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Abstract. Graph representation learning has demonstrated improved
performance in tasks such as link prediction and node classification across
a range of domains. Research has shown that many natural graphs can
be organized in hierarchical communities, leading to approaches that
use these communities to improve the quality of node representations.
However, these approaches do not take advantage of the learned repre-
sentations to also improve the quality of the discovered communities and
establish an iterative and joint optimization of representation learning
and community discovery. In this work, we present Mazi, an algorithm
that jointly learns the hierarchical community structure and the node
representations of the graph in an unsupervised fashion. To account for
the structure in the node representations, Mazi generates node repre-
sentations at each level of the hierarchy, and utilizes them to influence
the node representations of the original graph. Further, the communities
at each level are discovered by simultaneously maximizing the modular-
ity metric and minimizing the distance between the representations of a
node and its community. Using multi-label node classification and link
prediction tasks, we evaluate our method on a variety of synthetic and
real-world graphs and demonstrate that Mazi outperforms other hierar-
chical and non-hierarchical methods.

Keywords: networks · network embedding· unsupervised learning· graph
representation learning· hierarchical clustering· community detection

1 Introduction

Representation learning in graphs is an important field, demonstrating good
performance in many tasks in diverse domains, such as social network analysis,
user modeling and profiling, brain modeling, and anomaly detection [7]. Graphs
arising in many domains are often characterized by a hierarchical community
structure [13], where the communities (i.e., clusters) at the lower (finer) levels of
the hierarchy are better connected than the communities at the higher (coarser)
levels of the hierarchy. For instance, in a large company, the graph that captures
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the relations (edges) between the different employees (nodes) will tend to form
communities at different levels of granularity. The communities at the lowest
levels will be tightly connected corresponding to people that are part of the
same team or project, whereas the communities at higher levels will be less
connected corresponding to people that are part of the same product line or
division.

In recent years, researchers have conjectured that when present, the hier-
archical community structure of a graph can be used as an inductive bias in
unsupervised node representation learning. This has led to various methods that
learn node representations by taking into account a graph’s hierarchical com-
munity structure. HARP [3] advances from the coarsest level to the finest level
to learn the node representations of the graph at the coarser level, and then
uses it as an initialization to learn the representations of the finer level graph.
LouvainNE [1] uses a modularity-based [13] recursive decomposition approach
to generate a hierarchy of communities. For each node, it then proceeds to gen-
erate representations for the different sub-communities that it belongs to. These
representations are subsequently aggregated in a weighted fashion to form the fi-
nal node representation, wherein the weights progressively decrease with coarser
levels in the hierarchy. SpaceNE [11] constructs sub-spaces within the feature
space to represent different levels of the hierarchical community structure, and
learns node representations that preserves proximity between vertices as well
as similarities within communities and across communities. Further, in recent
times, certain GNN-based approaches [10, 18] have also been proposed which ex-
ploit the hierarchical community structure while learning node representations.
However, these methods use supervised learning and require more information
to achieve good results.

Though all of the above methods are able to produce better representations
by taking into account the hierarchical community structure, the information
flow is unidirectional—from the hierarchical communities to the node repre-
sentations. We postulate that the quality of the node representations can be
improved if we allow information to also flow in the other direction—from the
node representations to hierarchical communities—which can be used to improve
the discovered hierarchical communities. Moreover, this allows for an iterative
and joint optimization of both the hierarchical community structure and the
representation of the nodes.

We present Mazi3, an algorithm that performs a joint unsupervised learning
of the hierarchical community structure of a graph and the representations of its
nodes. The key difference between Mazi and prior methods is that the commu-
nity structure and the node representations help improve each other. Mazi esti-
mates node representations that are designed to encode both local information
and information about the graph’s hierarchical community structure. By tak-
ing into account local information, the estimated representations of nodes that
are topologically close will be similar. By taking into account the hierarchical
community structure, the estimated representations of nodes that belong to the

3 Mazi is Greek for together.
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same community will be similar and that similarity will progressively decrease
for nodes that are together only in progressively coarser-level communities.

Mazi forms successively smaller graphs by coarsening the original graph using
the hierarchical community structure such that the communities at different
levels represent nodes in the coarsened graphs. Then, iterating over all levels,
Mazi learns node representations at each level by maximizing the proximity of
the representation of a node to that of its adjacent nodes while also drawing it
closer to the representation of its community. Furthermore, at each level, Mazi
learns the communities by taking advantage both of the graph topology and the
node representations. This is done by simultaneously maximizing the modularity
of the communities, maximizing the affinity among the representations of near-by
nodes by using a Skip-gram [12] objective, and minimizing the distance between
the representations that correspond to a node and its parent in the next-level
coarser graph.

