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Abstract. Unsupervised domain adaptation aims to transfer knowledge
from the labeled source domain to the unlabeled target domain. Recently,
self-supervised learning (e.g. contrastive learning) has been extended to
cross-domain scenarios for reducing domain discrepancy in either instance-
to-instance or instance-to-prototype manner. Although achieving remark-
able progress, when the domain discrepancy is large, these methods would
not perform well as a large shift leads to incorrect initial pseudo labels. To
mitigate the performance degradation caused by large domain shifts, we
propose to construct multiple intermediate prototypes for each class and
perform cross-domain instance-to-prototype based contrastive learning
with these constructed intermediate prototypes. Compared with direct
cross-domain self-supervised learning, the intermediate prototypes could
contain more accurate label information and achieve better performance.
Besides, to learn discriminative features and perform domain-level dis-
tribution alignment, we perform intra-domain contrastive learning and
domain adversarial training. Thus, the model could learn both discrimina-
tive and invariant features. Extensive experiments are conducted on three
public benchmarks (ImageCLEF, Office-31, and Office-Home), and the
results show that the proposed method outperforms baseline methods.

Keywords: Unsupervised domain adaptation · Transfer learning · Con-
trastive learning · Intermediate prototypes.

1 Introduction

Deep learning has achieved remarkable performance in various computer vision
tasks, such as image classification [18,13], semantic segmentation [21], and object
detection [12]. Despite achieving remarkable progress, deep neural networks
trained on a specific domain often fail to generalize to new domains because of
the domain shift problem [28]. Unsupervised domain adaptation (UDA) could
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overcome this challenge by transferring knowledge from a fully-labeled source
domain to an unlabeled target domain.

Most existing deep domain adaptations fall into two strategies: moment
matching and adversarial domain adaptation. The former aims to reduce the
domain discrepancy by optimizing the statistical distribution discrepancy, such
as Maximum Mean Discrepancy (MMD) distance [22], Joint Maximum Mean
Discrepancy (JMMD) distance [24], and Wasserstein distance [32]. The latter
reduces the domain discrepancy by the adversarial training across domains where
a domain discriminator is introduced to distinguish the source domain from the
target domain [10]. As the domain adversarial loss only achieves domain-level
alignment and may lead to class mismatch, the following methods focus on
class-level alignment [23,3] to achieve better adaptation.

Recently, some works have attempted to bridge the domain gap by extending
traditional self-supervised learning (SSL, e.g., contrastive learning (CL)), which
is learned from a single domain, to performing SSL across domains [17,40,2,36].
Early methods focus on instance-to-instance contrastive learning [17,2,36]. These
methods differ in how to construct positive pairs and negative pairs. For example,
CDS [17] proposes a two-stage pipeline (i.e., SSL followed by domain adaptation)
and cross-domain instance-based contrastive loss is adopted for learning domain-
invariant features across domains. It selects a sample in the other domain as a
positive pair and other samples as negative pairs. However, such a method regards
each instance as a class, the semantic structure of the data (class information)
is not encoded by the learned representations. To overcome this challenge, the
following methods focus on semantic aware contrastive learning. TCL [2] and
CDCL [36] perform instance-to-instance contrastive learning and they select
the samples from the same class of the other domain as positive pairs and the
samples from other classes as negative pairs. Besides, different from instance-to-
instance manner, PCS [40] proposes prototypical cross-domain self-supervised
learning, where cross-domain instance-to-prototype matching is designed to
transfer knowledge from source to the target in a more robust manner. The
semantic information is encoded in the class prototypes and they regard the
corresponding class prototype in the other domain as positive pair and other
prototypes as negative pairs. Although achieving remarkable progress, when there
is a large shift across domains, these methods would not perform well. As these
methods rely on pseudo labels for training, the initial pseudo labels are largely
affected by the distribution discrepancy. The larger the shift is, the worse pseudo
labels we will get. In such cases, the learned model would be negatively affected
by mislabeled positive and negative pairs, leading to poor performance.

