using the resulting node representations in down-
stream tasks. Typically, all the models are built in a way such that the same
parameters are used for all inputs. To gain more expressiveness, the motivation
of the mixture of experts (MoE) heuristic [18] is to apply different parameters
w.r.t the input data. Recently, Google proposed Switch Transformer [5], enabling
training above a trillion parameter networks but keeping the computational cost
in the inference step constant. We provide an approach how a similar routing
mechanism can be integrated in GNNs.

3 Preliminaries

3.1 Notation

Let G = (V, E) be an undirected graph where V denotes a set of nodes and
E denotes a set of edges connecting nodes. We define Nk(u) to be the k-hop
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neighborhood of a node u ∈ V, i.e., Nk(u) = {v ∈ V : dG(u, v) ≤ k}, where
dG(u, v) denotes the hop-distance between u and v on G. For N1(u) we will
simply write N(u) and omit the index k. The induced subgraph by including
the k-hop neighbors starting from node u is denoted by Gku. Moreover, in the
following we will use a real-valued representation vector hu ∈ Rd for a node u,
where d denotes the embedding dimensionality.

3.2 Recap: Graph Transformer Layer

As formalized in [3], a Graph Transformer Layer (GTL) update for layer l ∈
[1..L] including edge features is defined as:
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h
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(
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uvV
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where Qi,l,Ki,l, V i,l, Ei,l ∈ Rdi×d, and Ol
h, O

l
e ∈ Rd×d. The operator

f
denotes

the concatenation of attention heads i = 1, . . . ,H. Subsequently, the outputs
ĥl+1
u and êl+1

uv are passed to feedforward networks and succeeded by residual
connections and normalization layers yielding the representations hl+1

u and el+1
uv .

A graph’s embedding hG is derived by a permutation-invariant readout func-
tion w.r.t. the nodes in G:

hG = readout({hu|u ∈ V}) (5)

A common heuristic for the readout function is to choose a function readout(·) ∈
{mean(·), sum(·),max(·)}.

4 Methodology

In this section, we introduce our Graph Shell Attention (SEA) architecture for
graph data. SEA builds on top of the message-passing paradigm of Graph Neural
Networks (GNNs) while integrating an expert heuristic.

4.1 Graph Shells Models

In our approach, we implement Graph Transformer Layers (GTLs) [3] and ex-
tend our framework by a set of experts. A routing layer decides which expert is
most relevant for computing a node’s representation. An expert’s calculation for
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(a) Individual experts up to l-hops

(b) Experts use aggregations of previous iterations

(c) Experts take k-hops into account (here: k=2)

Graph

Shell #1

Graph

Shell #N

Fig. 1: Three variants of SEA models; for each model, the respective fields of 3
experts are shown from left to right.

a node representation differs in how k-hop neighbors are stored and processed
within GTLs.

Generally, starting from a central node, Graph Shells refer to subgraphs that
include only nodes that have at maximum a k-hop distance (k-neighborhood).
Formally, the i-th expert comprises the information given in the i-th neighbor-
hood Ni(u) = {v ∈ V : dG(u, v) ≤ i)}, where u ∈ V denotes the central node. We
refer to the subgraph Giu as the expert’s receptive field. Notably, increasing the
number of iterations within GTLs/GNNs correlates with the number of experts
being used. In the following, we introduce three variants on how experts process
graph shells:

• SEA-gtl. The first graph shell model exploits the vanilla architecture of
GTLs for which shells are defined by the standard graph neural net construction.
For a maximal number of L iterations, we define a set {Ei(u)}Ni=1 of N = L
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experts. The embeddings after the l-th iteration are fed to the l-th expert, i.e.,
according to Eq. 1, the information of nodes in Glu for a central node u have been
processed. Fig. 1a illustrates this model. From left to right, the information of
nodes being reachable by more hops is processed. Experts processing information
in early iterations refer to short-term dependencies, whereas experts processing
more hops yield information of long-term dependencies.