We evaluate Mazi on the node classification and the link prediction tasks
on synthetic and real-world graphs. Our experiments demonstrate that Mazi
achieves an average gain of 215.5% and 9.3% over competing approaches on the
link prediction and node classification tasks, respectively. The contributions of
our paper are the following:

1. We develop an unsupervised approach to simultaneously organize a graph
into hierarchical communities and to learn node representations that account
for that hierarchical community structure. We achieve this by introducing
and jointly optimizing an objective function that contains (i) modularity-
and skip-gram-based terms for each level of the hierarchy and (ii) inter-level
node-representation consistency terms.

2. We present a flexible synthetic generator for graphs that contain hierarchi-
cally structured communities and community-derived node properties. We
use this generator to study the effectiveness of different node representation
learning algorithms.

3. We show that our method learns node representations that outperform com-
peting approaches on synthetic and real-world datasets for the node classi-
fication and link prediction tasks.

2 Definitions and Notation

Let G = (V,E) be an undirected graph where V is its set of n nodes and E is its
set of m edges. Let X ∈ Rn×d store the representation vector xi at the ith row
for vi ∈ V . A community refers to a group of nodes that are better connected
with each other than with the rest of the nodes in the graph. A graph is said
to have a community structure, if it can be decomposed into communities. In
many natural graphs, communities often exist at different levels of granularity.
At the upper (coarser) levels, there is a small number of large communities,
whereas at the lower (finer) levels, there is a large number of small communities.
In general, the communities at the coarser levels are less well-connected than the
finer level communities. When the communities at different levels of granularity



4 A. S. Tom et al.

Table 1: Summary of notation.
Notation Description

l A level in the hierarchical structure.
L The number of levels in the hierarchical communities.
G The graph G = (V,E,W ), where V is the set of n nodes, E is the set of m

edges, and W stores the edge weights.
vi A vertex in G.

deg(vi) The degree of node vi.
X The node representations of G
C A community decomposition of G.
H The community membership indicator vector of G.
Ci A community in C.

degint(Ci) The internal degree of community Ci, i.e, the number of edges that connect
nodes in Ci to other nodes in Ci.

degext(Ci) The external degree of community Ci, i.e, the number of edges that connect
Ci to nodes in other communities.

deg(Ci) The overall degree of community Ci, i.e, the sum of degint(Ci) and
degext(Ci).

ID An array containing the vertex internal degrees.
ED An array containing the vertex external degrees.
Q The modularity of G for a given C (cf. Eqn. 1).
Gl The graph Gl = (V l, El,W l) at level l
Xl The node representations at level l.
Hl The community structure at level l.
d The dimension of Xl, where l ∈ 1, . . . , L.

nel The number of epochs at level l.
lrl The learning rate at level l.
k The context size extracted from walks.
wl The length of random-walk.
r The number of walks per node.
α The weight of the contribution of node neighborhood to the overall loss.
β The weight of the contribution of proximity to a node’s community to the
overall loss.

γ The weight of the contribution of Q to the overall loss.

form a hierarchy, that is, a community at a particular level is fully contained
within a community at the next level up, then we will say that the graph has a
hierarchical community structure.

Let C = {C0, . . . , Ck−1}, with V = ∪iCi and Ci∩Cj = ∅ for 0 ≤ i, j < k be a
k-way community decomposition of G with Ci indicating its ith community. Let
H be the community membership indicator vector where 0 ≤ H[vi] < k indicates
vi’s community. Given a k-way community decomposition C of Gl = (V l, El),
its coarsened graph Gl+1 = (V l+1, El+1) is obtained by creating k vertices—one
for each community in C—and adding an edge (vi, vj) ∈ El+1 if there are edges
(up, uq) ∈ El such that up ∈ Ci and uq ∈ Cj . The weight of the (vi, vj) edge is
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set equal to the sum of the weights of all such (up, uq) edges in El. In addition,
each vi ∈ V l+1 is referred to as the parent node to all u ∈ Ci. Given C, the
modularity of G is defined as

Q =
1

2m

( ∑
Ci∈C

(
degint(Ci)−

deg(Ci)2

2m

))
. (1)

Q measures the difference between the actual number of edges within Ci and
the expected number of edges within Ci, aggregated over all Ci ∈ C. Q ranges
from −0.5, when all the edges in G are between Ci and Cj , where i 6= j, and
approaches 1.0 if all the edges are within any Ci and k is large.

Let the hierarchical community structure of G, with L levels, be represented
by a sequence of successively coarsened graphs, denoted by G,G2, · · · , GL, such
that |V | > |V 2| > · · · > |V L|, wherein at each l ∈ L, the communities in Gl are
collapsed to form the nodes in Gl+1. Every vli ∈ V l is collapsed to a single parent
node, vl+1

j , in the next level coarser graph, Gl+1. Let us denote a model that
takes the hierarchical community structure into account as hierarchical models
and those that do not as flat models. Finally, we summarize all the notations in
Table 1.