In this paper, we would explore how to better perform contrastive learning to
bridge the domain gap under a large domain shift. Firstly, we follow the line of
instance-to-prototype contrastive learning, as cross-domain instance-to-instance
matching is very sensitive to abnormal samples [40]. Secondly, recent progress in
UDA [26,7] reveals that intermediate domains across domains could effectively
deal with large domain shifts and achieve better performance. These intermediate
domain based methods focus on the sample-level intermediate domain. In this
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Fig. 1. Illustration of our method. Left: previous method performs direct cross-domain
instance-to-prototype contrastive learning to bridge domain shift. But it could not
perform well when domain shift is large. Right: To overcome this problem, we construct
multiple intermediate prototypes and perform bidirectional cross-domain instance-to-
prototype contrastive learning based on these intermediate prototypes.

paper, we turn to the prototype-level intermediate domain and construct multiple
intermediate prototypes for each class to perform contrastive learning. To achieve
this, multiple intermediate class prototypes are constructed by a fixed ratio mixup
[41] between the source prototypes and the target prototypes [26]. Compare with
the sample-level intermediate domain, the intermediate prototypes would be more
robust to outliers in the source domain and could contain the sample relations
in each domain. Moreover, as shown in Figure 1 and similar to the sample-level
intermediate domain, an augmented class prototype close to the source domain
has more reliable label information but is less similar to the target domain.
By contrast, The class prototype close to the target domain has more relevant
information about the target domain, but the label information is less accurate.

To this end, we propose Intermediate prototype Contrast (InCo), a novel
UDA method that constructs multiple intermediate prototypes for performing
cross-domain instance-to-prototype contrastive learning. InCo contains three ma-
jor components to learn semantic, domain-invariant, and discriminative features.
As the core component of our method, InCo performs the inter-domain con-
trastive learning based on intermediate prototypes to mitigate the key challenge
of large domain shift. Specially, we construct multiple intermediate class proto-
types to bidirectionally apply instance-to-prototype contrastive learning. Before
constructing intermediate prototypes, we firstly construct the prototypes in both
domains. The source prototypes are computed as the mean representations of
each class with true labels, while the target prototypes are computed with pseudo
labels. The pseudo labels are obtained by clustering where the class center is
initiated by source prototypes. Then, we apply a fixed ratio mixup between the
source prototypes and target prototypes to construct intermediate prototypes.
In inter-domain contrastive learning, for a given sample (either source domain
or target domain), the corresponding class prototype near the other domain
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is selected as the positive pair and other prototypes are selected as negative
pairs. Compared with direct cross-domain matching, the label information of
intermediate class prototypes is more accurate as the source domain contains
true labels. Thus, it could better deal with the large shift. Besides, similar to
previous methods, we also adopt contrastive learning in each domain to learn
discriminative features. As the instance-to-prototype contrastive learning, to
some content, could be regarded as class-level alignment, we also introduce the
domain adversarial loss [10] to further decreases the domain-level distribution
discrepancy. Combining these losses together, we could learn both invariant and
discriminative features.

We conduct extensive experiments to validate the effectiveness of the proposed
method on standard DA benchmarks such as ImageCLEF, Office-31, and Office-
Home. We also conduct lots of ablation studies to analyze the proposed method.
To sum up, the main contributions of this paper are summarized as follows,

– We propose to construct intermediate prototypes by fixed-ratio mixup to
perform contrastive learning for adaptation, which could deal with the large
domain shift.

– We follow the instance-to-prototype manner and design bidirectional inter-
domain contrastive learning to learn invariant features. Besides, with the
intra-domain contrastive learning loss and domain adversarial loss, the model
could learn both invariant and discriminative semantic features.

– We conduct extensive experiments on three real-world datasets, the results
show the effectiveness of the proposed method.

2 Related Work

2.1 Unsupervised Domain Adaptation

A classical domain adaptation theory [2] indicates that it is crucial to reduce the
distribution discrepancy across domains to achieve better adaptation. Based on
this theory, many domain adaptation methods have been proposed and they are
divided into moment matching and adversarial domain adaptation. The goal of
the former is to reduce the statistical distribution discrepancy across domains.
The widely used statistical measurements include the first-order moment [22], the
second-order moment [33], and other statistical measurements [32]. Adversarial
domain adaptation reduces the distribution discrepancy in an adversarial manner
[10,4]. DANN [10] introduces a domain discriminator which plays a min-max game
with the feature extractor by the domain adversarial loss. MCD [31] introduces
two classifiers as a discriminator to play a min-max game with the feature
extractor. Considering the practical multi-class problem, MDD [45] proposes a
margin-based theory, and a new method based on this theory is proposed. As
these methods focus on domain-level alignment, following methods [3] adopt the
multi-class discriminator and considers both the domain and class information
to achieve class-level alignment.
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2.2 Contrastive Learning