•SEA-aggregated. For the computation of the hidden representation
hl+1
u for node u on layer l + 1, the second model employs an aggregated value

from the preceding iteration. Following Eq. 1, the aggregation function (sum) in
GLT considers all 1-hop neighbors N1(u). For SEA-aggregated, we propagate
the aggregated value back to all of u’s 1-hop neighbors. For a node v ∈ N1(u),
the values received by v are processed according to an aggregation function
Agg ∈ {mean(·), sum(·),max(·)}. Formally:

hl+1
u = Aggl({hl+1

v : v ∈ N(u)}) (6)

Fig. 1b illustrates this graph shell model. In the first iteration, there are no
preceding layers, hence, the first expert processes the information in the same
way as in the first model. In succeeding iterations, the aggregated representations
are first sent to neighboring nodes, which in turn process the incoming repre-
sentations. These aggregated values define the input for the current iteration.
Full-colored shells illustrate aggregated values from previous iterations.

•SEA-k-hop. For this model we relax the aggregate function defined in
Eq. 1. Given a graph G, we also consider k-hop linkages in the graph connecting
a node u with all entities having a maximum distance of dG(u, v) = k. The
relaxation of Eq. 1 is formalized as:
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. . .→ . . . . . .→ . . .

Node u hu

FFN of 1-st expert FFN of w-th expert FFN of n-th expert

hwu

router
Embedding

winner
expert

Expert #1 Expert #W Expert #N

Fig. 2: Routing mechanism to N experts
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attention scores Eq. 3

embds. of nodes
in k-hop dist.

where Nk(u) denotes the k-hop neighborhood set. This approach allows for
processing each N1(u), . . . , Nk(u) by own submodules, i.e., for each k-hop neigh-
bors we use respective feedforward networks to compute Q,K, V in GTLs. No-
tably, Eq. 7 can be interpreted as a generalization of the vanilla architecture,
which is given by setting k = 1. Fig. 1c shows the k-hop graph shell model with
k = 2.

4.2 SEA: Routing Mechanism

By endowing our models with experts referring to various graph shells, we gain
variable expressiveness for short- and long-term dependencies. Originally intro-
duced for language modeling and machine translation, Shazeer et al. [18] pro-
posed a Mixture-of-Experts (MoE) layer. A routing module decides to which
expert the attention is steered. We use a single expert strategy [5].

The general idea relies on a routing mechanism for a node u’s representa-
tion to determine the best expert from a set {Ei(u)}Ni=1 of N experts processing
graph shells as described in the previous section 4.1. The router module con-
sists of a linear transformation whose output is normalized via softmaxing. The
probability of choosing the i-th expert for node u is defined as:

pi(u) =
exp(r(u)i)∑N
j exp(r(u)j)

, r(u) = hTuWr + br , (8)

where r(·) denotes the routing operation with Wr ∈ Rd×N being the routing’s
learnable weight matrix, and br denotes a bias term. The idea is to select the
winner expert Ew(·) that is the most representative for a node’s representation,
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i.e, where w = argmax
i=1,...,N

pi(u)
1. A node’s representation calculated by taking

the winner’s graph shells into account is then used as input for the expert’s
individual linear transformation:

hwu = Ew(u)
TWw + bw , (9)

where Ww ∈ Rd×d denotes the weight matrix of expert Ew(·), bw denotes the
bias term. The node’s representation according to expert Ew(·), is denoted by
hwu . Fig. 2 shows how the routing is integrated into our architecture.

4.3 Shells vs. Over-smoothing

Over-smoothing in GNNs is a well-known issue [23] and exacerbates the prob-
lem when we build deeper graph neural net models. Applying the same number
of iterations for each node inhibits the simultaneous expressiveness of short-
and long-term dependencies. We gain expressiveness by routing each node rep-
resentation towards dedicated experts processing only nodes in their k-localized
receptive field.