Fig. 1: A visualization of a synthetic 3K-node graph with a hierarchical commu-
nity structure created by the proposed generator in Section 4. A common-ratio
of 3.0 and a max. degree of 7.5 are used. A branching factor of 5 is used except
at the finest level, which uses 30. Nodes in the hierarchical community structure
are depicted using communities. A community in Level 3 and a sub-community
in Level 2 are marked. A node’s Level 1 community is itself.
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3 Mazi

Given a graph G, Mazi seeks to jointly learn its node representations and its hi-
erarchical community structure organized in L levels. Mazi coarsens the graphs
at all levels of the hierarchy and learns representations for all nodes. At any
given level, the node representation is learned such that it is similar to those of
the nodes in its neighborhood, to its community and to the nodes it serves as
a community to. This ensures the node representations at all levels align with
the hierarchical community structure. Further, the communities at all levels are
learned by utilizing node representations along with the graph topology. Mazi
utilizes Skip-gram to model the similarity in the representations of a node and
its neighbors. To model the similarity in the representations of node and its
associated community, Mazi minimizes the distance between the respective two
representations. Finally, to learn the communities, Mazi maximizes the modu-
larity metric along with the above objectives.

Figure 1 illustrates a graph with a hierarchical community structure. From
the figure, we see that the original graph (nodes of the graph is level 1 in the
hierarchical structure) contains 5 large communities (level 3) in its coarsest level,
each of which can be further split into 5 sub-communities (level 2). The nodes
in the graph are marked such that the figure illustrates the level it belongs to
in the hierarchical community structure. Mazi learns the representation of a
node belonging to the level 2 community such that it will be similar to other
nodes in that community over others. Furthermore, it will also be similar in
representation to the nodes in its upper-level community at level 3, although
this similarity value will be progressively lower as compared to that of the nodes
in the level 2 community.

3.1 Objective Function

Mazi defines the objective function used for learning node representations using
three major components. First, at each level, for each node, Mazi maximizes the
proximity of its representation to the representation of the nodes belonging to
its neighborhood using the Skip-gram objective. Second, iterating over all levels,
the proximity of the representation of a node to that of its direct lineage in the
embedding space is maximized. Third, the communities at each level are learned
and refined by maximizing the modularity metric.

Modeling node proximity to its neighborhood. As previously studied, see [6], to
capture the neighbourhood of a node in the representations, we seek to maxi-
mize the log-likelihood of observing the neighbors of a node conditioned on its
representation using the Skip-gram model with negative sampling. Utilizing the
concept of sequence-based representations, neighboring nodes of a node vi, rep-
resented by N(vi), are sampled to form its context. Let the negative sampling
distribution of vi be denoted by Pn and the number of negative samples con-
sidered for training the loss be denoted by R. We use Lnbr_pos and Lnbr_neg to
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denote the loss of vi to its neighbors and to its negative samples, respectively.
Using the above, we define

Lnbr_pos =
1

|N(vi)|
∑

vj∈N(vi)

log σ(x>i xj), (2a)

Lnbr_neg = R · Evn∼Pn(vi) log(1− σ(x
>
i xj)). (2b)

Taken together, we model the neighbourhood proximity of vi as:

Lnbr = Lnbr_pos + Lnbr_neg. (3)

Modeling node proximity to its community. In many domains, nodes belonging to
a community tend to be functionally similar to each other in comparison to nodes
lying outside the community [4]. As a consequence, we expect the representation
of a node to be similar to the representation of its lineage in the hierarchy.
Consider a level, l, in the hierarchical community structure of G. At l, for vli,
with representation xli, we let the representation of its associated community
(parent-node), H l(vli), in the next level coarser graph, Gl+1, be denoted by
xl+1
Hl(vli)

. To model the relationship between vli and H l(vli), we use:

Llcomm = log σ
(
xli
>
xl+1
Hl(vli)

)
. (4)

As we iterate over the levels in the hierarchy of the graph, we bring together
nodes in each level closer to its parent node in the next-level coarser graph in
the embedding space. Consequently, the representation of a node is influenced
by the communities the node belongs to at different levels.

Jointly learning the hierarchical community structure and node representations.
Typically, community detection algorithms utilize the topological structure of
a graph to discover communities. However, we may also take advantage of the
information contained within the node representations while forming the com-
munities at each level in the hierarchy. Mazi discovers the communities in the
graph by jointly maximizing the modularity metric, described in Equation 1, at
each level and minimizing the distance between the representations of a node and
its community in the next level coarser graph. The communities that we learn at
each level, thus, better align with the structural and the functional components
of the graph at that level. At each level in the hierarchical community structure,
we use Equation 3 and Equation 4 to model and learn the node representations.