Contrastive learning is a promising part in unsupervised learning [1,11,27]. The
standard manner of contrastive learning is to learn discriminative representations
by pulling the query together with positive pairs and pushing apart from negative
pairs. Most methods focus on instance-based methods where each sample is
regarded as a class. In these methods, the positive pairs are generated by creating
different augmentations of each sample and the negative pairs are randomly
chosen from different samples. However, the standard contrastive learning [16]
methods have not considered task-specific semantic information. To overcome this
problem, supervised contrastive learning has been proposed to leverage category
labels to select positive and negative pairs. Furthermore, prototype contrastive
learning [19] considered the semantic information in an unsupervised setting by
clustering the samples to leverage the semantic information.

2.3 Contrastive Learning for Domain Adaptation

Although achieving remarkable progress, existing contrastive learning approaches
can not be directly used in the standard UDA setting as they are performed in
a single domain. While some methods have attempted to attend standard con-
trastive learning to cross-domain scenarios and have achieved satisfactory results.
CDS [17] proposes a two-stage pipeline (i.e., SSL followed by domain adaptation),
and cross-domain instance-based supervised loss is adopted for learning domain-
invariant features across domains. However, the semantic structure of the data
(class information) is not encoded by the learned representations. To overcome
this challenge, the following methods focus on semantic aware contrastive learning.
TCL [2] and CDCL [36] perform instance-to-instance contrastive learning where
the positive pairs are selected from the same class in the other domain and the
negative pairs are from other classes. Besides, different from instance-to-instance
based manner, PCS [40] proposes prototypical cross-domain self-supervised learn-
ing, where cross-domain instance-to-prototype matching is designed to transfer
knowledge from source to the target in a more robust manner. The semantic
information is encoded in the class prototypes and they regard the corresponding
class prototype in the other domain as positive pair and other prototypes as
negative pairs. Although achieving remarkable progress, these methods would
not perform well under large shifts.

3 Method

3.1 Problem Definition and Overall Idea

In UDA, we are given a labeled source domain Ds = {(xs
i , y

s
i )}

Ns
i=1 and an

unlabeled target domain Dt = {(xt
j)}

Nt
j=1. The source samples and target samples

are from different distributions Ps(x, y) and Pt(x, y). Ds and Dt contain the
shared K categories, i.e., Ys = Yt = {1, ...K}. The goal of UDA is to learn a
generalized model with Ds and Dt that could classify the target samples correctly.
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In this section, we describe InCo in detail. As shown in Figure 2, our model
consists of four basic modules, a feature extractor g that maps the samples into
feature embeddings, a project head h where the contrastive learning is performed,
a domain discriminator D that performs domain adversarial training, and a
classifier f that classifies the features into K categories. InCo follows the line
of instance-to-prototype manner and uses intermediate prototypes to perform
cross-domain contrastive learning so that it could effectively bridge the large
discrepancy domains. Specially, we construct intermediate prototypes by fixed
ratio mixup and design the bidirectional inter-domain contrastive learning based
on these intermediate prototypes. Besides, we also perform contrastive learning
within each domain to learn discriminative features. Moreover, inter-domain
contrastive learning could achieve class-level alignment, we further introduce
domain adversarial training to achieve domain-level alignment. Combing these
losses together, the model could learn both invariant and discriminative features.
In the next subsections, we introduce each loss in detail.

3.2 Revisit of Contrastive Learning

Contrastive learning [27,11,1] aims to learn discriminative features from unlabeled
data in the form of positive/negative pairs by a contrastive loss. We denote the
query and key vector as q, k, and k+ and k− as the positive and negative key
for the query q. The goal of contrastive learning is to learn representations
such that the query and positive key vector is as close as possible, meanwhile,
the query and the negative key vector is far away from each other. A popular
framework to achieve this goal is to formulate the contrastive learning as a
‘two-class’ classification problem, and the loss is formulated as,

L(q, k+, k−) = −log exp(q · k+/T )
exp(q · k+/T ) +

∑
k− exp(q · k−/T )

(1)

Here T is the temperature parameter, and q · k+ denotes the inner product
between q and k+.