Let G = (V, E) be an undirected graph. Following the proof scheme of [15],
let A = (1(i,j)∈E)i,j∈[N ]:={1,...,N} ∈ RN×N be the adjacency matrix and D :=
diag(deg(i)i∈[N ]) ∈ RN×N be the degree matrix of G where deg(i) := |{j ∈ V |
(i, j) ∈ E}| is the degree of node i. Let Ã := A + IN , D̃ := D + IN be the
adjacent and the degree matrix of graph G augmented with self-loops, where IN
denotes the identity matrix of size N . The augmented normalized Laplacian of
G is defined by ∆̃ := IN − D̃−

1
2 ÃD̃−

1
2 and set P := IN − ∆̃. Let L,C ∈ N+

be the layer and channel sizes, respectively. W.l.o.g, for weights Wl ∈ RC×C(l ∈
[L] := {1, . . . , L}), we define a GCN associated with G by f = fL ◦ . . . ◦ f1
where fl : RN×C → RN×C is defined by fl(X) = σ(PXWl), where σ(·) denotes
the ReLU activation function. For M ≤ N , let U be a M -dimensional subspace
of RN . Furthermore, we define a subspace M of RN×C by M = U ⊗ RC =
{
∑M

m=1 em ⊗ wm | wm ∈ RC}, where (em)m∈[M ] is the orthonormal basis of
U . For an input X ∈ RN×C , the distance between X and M is denoted by
dM = inf{‖X − Y ‖F | Y ∈M}.

Considering G as M connected components, i.e. V = V1 ∪ . . . ∪ Vm, where
an indicator vector of the m-th connected component is denoted by um =
(1{n∈Vm})n∈[N ] ∈ RN . The authors of [15] investigated the asymptotic behavior
of the output XL of the GCN when L→∞:

Proposition 1. Let λ1 ≤ . . . ≤ λN be the eigenvalue of P sorted in ascending
order. Then, we have −1 < λ1, λN−M < 1, and λN−M+1 = . . . = λN = 1.
In particular, we have λ = maxn=1,...N−M |λn| < 1. Further, em = D̃

1
2um for

m ∈ [M ] are the basis of the eigenspace associated with the eigenvalue 1.

1 In DL libraries, the argmax(·) operation implicitly calls max()̇ forwarding the max-
imum of the input. Hence, it is differentiable w.r.t to the values yielded by the max
op., not to the indices
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Table 1: Summary dataset statistics
Domain Dataset #Graphs Task

Chemistry ZINC 12K Graph Regression
OGBG-MOLHIV 41K Graph Classification

Mathematical Modeling PATTERN 14K Node Classification

Let s = supl∈N+
sl with sl denoting the maximum singular value of Wl, the

major theorem and their implications for GCNs is stated as follows:

Theorem 1. For any initial value X(0), the output of l-th layer X(l) satisfies
dM(X(l)) ≤ (sλ)ldM(X(0)). In particular, dM(X(l)) exponentially converges to
0 when sλ < 1.

Proofs of Prop. 1 and Th. 1 are formulated in [15].
Intuitively, the representations X align subsequently with the subspace M,

where the distance between both converges to zero. Therefore, it can also be
interpreted as information loss of graph neural nets in the limit of infinite layers.

The theoretical justification for the routing mechanism applied in our SEA
models comes to light when we exploit the monotonous behavior of the expo-
nential decay where the initial distance dM(X(0)) is treated as a constant value.
The architecture includes the experts in a cascading manner, where the routing
mechanism allows to point to each of the (dM(fl(X)))l=1,...,L, separately. From
Th. 1, we get:

dM(X(L)) ≤ (sλ)LdM(X(0)) ≤ (sλ)L−1dM(X(0))

≤ . . . ≤ (sλ)1dM(X(0)),

where each inequality is supported by the output of the l-th expert, sepa-
rately:

L-th expert: dM(X(L)) ≤ (sλ)LdM(X(0))

L-1-th expert: dM(X(L−1)) ≤ (sλ)L−1dM(X(0))

. . . . . . ≤ . . .
1-st expert: dM(X(1)) ≤ (sλ)1dM(X(0))

Hence, our architecture does not suffer from overs-smoothing the same way as
standard GNNs, as each captures a different distance dM compared to using a
GNN where a pre-defined number of layer updates is applied for all nodes equally
and potentially leading to an over-smoothed representation.