Consequently, putting all the components together, we get the following cou-
pled objective function:

max
θ

L∑
l=1

(
1

|V l|

(
Llnbr_pos + αlLlnbr_neg + βlLlcomm

)
+ γlQl

)
,

θ = xli, H
l, i ∈ 1 . . . |V |l ∀l ∈ 1 . . . L.

(5)
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Since the order of the three terms that contribute to the overall objective
is different, the terms are normalized with its respective order of contribution.
Further, αl, βl and γl serve as regularization parameters and are added to Sub-
equations (2b), (4) and (1) in the overall objective for each level l, respectively.

3.2 Algorithm

An initial hierarchical community structure of the graph at level 1, denoted by
G1 = (V 1, E1,W 1), is constructed and node representations are computed for
all the levels in the hierarchy. Then, using an alternating optimization approach
in a level-by-level fashion, the objective, defined previously, is optimized. The
optimization updates step through the levels from the finest level graph to the
coarsest level graph and then from the coarsest level graph to the finest level
graph in multiple iterations. This enables the node representations at each level
to align itself to its direct lineage in the embedding space, additionally refining
the community structure by the information contained within this space. An
outline of the overall algorithm and its complexity can be found in Algorithm 1,
Appendix A.1 and Appendix A.3, respectively, in the supplementary materials.

Initializing the hierarchical community structure and node representations. A
hierarchical community structure with L levels and their associated community
membership vectors for G is initialized by successively employing existing com-
munity detection algorithms, such as Metis [9] at each level l ∈ L. The node
representations at the finest level of the graph, denoted by X1, are initialized by
using existing representation learning methods such as node2vec, DeepWalk [6,
14]. Node representations of coarser level graphs are then initialized by comput-
ing the average of the representations of nodes that belong to a community in
the previous level finer graph, Gl−1.

Optimization strategy. At each level, Mazi utilizes an alternating optimization
(AO) approach to optimize its objective function. Mazi performs AO in a level-
by-level fashion, by fixing variables belonging to all the levels except one, say
denoted by l, and optimizing the variables associated with that level. At l, the
community membership vector, H l, is held fixed and the node representations,
X l, is updated. Then, X l is fixed, and H l is updated. Let us denote the node
representation update as the X l sub-problem, and the community membership
update as the H l sub-problem for further reference.

Node representation learning and community structure refinement. At each level
l, Mazi computes the gradient updates for the X l sub-problem. By holding H l

fixed, Mazi updates xli to be closer to the representation of vj ∈ N(vli), xlj , and
its parent node, xl+1

Hl(vli)
(see Equation 3 and 4). The H l sub-problem is then op-

timized using the updated X l at l. To maximize the modularity objective (Ql)
in the H l sub-problem, Mazi utilizes an efficient move-based approach. Consider
reassigning vli from its existing community Cla to a candidate destination commu-
nity Clb. We note that Ql, in Equation 1, depends on degint(Cli) and degext(Cli),
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where Cli ∈ C. Instead of computing the contribution of each community to de-
termine Ql, we only modify the internal and the external degrees of Cla and Clb
by computing how the contribution of vli to Cla and Clb changes. Utilizing this,
the new community of vli is determined such that it maximizes Ql and minimizes
the distance between xli and x

l+1
Hl(vi)

.
After alternatively solving for the sub-problems X l and H l at level l, Mazi

optimizes level l + 1. These steps proceed up the hierarchy in this fashion until
it reaches level L − 1. Starting at L − 1, the sub-problems XL−1 and HL−1 is
optimized in the backward direction level-by-level using the updated represen-
tations, that is, l = L − 1, L − 2, . . . , 1. By performing the optimization in the
backward direction such as above, the node representations at the finer levels
of the hierarchy are influenced by the updated representations at the coarser
levels. After W such iterations, the refined node representations and community
membership vectors for all levels are returned as the result of the algorithm.

4 Experiments

In order to evaluate the proposed algorithm, Mazi, we design experiments on
real-world as well as synthetic graphs. We test Mazi on two major tasks: (i) link
prediction and (ii) node classification. We compare Mazi against the following
state-of-the-art baseline methods: (i) node2vec [6], a flat embedding model, (ii)
ComE [2], a model respecting only a single-level in the hierarchy, (iii) HARP [3],
(iv) LouvainNE [1], which are both hierarchical models, and (v) variations of
the above mentioned models.