3.3 Intra-domain Contrastive Learning

As shown in the above subsection, contrastive learning could learn discriminative
features for downstream visual tasks by a contrastive loss. Following that, we
perform contrastive learning within each domain to learn discriminative represen-
tation for every single domain. As instance-to-instance based CL methods treat
each sample as a single class, regardless of the semantic information, we follow
the previous method [40] and adopt instance-to-prototype based CL, where the
prototypes for all classes are set as the key vectors. By the intra-domain CL loss,
representations with intra-class compactness and inter-class discrimination could
be learned.

To start with, we define every prototype as the mean representation of each
class to convey high-level class information. And we maintain two memory banks
Qs and Qt for source and target prototypes respectively:
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Fig. 2. An overview of InCo. In addition to conventional classification loss on labeled
source samples and entropy minimization loss on unlabeled target samples, inter-domain
contrastive learning is proposed to bridge the domain gap, where the corresponding
prototype near the other domain is selected as the positive pair and other prototypes
are selected as negative pairs. We also perform intra-domain contrastive learning within
each domain and domain adversarial training, such that the model could learn both
invariant and discriminative features.

Qs = [µs
1, . . . , µ

s
K ] , Qt =

[
µt
1, . . . , µ

t
K

]
, (2)

where µk stores the prototype of class k for each domain. After initialization, the
memory banks are updated with a momentum m in every batch during training:

µs
k ← mµs

k + (1−m)
1

|Dk
s |

∑
xs
i∈Dk

s

vs
i , µt

k ← mµt
k + (1−m)

1

|Dk
t |
∑

xt
i∈Dk

t

vt
i (3)

where vi = h (g (xi)) is the L2-normalized feature embedding of xi extracted
by the feature extractor g and project head h, and Dk

s/Dk
t denote the set

of source/target samples whose labels/pseudo labels (described in the later
subsection) are k in the current mini-batch.

Given a query sample xi, intra-domain contrastive learning computes the
similarity score distribution Pi over K classes based on the distances to the
prototypes, where the k-th element denotes the probability of the sample xi

belonging to the class k. For the source domain, we have

Ps
i,k =

exp(µs
k · vs

i /T )∑K
j=1 exp(µ

s
j · vs

i /T )
, (4)

where T is a temperature parameter. Similar operations are performed on target
samples and we will get Pt

i. Then we can write intra-domain contrastive loss as:

Lintra =

Ns∑
i=1

LCE (Ps
i , y

s
i ) +

Nt∑
i=1

LCE

(
Pt

i, ŷ
t
i

)
, (5)
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where ŷti is the pseudo label for target sample xt
i. As we can see, the intra-domain

contrastive loss can push the query feature vi close to the prototype indicated
by the ground truth label (or pseudo label for target), and keep it away from
other prototypes. Thus, we can learn discriminative feature representations for
classification in each domain.

3.4 Inter-domain Contrastive Learning

The domain discrepancy across domains posits a unique obstacle for learning
effective representations that perform well in the target domain. Recently, some
methods have attempted to attend the standard contrastive learning to the cross-
domain scenario for bridging domain discrepancy. The main challenge of applying
contrasting learning to UDA lies in how to construct positive and negative pairs
in a cross-domain scenario. To retain semantic information, some methods select
the sample from the same class of the other domain as positive pairs and the
samples from other classes as negative pairs according to the true labels or pseudo
labels. Besides, some methods adopt cross-domain instance-to-prototype based
contrastive learning where the prototype (instead of the samples) of the same
class in the other domain is selected as the positive pair and the prototypes of
other classes are as the negative pairs. However, both strategies have drawbacks.
For the former, the instance-to-instance matching is very sensitive to abnormal
samples, especially under domain shift. For the latter, under a large domain shift,
direct cross-domain contrastive learning would not perform well as the large
domain shift would lead to incorrect initial pseudo labels.