5 Evaluation

5.1 Experimental Setting

Datasets.
ZINC [10] is one of the most popular real-world molecular dataset consisting
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of 250K graphs. A subset consisting of 10K train, 1K validation, and 1K test
graphs is used in the literature as benchmark [4].

We also evaluate our models on ogbg-molhiv [8]. Each graph within the
dataset represents a molecule, where nodes are atoms and edges are chemical
bonds.

A benchmark dataset generated by the Stochastic Block Model (SBM) [1] is
PATTERN. The graphs within this dataset do not have explicit edge features.
The benchmark datasets are summarized in Tab. 1.

Implementation Details.
Our implementation uses PyTorch, Deep Graph Library (DGL) [21], and OGB
[8]. The models are trained on an NVIDIA GeForce RTX 2080 Ti. 2

Model Configuration.
We use the Adam optimizer [11] with an initial learning rate ∈ {1e-3, 1e-4}. We
apply the same learning rate decay strategy for all models that half the learning
rate if the validation loss does not improve over a fixed number of 5 epochs.
We tune the pairing (#heads,hidden dimension) ∈ {(4, 32), (8, 56), (8, 64))} and
use readout ∈ {sum} as function for inference on the whole graph informa-
tion. Batch Normalization and Layer Normalization are disabled, whereas resid-
ual connections are activated per default in GTLs. For dropout, we tuned the
value to be ∈ {0, 0.01, 0.05, 0.07, 0.1} and a weight decay ∈ {5e-5, 5e-7}. For
the number of graph shells, i.e, number of experts being used, we report values
∈ {4, 6, 8, 10, 12}. As aggregation function we use Agg ∈ {mean} for Eq. 6. As
laplacian encoding, the 8 smallest eigenvectors are used.

5.2 Prediction Tasks

In the following series of experiments, we investigate the performance of the
Graph Shell Attention mechanism on graph-level prediction tasks for the datasets
ogbg-molhiv [8] and ZINC [10], and a node-level classification task on PATTERN
[1]. We use commonly used metrics for the prediction tasks as they are used in
[4], i.e., mean absolute error (MAE) for ZINC, the ROC-AUC score on ogbg-
molhiv, and the accuracy on PATTERN.

Competitors. We evaluate our architectures against state-of-the-art GNN
models achieving competitive results. Our report subsumes the vanilla GCN [12],
GAT [20] that includes additional attention heuristics, or more recent GNN ar-
chitectures building on top of Transformer-enhanced models like SAN [13] and
Graphormer [24]. Moreover, we include GIN [23] that is more discriminative
towards graph structures compared to GCN [12], GraphSage [6], and DGN [2]
being more discriminative than standard GNNs w.r.t the Weisfeiler-Lehman 1-
WL test.

2 Code: https://github.com/christianmaxmike/SEA-GNN
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Table 2: Comparison to state-of-the-art; results are partially taken from [13, 4];
color coding (gold/silver/bronze)

ZINC
Model #params. MAE

GCN [12] 505K 0.367
GIN [23] 509K 0.526
GAT [20] 531K 0.384
SAN [13] 508K 0.139

Graphormer-Slim [24] 489K 0.122

Vanilla GTL 83K 0.227
SEA-GTL 347K 0.212

SEA-aggregated 112K 0.215
SEA-2-hop 430K 0.159

SEA-2-hop-aug 709K 0.189

(a) ZINC [10]

OGBG-MOLHIV
Model #params. %ROC-

AUC

GCN-GraphNorm [12] 526K 76.06
GIN-VN [23] 3.3M 77.80

DGN [2] 114K 79.05
Graphormer-Flag [24] 47.0M 80.51

Vanilla GTL 386K 78.06
SEA-GTL 347K 79.53

SEA-aggregated 133K 80.18
SEA-2-hop 511K 80.01

SEA-2-hop-aug 594K 79.08

(b) ogbg-molhiv [8]