4.1 Experimental Setup

Link prediction task setup. We divide the original graph into validation (sample
5% of the edges) and test ((sample 10% of the edges)) sets, and train graph. For
each positive sample (existent edge in the graph), we sample 99 negative samples
(non-existent edges). We use the train graph to generate node representations.
Then, for every edge in the validation and test sets, we compute its prediction
score using the representations of the edge’s node pairs along with that of its cor-
responding negative samples and determine the mean average precision. Further,
to test our algorithm on link prediction using learnable decoders, we implement
the DistMult model [16] and a 2-layer multi-layer perceptron (MLP). We provide
the element-wise product of the representations of the nodes that comprise an
edge as input to train the above models. We use 2% of the edges as the train set
and 1% each for the validation and test set, with 20 negative samples for each
positive edge, and report the average precision (AP) score of the test set for the
best performing score on the validation set.

We run an elaborate search on the random-walk hyper-parameters. In node2vec,
context_size, walk_length, walks_per_node, p, q, and #epochs select values
between {2−5}, {4−10}, {5−60}, {0.1−10}, {0.1−10}, and, {1−4}, respectively.
For ComE and HARP, the context_size, walk_length and walks_per_node
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Table 2: Real-world graph dataset statistics. Experiments are conducted on the
induced subgraph formed by the nodes in the largest connected component in the
graph. Label rate is the fraction of nodes in the training set. The #communities
in each coarsened level is equal to

√
n, where, n is the current level graph’s

number of nodes. We stop coarsening when #communities ≤ 10. The last level
is the all-encompassing node.

#communities
Dataset #nodes#edges#labels in coarsened Label

levels rate

BlogCatalog 10312 667966 39 {100, 10, 1} 0.17
CS-CoAuthor 18333 163788 15 {135, 12, 1} 0.08
DBLP 20111 115016 4 {142, 12, 1} 0.49

is chosen from {2−6}, {5−50}, and {5−30}, respectively. We choose parameters
specific to Mazi, β and γ, from {0.25 − 2.5} and {1.0 − 3.0}, respectively. We
use the stochastic variation of LouvainNE, which is reported to obtain the best
performance. We search all partitioning schemes of LouvainNE, used for gener-
ating the hierarchy, and use values 0.0001, 0.001, 0.01, 0.1, 1.0 for the damping
parameter. The #dimensions for all methods is 128.

Multi-label classification task setup. We use a One-vs-Rest Logistic Regression
model (implemented using LibLinear [5]) with L2 regularization. We split the
nodes in a graph (real-world and synthetic datasets) into train, validation and
test sets. We sample a fixed number of instances, s, from each class to form a
representative train set. The validation and the test set is, thereafter, formed by
almost equally splitting the remaining samples. In Table 2, we detail the exact
fraction of nodes (label rate) in the real-world graphs that were used to the train
the model. In case of synthetic datasets, we choose 45 samples per class, leading
to a label rate of 0.6. We choose the regularizer weight from the range {0.1, 1.0,
10.0}, such that it gives the best average macro F1 score on the validation set for
the different methods. To generate the best performing model of the approaches
for evaluation, we conduct a search over the different hyper-parameters for the
synthetic and the real-world graphs.

For the synthetic graphs, in node2vec, context_size, walk_length, walks_
per_node, and #epochs are chosen from {5, 10, 15}, {10, 20, 30}, {10, 20, 30}, and
1, 2, respectively. p and q are chosen from {0.25 − 4}. ComE, HARP and Mazi
also use the above for its parameters. #clusters in ComE has been chosen from√
#nodes and #labels. Additionally, specific to Mazi, we choose both β and γ

from {0.0, 1.0, 2.0}. For the real world graphs, the context_size, walk_length,
and walks_per_node parameters have been varied between {5, 10, 15}, {10, 20, 30,
40}, and {10, 20, 30, 40}. p and q are chosen from {0.25, 0.50, 1, 2, 4}. The #di-
mensions for all methods is 128.
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Table 3: Link prediction on real-world graphs. Link prediction task performance
of the methods is listed in the table. All HARP variants use node2vec as the
base model. The mean average precision score is reported. The results are the
average of 3 runs. The observed standard deviation was less than 0.01.

Mean Average Precision
Method BlogCatalog CS-CoAuth DBLP

node2vec 0.534 0.797 0.914
HARP w. 2 lvls 0.532 0.755 0.881
HARP w. 3 lvls 0.460 0.732 0.874
HARP w. all lvls 0.126 0.647 0.769
LouvainNE 0.035 0.270 0.397
ComE 0.389 0.745 0.896
Mazi 0.587 0.824 0.930

4.2 Evaluation

Real World Datasets. We evaluate the proposed algorithm on three real world
networks: BlogCatalog, CS-CoAuthor, and DBLP. BlogCatalog is a social network
illustrating connections between bloggers while CS-CoAuthor and DBLP are
co-authorship networks. Both DBLP and CS-CoAuthor exhibit high values of
modularity, that is, 0.83 and 0.75, respectively, while BlogCatalog has a relatively
lower modularity value of 0.23. More information about each dataset is detailed
in Table 2.