To mitigate these problems, we propose to perform an intermediate domain
prototypical contrastive learning. We firstly construct multiple intermediate
prototypes by fixed ratio mixup between the source class prototypes and the
target prototypes. Then, for the source domain, the intermediate prototypes near
the target domain are used to perform cross-domain contrastive learning. The
positive pair is the intermediate prototype of the same class close to the target
domain and the negative pairs are the intermediate prototypes of the other classes
close to the target domain. And the similar strategy is used for the target samples.
In this manner, we could not only reduce the domain discrepancy but also prevent
the semantic structure of the data. Compared with direct cross-domain matching,
the label information of the intermediate prototype is more accurate as the source
domain contains true labels and could be less affected by initial pseudo labels.

Specially, we construct a pair of intermediate prototypes, {µst
k }Kk=1 and

{µts
k }Kk=1 using source prototypes and target prototypes with a fixed ratio mixup:

µst
k = λstµ

s
k + (1− λst)µt

k, µts
k = λtsµ

s
k + (1− λts)µt

k (6)

where λst ∈ (0.5, 1) and λts ∈ (0, 0.5) are two fixed mixup ratios. We always set
λst + λts = 1 to get a pair of domain-symmetric intermediate prototypes. As we
can see, the prototypes µst is close to the source domain and the prototypes µts

is close to the target domain.
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Taking advantage of the intermediate prototypes, we could alleviate the
domain shift with instance-to-prototype contrastive learning. The prototypes
µst close to the source domain have more reliable label information because the
source prototypes µs computed with ground truth source label are account for a
large proportion. By contrast, the prototypes µts close to the target domain have
strong target domain relevance but weak label confidence. Thus, we proposed
the inter-domain contrastive loss for bidirectional transfer.

Given a query feature vs
i in the source domain, and the intermediate prototypes

{µts
k }Kk=1 close to the target domain, inter-domain contrastive loss first computes

the similarity distribution Pts
i , which is,

Pts
i,k =

exp(µts
k · vs

i /T )∑K
j=1 exp(µ

ts
j · vs

i /T )
(7)

As there are true labels in the source domain, we perform cross-entropy loss
on the pair of source instances and target intermediate prototypes to fully use
ground truth label information,

Lts =
∑Ns

i=1
LCE

(
Pts

i , y
s
i

)
(8)

Similarly, we compute Pst
i using the target feature vt

i and intermediate
prototypes {µst

k }Kk=1 close to the source domain. Then, we perform entropy
minimization on the similarity distribution Pst

i , which could find the match
between the target feature and source intermediate prototypes but rely less on
the label information:

Lst = −
Nt∑
i=1

K∑
k=1

Pst
i,k logP

st
i,k (9)

The final inter-domain contrastive loss is:

Linter = Lst + Lts (10)

3.5 Other Losses

Domain adversrial loss. The inter-domain contrastive learning could reduce
domain discrepancy and achieve domain alignment. But it only focuses on class-
level alignment and does not explicitly reduce the domain-level distribution
shift across domains. To deal with this problem, InCo follows the adversarial
manner [10], and introduces a domain discriminator D to distinguish the source
feature and target feature. While the feature extractor g is trained to confuse the
domain discriminator. By this adversarial loss, the feature extractor could learn
domain-invariant features. The adversarial object between feature extractor g
and domain discriminator D can be written as:

Ladv = Exs
i∼Ds

[logD(g(xs
i ))] + Ext

i∼Dt
[log(1−D(g(xt

i)))] (11)
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Classification loss and entropy minimization loss. To capture the source
supervised information, the model is trained to minimize the empirical risk on
labeled samples as conventional supervised methods. The feature extractor g
maps a source sample xs

i into the feature. Then, the classifier f would classify
the feature into K categories, i.e., p(y|xs

i ) = f(g(xs
i )). Then, the cross-entropy

loss LCE(·, ·) is adopted to minimize the empirical risk:

Lcls = E(xs
i ,y

s
i )∼Ds

LCE(y
s
i , p(y|xs

i )) (12)

As there are no labeled samples in the target domain, we adopt the entropy
minimization loss to pass through the low-density regions of the target feature
space, which is,

Lent = Ext
i∼Dt

−
∑K

k=1
pk(y|xt

i) log pk(y|xt
i) (13)

where pk(y|xt
i) is the k-th dimension of p(y|xt

i) and p(y|xt
i) = f(g(xt

i)) is the
prediction of sample xt

i by the model. The combined loss is,

Lcls−ent = Lcls + Lent (14)

3.6 Overall

Generation of pseudo labels. Since the ground truth labels are not available
in the target domain during training, we perform k-means clustering to generate
pseudo labels for the target samples. Due to the randomness in clustering, we use
class prototypes from the source domain as the initial clustering centers and set
the number of clusters as K. In this case, the clustering algorithm can be seen
as the distance matching between target features and source prototypes which
could better maintain the target data structure and could easily use the cluster
label as the target pseudo label ŷti .