PATTERN
Model #params. % ACC

GCN [12] 500K 71.892
GIN [23] 100K 85.590
GAT [20] 526K 78.271

GraphSage [6] 101K 50.516
SAN [13] 454K 86.581

Vanilla GTL 82K 84.691
SEA-GTL 132K 85.006

SEA-aggregated 69K 57.557
SEA-2-hop 48K 86.768

SEA-2-hop-aug 152K 86.673

(c) PATTERN [1]
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Results. Tables 2a, 2b, and 2c summarize the performances of our SEA
models compared to baselines on ZINC, ogbg-molhiv, and PATTERN. Vanilla
GTL shows the results of our implementation of the GNN model including Graph
Transformer Layers [3]. SEA-2-hop includes the 2-hop connection within the
input graph, whereas SEA-2-hop-aug process the input data the same way as
the 2-hop heuristic, but uses additional feedforward networks for computing Q,
K, V values for the 2-hop neighbors.

For PATTERN, we observe the best result using the SEA-2-hop model,
beating all other competitors. On the other hand, distributing an aggregated
value to neighboring nodes according to SEA-aggregated yields a too coarse
view for graphs following the SBM and loses local graph structure.

In the sense of Green AI [17] that focuses on reducing the computational
cost to encourage a reduction in resources spent, our architecture reaches state-
of-the-art performance on ogbg-molhiv while drastically reducing the number
of parameters being trained. Comparing SEA-aggregated to the best result
reported for Graphormer [24], our model economizes on 99.71% of the number
of parameters while still reaching competitive results.

The results on ZINC enforces the argument of using individual experts com-
pared to vanilla GTLs, where the best result is reported for SEA-2-hop.

5.3 Number of Shells

Next, we examine the performance w.r.t the number of experts. Notably, increas-
ing the number of experts correlated with the number of Graph Shells which are
taken into account. Table 3 summarizes the results where all other hyperparam-
eters are frozen, and we only have a variable size in the number of experts. We
train each model for 500 epochs and report the best-observed metrics on the
test datasets. We apply an early stopping heuristic, where we stop the learn-
ing procedure if we have not observed any improvements w.r.t the evaluation
metrics or if the learning rate scheduler reaches a minimal value which we set to
10−6. Each evaluation on the test data is conducted after 5 epochs, and the early
stopping is effective after 10 consecutive evaluations on the test data with no im-
provements. First, note that increasing the number of experts also increases the
model’s parameters linearly. This is due to additional routings and linear layer
being defined for each expert separately. Secondly, we report also the average
running time in seconds [s] on the training data for each epoch. By construc-
tion, the running time correlates with the number of parameters that have to be
trained. The number of parameters differs from one dataset to another with the
same settings due to a different number of nodes and edges within the datasets
and slightly differs if biases are used or not. Note that we observe better results
of SEA-aggregated by decreasing the embedding size from 64 to 32, which also
applies for the PATTERN dataset in general. The increase of parameters of the
augmented 2-hop architecture SEA-2-hop-aug is due to the additional feedfor-
ward layers being used for the k-hop neighbors to compute the inputs Q,K, V
in the graph transformer layer. Notably, we also observe that similar settings
apply for datasets where the structure is an important feature of the graph,
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Table 3: Influence of the number of experts applied on various SEA models; best
configurations are highlighted in green
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Table 4: Influence of parameter k for the SEA-k-hop model; best configuration
for each model is highlighted in green

ZINC OGBG-MOLHIV PATTERN
Model #exp. k #prms MAE #prms %ROC-

AUC
#prms %ACC

SEA-k-hop

6
2 265K 0.213 263K 77.27 69K 86.768
3 266K 0.191 263K 76.15 69K 86.728
4 266K 0.316 263K 73.48 69K 86.727

10
2 430K 0.159 428K 78.38 111K 86.680
3 433K 0.171 428K 74.67 111K 86.765
4 433K 0.239 428K 73.72 111K 86.725

like in molecules (ZINC + ogbg-molhiv). In contrast to that is the behavior on
graphs following the stochastic block model (PATTERN). On the latter one, the
best performance could be observed by including k-hop information, whereas an
aggregation yields too simplified features to be competitive. For the real-world
molecules (ZINC + ogbg-molhiv) datasets, we observe that more experts boost
the performance for the various SEA extensions.