Evaluation on the link prediction task. Mazi demonstrates good performance
over competing approaches as shown in Table 3 on the real-world datasets. We
observe, in general, that Mazi demonstrates higher gains on datasets with higher
modularity values. Over node2vec, the gains observed by Mazi in mean average
precision (MAP) varies between 1.6% in DBLP to 10% in BlogCatalog. In com-
parison to HARP, referred to as HARP w. all lvls in Table 3, Mazi shows gains
as high as 366% in BlogCatalog. To further study the behaviour of HARP, we
evaluate its performance by restricting the total number of levels to 2 (HARP
w. 2 lvls), and 3 (HARP w. 3 lvls). We note that both these approaches demon-
strate higher MAP scores in comparison to HARP. We reason that since HARP
collapses random edges and star-like structures to coarsen the graph in multiple
levels, the coarsened graph in the last level may not be indicative of the global
structure of the network and could serve as poor initializations. Mazi demon-
strates gains between 3.79% and 50.89% against ComE. ComE, using gaussian
mixtures to model its single-level communities, may not well capture the defin-
ing structural characteristics of the graph while generating representations. Lou-
vainNE ’s best performing version, as per the authors, uses random vectors for
node representations at all levels in the graph’s extracted hierarchy. Although
LouvainNE may capture the hierarchical structure in a node’s representation
by performing a weighted aggregation of vectors belonging to its hierarchy, we
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Table 4: Link prediction using learnable decoders on BlogCatalog. We report
average precision score on link prediction task of the methods using learnable
decoders - DistMult and 2-layer multi-layer perceptron. σ is short for the sig-
moid function.

Using 2-layer
Method σ DistMult MLP

node2vec 0.62 0.62 0.59
HARP w. 2 lvls 0.62 0.62 0.62
HARP w. 3 lvls 0.05 0.56 0.57
HARP w. all lvls 0.05 0.32 0.43
LouvainNE 0.07 0.08 0.12
ComE 0.47 0.47 0.46
Mazi 0.70 0.70 0.69

note that it may not well capture its local neighborhood. Thus, nodes that are
in close proximity may not be represented similarly, and may indicate its low
performance on the task. In Table 4, we report the average precision (AP) scores
using learnable models, DistMult and a 2-layer MLP, on BlogCatalog. We note
very similar trends as in Table 3 and observe that despite using learnable de-
coders, Mazi outperforms all other approaches in this task.

Evaluation on the multi-label node classification task. Table 5 reports micro
and macro F1 score obtained by the methods on real-world datasets. We note
that Mazi obtains a gain of up to 4.19% and 7.55% in macro F1 on BlogCatalog
against node2vec and HARP, respectively. Against LouvainNE, Mazi achieves
great gains on BlogCatalog (137%) and CS-CoAuthor (13%), respectively. While
the gain obtained in CS-CoAuthor against node2vec and HARP is 0.43% and
0.85%, respectively, in macro F1, we observe that in DBLP, with a higher mod-
ularity value, the performance of Mazi is comparable with other approaches.
ComE obtains a slightly better micro F1 score in BlogCatalog. Its choice of us-
ing gaussian mixtures to model community distributions appears to capture the
weak community structure in BlogCatalog (modularity value of 0.23) well.

Synthetic Datasets. We design a novel synthetic graph generator that is capa-
ble of generating graphs with a hierarchical community structure and real-world
structural properties. This is achieved by modeling the hierarchical community
structure using a hierarchical tree (see Fig. 2). Each level in the hierarchical tree
is a level in the hierarchical community structure, wherein the nodes of the tree
forms the communities in the graph at that level. The nodes in the last level form
the nodes of the generated graph. A node in the graph is generated such that, in
expectation, it is able to form edges with other nodes in communities in the upper
levels of the hierarchical community structure. For this, we accept a parameter,
referred to as common-ratio, to generate L terms in geometric progression, for
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Table 5: Multi-label node classification performance. Multi-label classification
performance of the different methods are listed. The micro and macro F1 scores
are reported. We report the scores achieved on the test set such that it achieves
the best macro F1 score in the validation set chosen from the relevant hyper-
parameters associated with each method. The results report the average of 3
runs. The standard deviation up to 2 decimal points is reported within the
parentheses.
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each level in the hierarchical community structure (refer to Appendix A.2 for
detailed descriptions). With these terms, we compute a probability distribution
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for a node to form an edge with another. Higher values of the common-ratio
result in fewer edges between nodes belonging to different communities and thus,
increases modularity of the graph as computed by the communities in the second
last level. Further, we use a power distribution to model the graph’s node degrees
to capture the behavior of real-world networks. Other properties that we tune
are the maximum degree, number of levels, branching factor of nodes, number of
leaves, among others. To aid us in the node classification task, we generate labels
for nodes such that they correlate with the hierarchical structure of the graph.
We discuss further details of the proposed generator in the Appendix A.2.