Training. The InCo learning framework performs intra-domain contrastive loss,
inter-domain contrastive loss, domain adversarial loss, and classification loss.
Together with the momentum update in the memory bank, the overall learning
objective is:

min
g,h,f
Lcls−ent + λintra · Lintra + λinter · Linter + λadv · Ladv (15)

max
D
Ladv (16)

where λintra, λinter and λadv are hyper-parameters. Following previous method
[10], the min-max training procedure in Eq. 15 and 16 is accomplished by applying
a Gradient Reversal Layer (GRL). GRL behaves as the identity function during
the forward propagation and inverts the gradient sign during the backward
propagation, hence driving the parameters to maximize the output loss.
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Table 1. Accuracy (%) on the Office-31 dataset (ResNet-50).

Method A→W D→W W→D A→D D→A W→A Avg

ResNet-50 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DANN 82.0 96.9 99.1 79.7 68.2 67.4 82.2
MSTN 91.3 98.9 100.0 90.4 72.7 65.6 86.5
CDAN+E 94.1 98.6 100.0 92.9 71.0 69.3 87.7
DMRL 90.8 99.0 100.0 93.4 73.0 71.2 87.9
SymNets 90.8 98.8 100.0 93.9 74.6 72.5 88.4
PCS 92.6 96.6 99.4 95.8 76.6 75.8 89.5
GSDA 95.7 99.1 100.0 94.8 73.5 74.9 89.7
PCT 94.6 98.7 99.9 93.8 77.2 76.0 90.0

InCo 94.0 99.1 100.0 95.8 77.3 77.0 90.5

4 Experiments

4.1 Datasets

We evaluate InCo on three common benchmarks based on previous works [22,23].
Office-311 is a classical real-world dataset for UDA. It has 4110 images with
31 classes shared with three domains: Amazon (A), Webcam (W), and DSLR
(D). In this dataset, six adaptation tasks are constructed. ImageCLEF2 is
composed of three domain with 12 classes: Caltech-256 (C), ImageNet ILSVRC
2012 (I), and Pascal VOC 2012 (P). Office-Home3 is a more difficult dataset,
which consists of four domains: Artistic (Ar), Clipart (Cl), Product (Pr), and
Real-World (Rw), containing 15500 images with 65 classes.

4.2 Setup

We use PyTorch to implement the proposed method. We use ResNet-50 [13]
pre-trained on ImageNet [30] as the backbones for all datasets. To enable a fair
comparison with the existing method [40], we remove the last FC layer in ResNet
and implement a projection head h with the default nonlinear projection and an
additional hidden layer activated by ReLU as same as SimCLR [1]. The output
dimension of h is 512 and L2-normalizing is performed on the output features.
Following DANN [10], we use the same architecture for the domain discriminator
D and the classifier f . We use SGD with a momentum of 0.9 and weight decay
5e−4 to train the InCo for all the experiments. The initial learning rate is 0.001
for the pre-trained feature extractor and 0.01 for other modules. Besides, we split
large batch size into small parts, and use gradient accumulation in Pytorch which
could backward gradient after multiple forward iterations to achieve the same
1 https://www.hemanthdv.org/officeHomeDataset.html
2 https://www.imageclef.org/2014/adaptation
3 https://www.hemanthdv.org/officeHomeDataset.html

https://www.hemanthdv.org/officeHomeDataset.html
https://www.imageclef.org/2014/adaptation
https://www.hemanthdv.org/officeHomeDataset.html
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Table 2. Accuracies (%) on the ImageCLEF dataset (ResNet-50).