5.4 Stretching Locality in SEA-k-hop

Lastly, we investigate the influence of the parameter k for the SEA-k-hop model.
Generally, by increasing the parameter k, the model diverges to the full model
being also examined for the SAN architecture explained in [13]. In short, the
full setting takes edges into account that is given by the input data and also
sends information over non-existent edges, i.e., the argumentation is on a full
graph setting. In our model, we smooth the transition from edges being given
in the input data to the full setting that naturally arises when k, the number
of hops, is set to a sufficiently high number. Table 4 summarizes the results for
the non-augmented model, i.e., no extra linear layers are used for each k-hop
neighborhood. The number of parameters stays the same by increasing k.

5.5 Distribution of Experts

We evaluate the distributions of the experts being chosen to compute the nodes’
representations in the following. We set the number of experts to 8. Figure 3 sum-
marizes the relative frequencies of the experts being chosen on the datasets ZINC,
ogbg-molhiv, and PATTERN. Generally, the performance of the shell attention
heuristic degenerates whenever we observe expert collapsing. In the extreme case,
just one expert expresses the mass of all nodes, and the capability to distribute
nodes’ representations over several experts is not leveraged. To overcome expert
collapsing, we can use a heuristic where in the early stages of the learning proce-
dure, an additional epsilon parameter ε introduces randomness. Like a decaying
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ZINC ogbg-molhiv PATTERN

(a) SEA-gnn

ZINC ogbg-molhiv PATTERN

(b) SEA-aggregated

ZINC ogbg-molhiv PATTERN

(c) SEA-2-hop

ZINC ogbg-molhiv PATTERN

(d) SEA-2-hop-aug

Fig. 3: Distribution of 8 experts for models SEA-GNN, SEA-aggregated, SEA-
2-hop, and SEA-2-hop-aug for datasets ZINC, ogbg-molhiv and PATTERN.
Relative frequencies are shown for values ≥ 1%. Numbers attached to the slices
refer to the respective experts.



16 Frey et al.

greedy policy in Reinforcement Learning (RL), we choose a random expert with
probability ε and choose the expert with the highest probability according to
the routing layer with a probability of 1 − ε. The epsilon value slowly decays
over time. This ensures that all experts’ expressiveness is being explored to find
the best matching one w.r.t to a node u and prevents getting stuck in a local
optimum. The figure shows the distribution of experts that are relevant for the
computation of the nodes’ representations. For illustrative purposes, values be-
low 1% are omitted. Generally, nodes are more widely distributed over all experts
in the molecular datasets - ZINC and ogbg-molhiv - for all models compared to
PATTERN following a stochastic block model. Therefore, various experts are
capable of capturing individual topological characteristics of molecules better
than vanilla graph neural networks for which over-smoothing might potentially
occur. We also observe that the mass is distributed to only a subset of the avail-
able experts for the PATTERN dataset. Hence, the specific number of iterations
is more expressive for nodes within graph structures following SBM.

6 Conclusion

We introduced the theoretical foundation for integrating an expert heuristic
within transformer-based graph neural networks. This opens a fruitful direction
for future works that go beyond successive message-passing to develop even more
powerful architectures in graph learning. We provide an engineered solution that
allows selecting the most representative experts for nodes in the input graph. For
that, our model exploits the idea of a routing layer steering the nodes’ represen-
tations towards the individual expressiveness of dedicated experts. As experts
process different subgraphs starting from a central node, we introduce the ter-
minology of Graph Shell Attention (SEA), where experts solely process nodes
that are in their respective receptive field. Therefore, we gain expressiveness by
capturing varying short- and long-term dependencies expressed by individual
experts. In a thorough experimental study, we show on real-world benchmark
datasets that the gained expressiveness yields competitive performance com-
pared to state-of-the-art results while being more economically. Additionally, we
report experiments that stress the number of graph shells that are taken into
account.
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