Level 1

Level 2

Level 3

75 nodes

Level 4

Fig. 2: The hierarchical tree structure used to generate
our synthetic datasets. It has 4 levels. While the finest
level uses a branching factor of 75, all other levels use 5.

In our experiments,
we create a 5-level hi-
erarchical tree with a
branching factor of 5
in most levels. The
branching factor in
the level before the
leaves is 75, thus,
resulting in a total
of 9375 nodes. We
range common-ratio
between {1.05, 1.2, 1.4, 1.6, 1.8, 2.0}.
On average, the mod-

ularity of the graph for the corresponding common-ratio is 0.23, 0.28, 0.33, 0.37, 0.41, 0.44.
The power-law distribution parameter is 4.5 for the node degree. The maximum
and the average degree of a node in the (directed) graphs we study are 187 and
33, respectively.

Evaluation on the multi-label node classification task. Figure 3 plots the micro
and macro F1 scores obtained by the methods on the synthetic datasets on node
classification. The average gains observed in the macro F1 scores byMazi (Prior)
against node2vec range from over 50% to 5% for the common-ratio value of 1.05
to 2.0. As the modularity of the graph, as defined by the finest level community
structure, decreases, the random-walks in node2vec will tend to stray outside the
community. The labels are, however, distributed in accordance with the commu-
nity structure, and thus, could indicate its lowered performance. Mazi (Metis)
achieves similar performance asMazi (Prior) against node2vec, ranging from 42%
to 5% for common-ratio 1.05 to 2.0. Further, Mazi (Prior) and Mazi (Metis)
both are able to demonstrate significant benefits in comparison to HARP for
graphs with common-ratio ranging from 1.05 to 1.6. The average gain obtained
by Mazi (Prior) and Mazi (Metis) are as high as 19% and 9.5%, respectively, for
common-ratio 1.05. We reason that for the graphs whose modularity, as defined
by the prior hierarchical community structure is low, the coarsening scheme of
HARP may not be able to capture a fitting hierarchical community structure.
Thus, the representations learnt on the coarsest level may not serve as good
initializations for finer levels. Against ComE, we observe similar gains at about
20% with commmon-ratio 1.05 in the F1 scores. We also observe similar trends
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(b) Macro F1 Score

Fig. 3: Average micro and macro F1 scores on the synthetic graphs. Results are
obtained over 3 runs with standard deviation. HARP method is built on the
node2vec model, Mazi (Prior) uses the community structure generated by the
hierarchical clustering tree, and Mazi uses the community structure generated
by Metis. Mazi (Metis), uses 4 levels in the hierarchy. The #communities in
next coarser level is generated using

√
n, where, n is the number of nodes in the

graph in the current level.

with Mazi over LouvainNE. For the lower values of common ratio, and thus, the
modularity, we believe that LouvainNE may not be able to capture the local
neighborhood of a node well.

4.3 Ablation Study

We study the effect of two important parameters, β and γ, in the performance of
Mazi. We set β = 0.0 to fully ignore the contribution of the proximity between
the node and its community representations while optimizing the objective. We
set γ = 0.0 to fix the hierarchical community structure to its initial value and
optimize only the node representations. In node classification, a non-zero value
of β plays a crucial role in ensuring Mazi ’s good performance (see Table 6). Since
the representations learned are benefited by the knowledge of a hierarchical com-
munity structure, performance achieved by β = 0.0 is consistently lower than
when β 6= 0.0. The effect of γ is more apparent in Mazi using the Metis commu-
nity structure. Since the hierarchical community structure generated using Metis
does not fully conform to the prior community structure and the label distribu-
tion on the synthetic graphs correlate with the finest level community structure,
we note that refining the hierarchical community structure and thereby, using it
to improve the representations lead to better performance of the model.

We also report the effectiveness of β and γ in link prediction in Table 7. All
the datasets achieve better performance when accounting for non-zero values
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Table 6: Ablation study on node classification. Macro F1 scores and %gain
achieved by Mazi (Prior) and Mazi against respective versions without Ql
(Eq. 1) and without Llcomm (Eq. 4) are reported for the synthetic graphs over
3 runs. The standard deviation up to 2 decimal points is reported in the paren-
theses.