Method I → P P → I I → C C → I C → P P → C Avg

ResNet-50 74.8 83.9 91.5 78.0 65.5 91.2 80.7
DAN 74.5 82.2 92.8 86.3 69.2 89.8 82.5
DANN 75.0 86.0 96.2 87.0 74.3 91.5 85.0
MADA 75.0 87.9 96.0 88.8 75.2 92.2 85.8
iCAN 79.5 89.7 94.7 89.9 78.5 92.0 87.4
CDAN 77.7 90.7 97.7 91.3 74.2 94.3 87.7
A2LP 79.6 92.7 96.7 92.5 78.9 96.0 89.4
CGDM 78.7 93.3 97.5 92.7 79.2 95.7 89.5
ETD 81.0 91.7 97.9 93.3 79.5 95.0 89.7
SymNets 80.2 93.6 97.0 93.4 78.7 96.4 89.9

InCo 79.5 94.5 96.5 94.8 80.3 96.2 90.3

effect as large batch size but obtain smoother prototypes with multiple update
operations. Specially, we use a batch size of 16 for Office-31 and ImageCLEF and
backward loss after four forward iterations. For Office-Home, we use a batch size
of 32 and backward after two forward iterations. The temperature parameter
T is fixed to 0.3, 0.5, and 0.1 for Office-31, ImageCLEF, and Office-Home. The
momentum m is 0.9 for all datasets. The hyper-parameters λintra, λinter, and
λadv are all set to 1.0 which is selected from {0.5, 1.0, 2.0}. We set mixup ration
λst = 0.8 and λts = 0.2 for all datasets with λst selected from {0.7, 0.8, 0.9}.

4.3 Baselines

We compare with InCo with four kinds of baselines:

– ResNet-50. This baseline refers to the source-only method, where only the
source samples are used for training.

– Moment matching and adversarial-based methods, including DAN
[22], DANN [10], MADA [29], MCD [31], CDAN [23], MSTN [38], iCAN
[42], MDD [45], SymNets [44], GSDA [14], DMRL [37], ETD [20], A2LP [43],
MDD+IA [15], BNM [5], BDG [39], GVB [6], SRDC [34], and CGDM [9].

– Prototype-based methods, including PCT [35].
– Contrastive learning based methods, including PCS [40].

4.4 Results

Table 1 displays the performances of various models on Office-31. Generally,
InCo outperforms the baseline method in most transfer tasks (5/6). It is noticed
that InCo is especially effective on harder transfer tasks, e.g. W→A and A→D,
where the two domains are substantially different. Moreover, compared with PCS,
which adopts direct cross-domain instance-to-prototype contrastive learning, InCo
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Table 3. Classification accuracies (%) on the Office-Home dataset (ResNet-50).

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
MCD 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
CDAN 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
BNM 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9
MDD 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
BDG 51.5 73.4 78.7 65.3 71.5 73.7 65.1 49.7 81.1 74.6 55.1 84.8 68.7
MDD+IA 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
GVB 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
SRDC 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
PCT 57.1 78.3 81.4 67.6 77.0 76.5 68.0 55.0 81.3 74.7 60.0 85.3 71.8

InCo 59.2 78.6 82.5 67.1 79.8 79.8 67.3 55.4 82.7 74.6 59.3 84.8 72.6

gets an improvement of 1%. This verifies that the intermediate prototype based
contrastive learning method is a legitimate solution in the context of domain
adaptation under large domain shifts.

Table 2 illustrates the performance comparisons on the six adaption directions
of ImageCLEF. InCo again demonstrates strong superiority over its competitors.
Particularly, InCo offers a significant performance boost on tasks C→P, P→I,
and C→I. Compared with other moment matching and adversarial domain
adaptation methods, InCo achieves better performance and the results show that
contrastive learning based methods could learn invariant features and achieve
domain alignment. Besides, by intra-domain contrastive learning, the model could
learn more discriminative features, leading to better performance.

Table 3 reports the classification accuracy of twelve transfer tasks on the
Office-Home dataset. We can see that InCo gets the best accuracy in the six
categories and obtains comparable results in others. Compared with PCT which
is a prototype based method, InCo obtains better results combined with an
intermediate prototype based contrastive learning and the improvement is 0.8%.
Moreover, Office-Home is a more challenging dataset than the other two datasets,
and we get better improvement in this dataset, which shows that InCo could
deal with large domain shifts.