Mazi (Prior) Mazi
γ = %gain β = %gain w/o β, γ γ = %gain β = %gain w/o β, γ

CR 0.0 w/o Ql 0.0 Ll
comm 6= 0.0 0.0 w/o Ql 0.0 Ll

comm 6= 0.0

1.2 0.267 -0.42 (0.61) 0.256 4.26 (0.56) 0.266 0.258 0.28 (0.89) 0.256 0.97 (0.91) 0.259
1.4 0.321 0.07 (0.10) 0.316 1.83 (1.12) 0.321 0.314 0.63 (0.04) 0.314 0.69 (0.08) 0.316
1.6 0.374 -0.10 (0.13) 0.369 1.14 (0.10) 0.373 0.371 0.03 (0.55) 0.369 0.49 (1.01) 0.371
1.8 0.394 0.09 (0.12) 0.387 1.77 (0.98) 0.394 0.388 0.27 (0.41) 0.387 0.39 (0.58) 0.389
2.0 0.444 0.00 (0.00) 0.437 1.48 (0.63) 0.444 0.439 0.20 (0.33) 0.438 0.35 (0.02) 0.440

Table 7: Ablation study on link prediction. Mean average precision and %gain,
averaged over 3 runs, achieved by Mazi on link prediction over Mazi without Ql
(Eq. 1) and Mazi without Llcomm (Eq. 4) is reported for the real-world graphs.
The standard deviation up to 2 decimal points is reported in the parentheses.

γ = %gain β = %gain w/o β, γ

Graph 0.0 w/o Ql 0.0 Ll
comm 6= 0.0

BlogCatalog 0.586 0.15 (0.03) 0.564 4.09 (0.09) 0.587
CS_CoAuthor 0.823 0.03 (0.12) 0.821 0.29 (0.09) 0.824
DBLP 0.930 -0.02 (0.08) 0.929 0.08 (0.17) 0.930

of the β. This is especially evident in the BlogCatalog dataset, wherein Mazi
shows a gain as high as 4.09%. Further, the community structure refinement
in BlogCatalog and CS_CoAuthor leads to better performance when γ 6= 0.0,
whereas in DBLP, the results obtained are comparable in both cases.

5 Related Work

Several methods model node representations using deep learning losses in su-
pervised, semi-supervised and unsupervised settings. Amongst the unsupervised
methods, the Skip-gram model is a popular approach used in the literature [14,
6] to model the local neighborhood of a node using random walks while learning
its representation. However, unlike our method, these representations are inher-
ently flat and do not account for the hierarchical community structure that is
present in the network.

Existing methods have also explored jointly learning communities at a single
level and the representations of the nodes in the graph [2, 15]. ComE [2] models
the community and the node representations using a gaussian mixture formu-
lation. vGraph [15] assumes each node to belong to multiple communities and



Title Suppressed Due to Excessive Length 17

a community to contain multiple nodes, and parametrizes the node-community
distributions using the representations of the nodes and communities. Unlike
these approaches, our approach utilizes the inductive bias introduced by the
hierarchical community structure in the representations.

Recently, many unsupervised hierarchical representation learning methods,
such as HARP [3] and LouvainNE [1], have been explored that leverage the
multiple levels formed by hierarchical community structure in the graph. HARP
uses an existing methods, such as node2vec, to generate node representations for
graphs at coarser levels and initializes node representations at finer levels using
these. LouvainNE recursively partitions each community in a graph to form sub-
communities. The representations for a node in all the different sub-communities
are generated and subsequently aggregated in a weighted fashion to form the final
node representation. SpaceNE [11] represents the hierarchical community struc-
ture using sub-spaces in the feature space and learns node representations that
preserves proximity between nodes as well as similarities within communities and
across communities. However, all these approaches consider a static hierarchical
community structure to influence the representations. In comparison, we jointly
learn the node representations and the hierarchical community structure that
is influenced by the node representations. In a parallel line, some GNN-based
methods have been suggested to model the hierarchical structure present in the
graphs while learning network representations [17, 8, 18, 10]. While DiffPool [17]
and AttPool [8] learn graph representations, HC-GNN [18] and GXN [10] target
node representation learning. However, these are supervised methods and use
task specific losses while considering static hierarchical community structures.

6 Conclusion

This paper develops a novel algorithm, Mazi, for joint unsupervised learning of
a given graph’s node representations and hierarchical community structure. At
each level in the hierarchy, Mazi coarsens the graph and learns its node repre-
sentations and leverages them to discover communities in the hierarchy. In turn,
Mazi uses the hierarchy to learn the representations. Experiments conducted on
synthetic and real-world graph datasets in the node classification and link predic-
tion demonstrate the competitive performance of Mazi compared to competing
approaches.
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