4.5 Insight Analysis

Analysis of intermediate prototypes. To better understand the role of
intermediate prototypes, we conduct lots of ablation studies to analyze them. We
compare InCo with the following variants: 1) No intermediate prototypes,
where we do not construct any intermediate prototypes and perform direct cross-
domain instance-to-prototype contrastive learning. 2) Only one intermediate
prototype for each class, where only one intermediate prototype is constructed
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Table 4. Analysis of intermediate prototypes on Office-31 dataset.

Settings Average

No intermediate prototypes 89.41

One intermediate prototype (0.2) 89.31
One intermediate prototype (0.5) 89.59
One intermediate prototype (0.8) 89.76

Two intermediate prototypes (0.1+0.9) 89.94
Two intermediate prototypes (0.3+0.7) 89.75

Two intermediate prototypes (0.2+0.8, ours) 90.53

for each class and it is used to perform cross-domain instance-to-prototype
contrastive learning for samples from both domains. 3) Two intermediate
prototypes for each class, where two intermediate prototypes are constructed
for each class but with a different mixup ratio (λst = 0.9,λst = 0.8, and λst = 0.7).
The results are shown in Table 4. As we can see, in most cases, intermediate
prototype based contrastive learning methods outperform direct cross-domain
contrastive learning methods as the intermediate prototype are more accurate.
Besides, two intermediate prototypes could achieve better performance than that
of one intermediate prototype for each class (λst = 0.8), as two prototypes contain
complementary information and could better bridge two domains. Moreover, we
obverse that InCo works well with different mixup ratio, and we experimentally
find that λst = 0.8 and λts = 0.2 is the best value.

Ablation study of losses. In this subsection, we investigate the influence
of each component on the overall objective defined in Eq. 15. The results are
shown in Table 5. Only adopting the classification loss Lcls and the entropy
loss Lent gets the worst accuracy. After adding domain adversarial loss Ladv to
achieve domain-level alignment, the performance is improved to 87.32%. Then,
the intra-domain contrastive learning loss Lintra is added to learn discriminative
features, the accuracy is improved by 1.9%. Lastly, combining the cross-domain
contrastive learning loss Linter, InCo achieves the best performance.

Table 5. Ablation study of losses on Office-31 dataset.

Lcls−ent Ladv Lintra Linter Average
√

78.53√ √
87.32√ √ √
89.27

√ √ √ √
90.53
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(a) t-SNE by source-only (b) t-SNE by InCo (c) Sensitivity of 𝑻𝑻

Fig. 3. Visualization of representations learned by source-only model and InCo as well
as the parameter sensitivity of T .

Feature visualization. Figure 3(a) and 3(b) show the t-SNE [25] visualization
of the features from both domains for task Cl→Rw (65 classes) before (source-
only) and after alignment, respectively. Before alignment, there exists a large
distribution shift between the source domain and the target domain. While after
alignment the domain shift is reduced and the features of target samples have
become discriminative. Thus, the samples can be easily classified by the classifier.

Parameter sensitivity of T . We perform parameter sensitivity of the tem-
perature parameter T on Office-31. When T ≤ 1, the model would sharpen the
similarity score in contrastive learning to avoid ambiguous predictions, thus, we
set T ≤ 1, and the results under different values are shown in Figure 3(c). As we
can see, the performance raises firstly and then drops, as a smaller value would
be overconfident in the predictions and a larger value would be less confident.
We experimentally find that T = 0.3 is the best value.

5 Conclusion

In this paper, we propose a novel UDA method InCo, which performs instance-
to-prototype contrastive learning based on intermediate prototypes to deal with
large domain shifts. The intermediate prototypes are constructed with a fixed
ratio mixup between the source prototypes and target prototypes. Compared with
direct cross-domain instance-to-prototype contrastive learning, the intermediate
prototypes are more accurate and could mitigate the problem of incorrect initial
pseudo labels. Together with intra-domain contrastive learning and domain
adversarial training, the model could learn both invariant and discriminative
semantic features. The results of three real-world datasets show the effectiveness
of the proposed method. In the future, we would like to explore more difficult
scenarios such as source-free domain adaptation [8].
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